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Let U C R? be an open subset and f : U — R? be an arbitrary local homeomorphism with
Fix(f) = {p}. We compute the fixed point indices of the iterates of f at p, iz: (f*, p), and we identify
these indices in dynamical terms. Therefore, we obtain a sort of Poincaré index formula without
differentiability assumptions. Our techniques apply equally to both orientation preserving and
orientation reversing homeomorphisms. We present some new results, especially in the orientation
reversing case.

1. Introduction

There is abundant literature about the fixed point index of a homeomorphism f, in a
neighborhood of an isolated fixed point and the local dynamical behavior of f. There are
results in both directions, that is, bounds (or explicit computation) for the fixed point index
from dynamical properties of f and conversely how the knowledge of the fixed point index
is used to describe the dynamics locally.

One can notice that due to the systematic use of Brouwer’s translation arcs
theorem (see [1] or [2]), most of the known results are limited to orientation preserving
homeomorphisms.

It is well known that the classical Poincaré index formula relates the index of a planar
vector field with the elliptic and hyperbolic regions in a neighborhood of a critical point.
Such a formula, for the iterates of an arbitrary homeomorphism, will give a geometric
interpretation of the fixed point indices of the iterates, it could help to attack some open
problems and it will provide simple proofs of many of the strongest theorems in the subject.
This is the main goal of this article.



2 Fixed Point Theory and Applications

The Ulam’s problem about the existence of minimal homeomorphisms in the
multipunctured plane was solved completely in the negative by Le Calvez and Yoccoz in
[3]. The main technique in the proof of their theorem is the computation of the fixed point
index of all iterates of an orientation preserving homeomorphism in a neighborhood of a
fixed point p which is an isolated invariant set, neither an attractor nor a repeller. Given an
orientation preserving local homeomorphism f : U ¢ R* — R?, they carry out a detailed
local study, near the fixed point p. Then they prove the existence of integers r, g > 1 such that

if k erN,

iz (5, p) = {1'_rq (1.1)

1 if k¢ rN.

The authors, in [4], using Conley index ideas, gave, in a quite simple way, a general
theorem extending the above result to arbitrary local homeomorphisms. In particular, if f
reverses the orientation, there are integers 6 € {0,1,2} and g such that

1-6 if k odd,

nﬂﬁ@={ (12)

1-6-2q if k even.

Later, Le Calvez extended his theorem with Yoccoz to arbitrary isolated fixed points
of orientation preserving planar homeomorphisms. Again the fixed point indices of the
iterations of the homeomorphism have periodical behavior. Le Calvez, in [5], uses in a very
clever way the nice Carathéodory’s prime ends theory (see [6, 7]). The idea of applying the
compactification of Carathéodory to study planar dynamical problems is not new. It was
introduced by Pérez-Marco in [8] and it was used more recently by the first author, in [9], to
prove that the index of arbitrary stable planar fixed points is equal to 1.

On the other hand, Baldwin and Slaminka, in [10], dealt with the problem of relating
the fixed point index of an orientation and area preserving homeomorphism around an
isolated fixed point p and the number of branches in which the stable/unstable “manifold”
of p decomposes. The results of Baldwin and Slaminka were improved by Le Roux, in [11],
where the fixed point index is used not only to detect stable/unstable branches but also Leau-
Fatou petals around p. The authors, in [12], gave a stable/unstable “manifold” theorem for
arbitrary planar homeomorphisms near a fixed point admitting nice filtration pairs.

There are some papers dedicated to the study of the analogous problem in dimension
3. See [13-16] and its references.

The computation of the fixed point index of any iteration of any planar homeomor-
phism at an isolated fixed point laying in an isolated invariant compactum was done by
the authors in [4, 12]. As we said above, when p does not belong to any isolated invariant
compactum and the homeomorphism is orientation preserving, Le Calvez improved a result
of Brown, see [17], showing that the sequence of indices is periodic. We will find with our
methods the same formula for orientation preserving homeomorphisms and we shall solve
the problem also for orientation reversing homeomorphisms. The main fact to obtain our
results is the existence of special classes of filtration pairs in the Carathéodory’s prime ends
compactification that will allow us to by-pass the technical problem that occurs if the fixed
point does not lay in an isolated invariant compactum.

Roughly speaking, if a fixed point p does not lay in arbitrary small isolated compacta,
we can consider any disc ] containing p in its interior and take K, the component containing
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p of the maximal invariant set contained in J. By using the Carathéodory’s compactification
of $?\ K,, we work in a disc and we can compute the index at p from the local indices (in
semidiscs) of the fixed prime ends that now will admit isolating blocks. The existence of
such isolating blocks around the fixed prime ends not only provides a simple technique to
compute the index of the iterations of arbitrary homeomorphisms but also allows to identify
such indices in a geometrical way. Given a disc J the existence of isolating blocks, around the
fixed points that appear in the compactification, allows to find dynamical objects (generalized
stable/unstable branches and generalized attracting/repelling petals whose definitions we
will precise later) which are the keys for the computations of the indices.

Essentially, the index of the homeomorphism at p only provides “optimal” dynamical
information if p admits isolating blocks. Otherwise, the set of indices of the induced
homeomorphism in the Carathéodory’s compactification of S? \ K,, at the new fixed points
provides much more information than the index at p.

The main goals of this paper are the following:

(a) The first goal is to provide a general geometrical method to compute the fixed point
index of the iterations of an arbitrary local homeomorphism at an isolated fixed
point;

(b) Given any Jordan domain J, Inv(cl(J), f) N 0(J) #@ and an isolating block, N, is a
neighborhood that isolates the fixed (or periodical) prime ends of the component of
Inv(cl(]), f) containing p, to prove that | and N determine canonically a number of
generalized unstable (stable) branches and generalized repelling (attracting) petals
around the fixed point (see Definition 2.6). Their number depends on J and N but
their difference depends just on the germ of f;

(c) The third goal is to provide some dynamical consequences. We shall give new and
short proofs of some known results and new theorems in the orientation reversing
framework.

The paper is organized as follows: in Section 2 we start with some preliminary
definitions. We will dedicate subsections to recall the results we will need in the special
case where the fixed point is an isolated invariant set and to give a brief presentation of
the Carathéodory’s prime ends theory. At the end of the section, we give the statement of
the main results. Section 3 is devoted to the computation of the fixed point indices of the
iterations of arbitrary planar homeomorphisms at an isolated fixed point. In Section 4, we
will give the proof of the main theorems and the dynamical meaning of the indices. First we
shall study the case where the homeomorphism has a finite number of periodic prime ends.
The general case follows easily from this previous simpler case (see Remark 2.12). Finally
Section 5 contains the proofs of a number of corollaries of our techniques.

2. Preliminary Definitions and Results. The Main Construction
and the Statement of the Principal Results

2.1. Preliminary Definitions

Given A C B C N, cl(A), clg(A), int(A), intg(A), 0(A) and 0p(A) will denote the closure of
A, the closure of A in B, the interior of A, the interior of A in B, the boundary of A, and the
boundary of A in B, respectively.
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Let U Cc X be an open set. By a (local) semidynamical system, we mean a local
homeomorphism f : U — X. The invariant part of N, Inv(N, f), is defined as the set of
all x € N such that there is a full orbit y with x € y C N.

Inv*(N, f) (resp., Inv™ (N, f)) will denote the set of all x € N such that f/(x) € N for
every j € N (resp., f7/(x) is well defined and belongs to N for every j € N).

A compact set S C X is invariant if f(S) = S. A compact invariant set S is isolated
with respect to f if there exists a compact neighborhood N of S such that Inv(N, f) = S. The
neighborhood N is called an isolating neighborhood of S.

An isolating block N is a compactum such that cl(int(N)) = N and f*(N)NNNf(N) C
int(IN). Isolating blocks are a special class of isolating neighborhoods.

We consider the exit set of N to be defined as

N ={xeN: f(x)¢ int(N)}. (2.1)

If X is a locally compact ANR (absolute neighborhood retract for metric spaces),
ix(f,S) will denote the fixed point index of f in a small enough neighborhood of S. The
reader is referred to the text of [18-22] for information about the fixed point index theory.

An isolated fixed point p is said to be indifferent if for every small enough disc D such
that p € int(D), Inv(D, f) no(D) #0.

An isolated fixed point p is accumulated if p € cl(Per(f|v)\ {p}) for every neighborhood
V of p.

2.2, Strong Filtration Pairs

The next definition is based on the notion of filtration introduced by Franks and Richeson, in
[23]. It is the key for the direct computation of the fixed point index of any iteration of any
homeomorphism of the plane.

Definition 2.1. Let f : U C R> — R? be a local homeomorphism. Suppose that L C N is a
compact pair contained in the interior of U. The pair (N, L) is said to be a strong filtration pair
for f provided N and L are each the closure of their interiors and

(1) N and 9(N \ L) are homeomorphic to a disc and S!, respectively.
(2) cI(N \ L) is an isolating neighborhood.
(3) f(cI(N'\ L)) Cint(N) (i.e., L is a neighborhood of N~ in N)).

(4) For any component L; of L, On(L;) is an arc and there exists a topological disc B;
such that aN(Ll) CB;CcL;, BNN~# @, and f(Bl) N CI(N \ L) = 0.

Theorem 2.2 (see [4,12]). Let f : U C R? — f(U) C R? be a homeomorphism. Suppose that there
exists a strong filtration pair, (N, L), for f and let K = Inv(cl(N \ L), f). Then, there are an absolute
retract for metric spaces, Dy, containing a neighborhood V C R? of K, a finite subset {qu,...,qm} C

Dy, and amap f : Dy — Dy such that f|y = flv and for every k € N, Fix((f)¥) c KU{qu, ..., gm).
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Moreover,

(a) if f preserves the orientation, then

1-rq ifkerN,
i ( fk,K) - { (2.2)
1 if kg rN,

where k € N, q is the number of periodic orbits of f in (qu, ..., qm}, and r is their period;

(b) if f reverses the orientation, then

1-6 if k odd,

g2 ( fk,K> - { (2.3)

1-6-2q ifk even,

where 6 € {0,1,2} and q are the number of fixed points and period two orbits of f in
{q1,...,qm}, respectively.

Definition 2.3. Under the setting of the above theorem, the integer r (r = 2 if f is orientation
reversing) is called the period of the strong filtration pair (N, L).

We conclude this subsection with the next theorem that resumes the main results of
[12]. We will construct a family of branches of the stable and unstable “manifolds” associated to a
fixed point p which admits a strong filtration pair (N, L). The minimum number of elements
of these families depends on the fixed point index ir2(f”, p) with r being the period of the
strong filtration pair (N, L). In order to make the paper as self-contained as possible, we will
sketch the proof which contains some ingredients we will need in the future.

Theorem 2.4. Let f : U C R> — f(U) C R? be a homeomorphism with p being an isolated
fixed point of f, and let us assume that there is a strong filtration pair of period r, (N, L), such that
peint(N\ L), L#0, fi(c(N\L)) cU forje{l,...,r}and Fix(f") Nncl(N \ L) = {p}. Let us
suppose that the connected component of K = Inv(cl(N \ L), f) which contains p is K, = {p}. Then
there exist trivial shape continua Sy, ...,Ss,Uy,...,Us in cl(N \ L), with s = 1 —ig2(f", p), such
that:

(D) U Si € K and U, Us € K, with K and K, being the connected components of
K* =Inv"(cI(N \ L), f) and K~ = Inv™ (cI(N \ L), f) which contain p;
(2) SinS;=U;nU; = {p} foralli#jand S;nU; = {p} foralli,j € {1,...,s};
) f7(S) ¢ Si, f(Ui) € Ui, and (Ve f7 (Ui) = Npen 7 (Si) = {p} for every i €
{1/ -, 8 }/
(4) the sets S;NO(cl(N \ L)) and U; N 0(cl(N \ L)) alternate in 0(cl(N \ L)).
Proof. If L = L1 U---U L, let us consider the quotient space N obtained from cl(N \ L) by

identifying each On (L;) to a point g; fori = 1,...,m. Take the projection map o : cI(N \ L) —
Np and the retraction 7 : N — cl(NN \ L). The map

fl=morofox™ : N\ {q1,...,9m} — NiL (2.4)
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induces in a natural way a continuous map ? : N — Ni. It is easy to see that

7({6]1,---,%1}) C {q1,...,9m}. Let 8 = {p1,...,ps} be the biggest subset of {g1,...,qn} on
which f acts as a permutation. It is clear that 0 is an attractor for f (is locally constant for
every p; € 0). Let A be the region of attraction of 6,

A= {x € N : there is ng such that (?)no (x) € 9} (2.5)

and let A(p;) be the component of A containing p; € 6. Let us observe that K, and K, are
trivial shape continua such that limk_,, f *(x) = p for every x € K, and limi_, o f kKx)=p
for every x € K, (see the Main Theorem in [12] for a proof). Then it is not difficult to see that
p € cl(A(p))) forall j=1,...,s.

Let K; = N,en (/)™ (l(A(py)) fori € {1,...,s}. Since (f)"(cl(A(p)) C cl(A(py)), it is
clear that K; is a continuum with {p,p;} C K; = (7)r(Ki) C cl(A(pi)). Then we have that
Uieq1,..s) (Ki \ {pi}) € K, then On(Li) N K, #@ foralli=1,...,s.

Let us define the continuum U; = 7~ (K;) ﬂK; . We have that U, is negatively invariant
for f" and contains p.

On the other hand, U;NK = {p}. In fact, since N, f 7 (U;) is an invariant continuum
for f” which contains p, then (o f 7" (U;) C K, = {p}.If x € U;NK, then x € .oy [ (U;) C
Ky = {p}.

’ Let us see that U; has a trivial shape. In fact, if U; has a hole V, then there are a € V
and ng € N such that f(a) € int(L;) and f™(a) € cI(N \ L) for all n € Z, n < ng. Then it is
immediate that a € U; which is a contradiction.

Let us prove that U; C o '(A(p:)) U {p}. If x € U; \ {p}, then there exists ny € N
such that f*(x) € cI(IN \ L) for all integer n < ng and f™"(x) € int(L;) (if this is not true,
x € K and we have x = p). Then it follows that x € 71 (A(p;)). As a corollary, we obtain that
U; = (' (A(p)) U {p)) N K.

It is obvious that U; N o(cl(N \ L)) C on(L;).

If we repeat this construction fori € {1,...,s}, we obtain Uy, ..., Us with U;nU; = {p}
for every i #j.

Let us construct the sets Sy,...,S;. Let us consider the set 0 = {py,...,ps} with p;
adjacent to p; (thereis an arc y C or(0(N \ L)) joining p;—1 with p; such that y N0 = {p;_1, pi}).
If piz1pi is the arc in o (9(cl(N \ L)) which makes adjacent p;_; and p;, we have that there is
a component K, C K;; of 0(A(pi)) separating p; from 6 \ p; (see the Main Theorem in [12])
with Ky, Np;1pi # 0.

Let B; be the connected component of cI(N \ L) \ (U;-1 UU;) which contains ! (Kp, 0
pi-1pi). Then we define S; = (B; U {p}) N K. Following the steps given with the family {U;},
it is easy to prove the analogous properties for the family {S;}. O

2.3. Carathéodory’s Prime Ends

Let B C C be the unit open disc and let f : B — G € CU {00} be an onto and conformal
mapping. The problem whether f admits an extension to cI(B) = B U S!, by defining
f(z) = limy_ . f(x) for z € S!, has a topological answer. Indeed, f admits that an extension
if and only if 0(G) is locally connected. The problem whether f has an injective extension
has also an answer of topological nature: f has an injective extension if and only if 0(G) is
a Jordan curve (Carathéodory’s Theorem, see [24]). If 0(G) is locally connected but not a
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Jordan curve, there are points of 0(G) that have several preimages. The situation becomes
much more complicated if 0(G) is not locally connected. Carathéodory introduced the notion
of prime end to describe this setting. The points z € S! correspond one-to-one to the prime
ends of G and the limit f(z) exists if and only if the prime end has only one point (Prime End
Theorem, see [24]).

Let D C R? be a simply connected open domain containing the point at infinity such
that 0(D) contains more than one point. Then 0(D) is bounded. A cross-cut is a simple arc,
C, lying in D, except in the end points, with different extremities. If C is a cross-cut of D
then D \ C has exactly two components A; and A, such that D N 0(A;) = D N0o(Ay) =
C\ {end points}.

A sequence {C,} of mutually disjoint cross-cuts and such that each C, separates C,_;
and C,,1 is called a chain. A chain of cross-cuts induces a nested chain of domains (bounded
by each C,) ---Dy1 C Dy, ---. Each chain of cross-cuts defines an end. Two chains of cross-
cuts, {C,} and {C,,}, are equivalent if for any n € N there is m(n) such that D,, C D, and
D,, c D, for every m > m(n). Equivalent chains of cross-cuts are said to induce the same
end. If P and Q are ends represented by chains of cross-cuts {C(P),,} and {C(Q),,} such that
for every n, D(P),, C D(Q),, for m > m(n), we say that P divides Q. A prime end P is an end
which cannot be divided by any other.

Let P be a prime end. The set of points of P is the intersection E = o cl(D(P),,) where
{D(P), } is the sequence of domains bounded by any sequence of cross-cuts representing P.
A principal point of P is a limit point of a chain of cross-cuts representing P tending to a point.
The set Hp C E of principal points of a prime end P is a continuum (compact connected set)
(see [6] or [7] for details).

Each chain of cross-cuts inducing a prime end P determines a basis of neighborhoods
of P. We obtain in this way a topology in the set of prime ends of D. More precisely, if P is the
set of prime ends of D and D* is the disjoint union of D and [P, we can introduce a topology in
D* in such a way that it becomes homeomorphic to the closed disk and the boundary being
composed by the prime ends. It is enough to define a basis of neighborhoods of a prime end
P € P. Given the sequence of domains {D(P),,}, we produce a basis of neighborhoods {U,,}
of P in D*. Each U, is composed by the points in D(P), and by the prime ends Q such that
D(Q),, € D(P),, for m large enough.

If % is the 2-sphere R? U {co} and oo € D C §? is a simply connected open domain, the
natural compactification, due to Carathéodory, see [6], of D obtained by attaching to D a set
homeomorphic to the one-dimensional sphere S! is called the prime ends compactification of D.
We identify R? = C and we consider a conformal homeomorphism ¢ : D — S*\ B (where B
is the disc B = {z € C : |z| < 1}). Now a one-dimensional sphere S! is attached to D using g.
Each point of S! corresponds to a prime end of D.

2.4. The Main Construction

Let f : U — W be a local homeomorphism with U, W C R? open subsets and let p be a
nonaccumulated and indifferent fixed point in a small enough Jordan domain J with {p}
being the unique periodic orbit contained in cl(J) and such that K, N9d(J) # @ for K, being the
connected component of K = Inv(cl(J), f) which contains p. We will suppose that p € 0(K},)
(e.g., if p is not stable and ] is small enough, then p € 9(K})).

Remark 2.5. Let us observe that, given p being a non-accumulated and indifferent fixed point,
if ipe (fk, p) # 1 for some k € N, then we can select a Jordan domain J, as above, with p € 9(K},).
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In fact, if p € int(K,) for every small enough Jordan domain J, then p is stable for f* and
ir2(f,p) =1 (see [9, 25]).

It is easy to see that the set K}, C cl(J) has a trivial shape, that is, K, and R? \ K, are
connected.

We follow with some of the most important notions of the paper: the generalized
stable/unstable branches and generalized attracting/repelling petals. The first ones are
essentially branches, in a classical sense, for the map that our homeomorphism f induces
in the compactification of R? \ K, at a fixed prime end.

Let p € ] be an indifferent and non-accumulated fixed point for f in the above
conditions. Given the open domain 5% \ K,,, for each open arc y C J with end-points a,b € K,
(we do not exclude the possibility a = b) such that y N K, = (, we call D, the bounded
connected component of R? \ (y U K,). The set D; is an open ball contained in J.

Definition 2.6. A continuum U, C cl(]) is a generalized unstable branch for f at p if:

(i) U, N K, is an invariant continuum contained in 0(K}) such that p € U, N K, and
U, \ K, C J is nonempty and has trivial shape components;
(ii) f1(U,) c Up and N,y f(U,) = U, N Kp;

(iii) there exists an open ball D, associated to an open arc y, as above, with U}, C cl(Dy),
U, Ny a compact set, and such that:

(a) the set U, is locally maximal, that is, if ll”g C cl(Dy) satisfies conditions (i) and
(ii), then LI;, cu,;

(b) for every open neighborhood V of U,, there exists x € D, NV with
f7(x) & cl(Dy) for some n, € N.

In an analogous way, we define generalized stable branches S, for f at p. We only have
to replace f by f!in (ii) and (iii).
A set Ry, is a generalized repelling petal for f at p if:

(i) Ry = cl(Dy) C cl(J) with Dy being an open ball associated to an open arc y, as above,
such that cl(y) = y U {q1, g2} withp € {q1, 92},

(ii) f‘l(Rp) C Ry and N,y f "(Ry) C O(Kp) is an invariant continuum for f which
contains p.

In an analogous way, we define generalized attracting petals for f at p. We only have to
replace f by f!in (ii).

Remark 2.7. The stable and unstable branches in the classical sense associated to f at p
and constructed in the proof of Theorem 2.4, are, of course, particular cases of generalized
unstable and stable branches if we consider the map f’' = f" and K, = {p}. It is easy to obtain
an adequate arc y; C cI(N \ L) for each unstable (stable) branch U;.

Let U’ be a Jordan domain such that cl(J) c U’ c U ¢ S and let f : S — S bea
homeomorphism such that ﬂur = f. The Carathéodory’s compactification of S? \ K,, is a disc
(obtained by gluing S' to S\ K,,) which we call D. The homeomorphism f]| sk, PSP\ Kp —
52\ K, can be extended to a homeomorphism f :D — D.Letusdenote D\ (5?\ K,) =09(D)
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and let us consider the set of prime ends obtained from the accessible points K, N d(J) (by
arcs on U \ cl(J)) and which we call P(K, n9(J)) C 9(D).

If f is orientation preserving and there exist periodic orbits for f]| op)- then all of them
have the same period r. If f is orientation reversing, then f]| o(p) has exactly two fixed points
and period two periodic orbits.

Let us see that the compact sets Per(f| a(D)) and P(K, N o(])) are disjoint. Let o be
a prime end in (K, N 0(]J)) associated with a point py € K, N 0(J). Then [y & Per(fla(D)).
In fact, if this is not true, f is a fixed prime end for f” (r = 2 if f is orientation reversing)
and, since py is accessible by an arc y,, C U \ cl(J) such that cl(yy,) \ y», = {po}, then the

principal points of the fixed prime end [y are the continuum, invariant for f", Hp, = {po}
(Hp, Ccl(yp) \ Ypo = {po})- Then, po must be a fixed point for f”. But this is a contradiction.

Remark 2.8. Note that both f and the set of fixed prime ends of f depend on the Jordan
domain ] such that Inv(cl(J), f) N 0(J) #0. See Example 2.9.

Example 2.9. Let us consider the dynamical system of Figure 1, which gives us a homeomor-
phism f of R? with p being a non-accumulated and indifferent fixed point.

The Jordan domains J; and J> of Figure 1 are such that Inv(cl(J1), f) = Ky, is a “petal”
which contains p and such that Ky, N 0(J1) # (. On the other hand, Inv(cl(}>), f) = K5, are
two “petals” which contain p and such that K, N 0(J2) #0.

The maps f : D — D have the dynamical behavior in Figure 2 .

The map ffor J1 has, in 0(D), a fixed prime end p; and the map ffor J» has, in 0(D),
two fixed prime ends {p1, p>}.

Following with the main construction, there are two possible situations:

(a) Per(ﬂa(D)) is a finite set of n points;
(b) Per( f | a(D)) is an infinite set of points.

Let us suppose that we are in case (a). Remark 2.12 permit us to reduce case (b) to case

(a) by identifications to points of adequate intervals in d(D). If f is an orientation preserving
homeomorphism, we have that n = gr for certain g,r € N with r being the period of the
periodic orbits of f] ooy and q the number of periodic orbits. On the other hand, if fis
orientation reversing, we obtain g periodic orbits of period 2 and two fixed points in 0(D). It
is obvious that n = 29 + 2.

Let us suppose that D ¢ S? and let us denote by f : S — S? the homeomorphism
obtained by pasting along 0(D) a symmetric copy of f : D — D.

The next lemma is needed for the computation of the fixed point index ig:(f*,p) by
using strong filtration pairs.

~k
Lemma 2.10. Given a fixed point py of fs |5, (k € TN if f is orientation preserving), there is a pair
(N1, Ly) which is in one of the following two situations.

(a) (N1, Ly) is a strong filtration pair for fsk : §* — S2,in a neighborhood of p1. The period of
the strong filtration pair is 1 if f is orientation preserving or 2 if f reverses the orientation.

(b) The pair (N1, L1) has the properties (1), (2), and (3) of strong filtration pairs with L, being
a disc with a hole, dn, (L)) = S' and Nj C int(f," (N1)).
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Figure 1
f for J; f for J,
(a) (b)
Figure 2

Proof. Given a fixed point p; of fskla(p), let us see that there exists the pair (Ny, L) for fsk in
S with py € Inv(cl(N7 \ Lv), £").

Take a small enough arc [a,b] C 0O(D) with py € (a,b) and such that
Inv([a, b],ﬂb(p)) = p1. The set [a,b] is an isolating block for fk|a(D). Let us consider a
small enough disc M in D with M N o(D) = [a,b] and Fix(ﬁ‘|M) = {p1}. Since the space
of components of Inv(M, f¥) is a zero-dimensional compactum, it is easy to construct a disc
My C M such that [a,b] C M; and Inv(M,ﬁ‘) N 0p(M;) = . If we choose the disc N ¢ S?
obtained by joining M; with its reflected disc on 0(D), M5, we have that N is an isolating

~k
neighborhood for f, .
It is not difficult to construct a disc N7 C int(IN), N1 symmetric with respect to 0(D),

and isolating block for £, (see [12, 26]), with 3(Ny) NInv(N, f.) = and py = Fix(f. |, )-
If there is not a disc B C Nj such that p; € int(B) and B C int( fsk(B)), then there exists

. . . k. . .. . S
a strong filtration pair (N1, L1) for f; with L; being a finite (perhaps empty) union of disjoint
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~k
discs (see [4, 12]). By the symmetry property with respect to 0(D) of f; , it is immediate that
. . . . ..ok . . . o F k.
the period of the generalized filtration pair is 1 if f; is orientation preserving and 2 if f; is
orientation reversing (see [4]). Therefore, we are in the conditions of (a).

On the other hand, it there exists the above disc B, we obtain in an easy way the pair
(N1, Ly) of the case (b). O

Definition 2.11. We are interested, for each fixed point p; of fsk| (D) in the pairs (N;ND, L;N
D) = (N}, L;) which we call strong filtration pairs adapted to D for p;. Let us observe that the
pair (N}, L}) has the properties of the strong filtration pairs for f¥:D — D ateach fixed point
pi € (D). We will suppose without loss of generality that each arc y; = 0p(N;) corresponds
in J to an arc with two end points in K.

There are three possible cases.

(i) If L; = @, then ﬁ( (N}) Cintp(N;) and we say that N is an attracting petal associated
to fk at p;.
(i) If on,(L;) = S', then N C intD(P‘(le)) and we say that N} is a repelling petal
associated to f* at p;.
(iii) If (N, L;) is a strong filtration pair with L; # @), given the sets of stable and unstable
branches {S;} and {U;} of (N, L;) associated to fsk at p; (see Theorem 2.4), we
select the subsets of branches {S,,} and {U,,} which are contained in (N \ 6(D)) U

{pi}. We call {S,,,} and {U,,} stable and unstable branches of (N}, L}) associated to fk
at pi-

Remark 2.12. 1f Per(f| lo(py) 1s not a finite set of points (we supposed before), we can select

a finite and disjoint union I = I; U --- U I, of closed arcs of 0(D), with f(I) = I, such
that Per(ﬂa(D)) C Iand P(K, n0(J)) NI = (. Let us identify each component of I to a

point. We obtain a new disc which we call D again. If f : D — D is the new induced
homeomorphism, we have that Per( f | b(D)) is a finite set and the construction of the strong
filtration pairs adapted to D is also valid (see Figure 3). It is obvious that this construction
depends on the choice of the set I.

Example 2.13. Letus consider the dynamical system of Figure 4. We obtain a homeomorphism
f of R? with p being a non-accumulated and indifferent fixed point and Inv(cl(]), f) = K, an
infinite family of petals which contain p in their boundary.

The dynamic of the map f in D is given in Figure 5(a). We have an infinite family
of fixed prime ends (fixed points for f in (D)). If we consider the two invariant arcs
for f, I; and I, of Figure 5(a) and make an identification of them to points p; and p»,
we obtain a new homeomorphism (which we call in the same way) f : D — D. This
homeomorphism has only two fixed points in 0(D) and we are in case (a); see Figure 5(b).
The new map f has a repelling point in p, and an unstable branch in p;. Let us observe
that the choice of the invariant intervals which contain the fixed prime ends, I = I; U I, is
not unique. We can select I with an arbitrary family of intervals of this type which gives
us a different dynamic for f and a different set of fixed points in d(D) for the identification
map.
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-LiND

pi pi
Case (i) Case (ii)
u,

LD

pi

Case (iii)

Figure 3

Figure 4

Definition 2.14. Given a Jordan domain J, a set of strong filtration pairs adapted to D is a finite

~k
collection of pairs {(N; N D, L;iND)}; associated to the family {p;}; of fixed points of fs |,

Let us observe that this set depends on the choice of | and, if Per( f | a D)) is not finite,

on the choice of the set I such that, after an identification, it transforms Per( f | o D)) in a finite
set .
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(a) (b)
Figure 5

2.5. The Statement of the Principal Results

To conclude this section, we summarize below the main results of this article.

Let f : U — W be a local homeomorphism with U,W C R? open subsets and let p
be a non-accumulated, indifferent fixed point. If p is stable, that is, if there exists a basis of
neighborhoods {U,,} .y of p such that f(U,) C U, for all n € N, we obtain ig:(f*,p) = 1 for
all k e N (see [9, 25]).

We are interested in the relation between the fixed point index of the iterations of f at
p and the local dynamics at p, with p being a nonstable fixed point.

Main Theorem 1 (Poincaré formula: Orientation preserving case). Let f : U — W be
an orientation preserving local homeomorphism with p being an unstable, non-accumulated, and
indifferent fixed point. Let us select a Jordan domain ] such thatp € J C cl(J) c U with K,No(]) #0,
and let {(N; N D, L; N D)}; be a set of strong filtration pairs adapted to D, the Carathéodory’s
compactification of S* \ K,,. Then there exist r € N and r,,u,, sp, a, € rN such that

1 if k¢rN,
iRZ(fk/P>=
l-up+rp,=1-s,+a, ifkerN,

(2.6)
1 if k¢rN,

14+ 5 ((rp+ @) - (wy +5)) ik erN.

We have the following dynamical interpretation: there are u,, (s;,) generalized unstable
(stable) branches and 7, (a,) generalized repelling (attracting) petals for f" at p (see
Definition 2.6). They are negatively (positively) invariant for f" and f~'(f) acts as a
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permutation on them. Let us observe that the numbers {u,,7,,s,,a,} depend on ] and the
set of strong filtration pairs but their differences depend only on the germ of f.

Remark 2.15. The last result gives us, as a corollary, a theorem due to Le Calvez (see [5])
which says that if p is a non-accumulated, indifferent fixed point, there exist > 1 and g € Z
such that

1 if k¢rN,

iz (f5,p) = { (27)

g ifkerN.

On the other hand, if f preserves or contracts (expands) areas, then r, = 0 (a, = 0)
and we obtain a corollary which improves a result of Simon (see [27]) about the existence
of a bound for the fixed point index of the area and orientation preserving homeomor-
phisms at an isolated fixed point. More precisely, if f preserves or contracts areas then

i (f,p) < 1.

From the above considerations, given an orientation preserving homeomorphism # :
U c R? — R? which preserves a measure supported in the open sets, such that Fix(h) =
Per(h) = {0} and ig:(h*,0) = 1 for every k € Z, it is natural to ask if 0 must be a stable
(in the past or in the future) fixed point. The famous example of Anosov and Katok, [28],
is a counterexample to this problem. They produced a diffeomorphism of the disc which
preserves natural measures and it is ergodic. This map is constructed inductively as a limit of
an appropriate sequence of diffeomorphisms. In the next section (see Example 3.3), we will
exhibit an explicit, very simple and geometric example of an orientation and area preserving
homeomorphism h : R> — R? such that Fix(h) = Per(h) = {0}, 0 is stable neither for h nor
for k™1, and the fixed point indices i: (h*,0) = 1 for every k € Z. Moreover, there will not be
h-invariant subsets of positive finite measure.

For the orientation reversing case, we prove the following theorem.

Main Theorem 2 (Poincaré formula: Orientation reversing case). Let f : U — W be an
orientation reversing local homeomorphism with p being an unstable, non-accumulated, indifferent
fixed point. Let us select a Jordan domain ] such that p € | C cl(J) C U, with K, N 0(]) #0, and let
{(NinD, LinD)}; be a set of strong filtration pairs adapted to D, the Carathéodory’s compactification

of S%\ K. Then there exist u,, u;, rp,r;, € N with u;, <uy, r;, <1y, u; + r;, < 2 such that

1-u,+r, ifkeven,
e ( fk,p> - P (2.8)
1-u,—r, ifkodd,

and with the following dynamical meaning: there are u, generalized unstable branches for £ at p with
u,, < 20f them negatively invariant for f (f 1 sends each of the u,, generalized unstable branches to
a subset of itself). In the same way, there are r, generalized repelling petals for f* at p and r, < 2 of
them are negatively invariant for f.

As in the orientation preserving case, we have similar formulas involving generalized
stable branches and generalized attracting petals.
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Remark 2.16. As a corollary, i:(f,p) € {-1,0,1} for f an orientation reversing local
homeomorphism and p a non-accumulated fixed point. This is Bonino’s theorem (see [29])
when p is non-accumulated.

Remark 2.17. The Main Theorem for orientation reversing homeomorphisms says that
ir2(f?",p) is constant. Then it solves Problem 7.3.9. of [21].

Theorem 2.18. Let f : U — W be an arbitrary local homeomorphism with Fix(f) = {p} being an
indifferent fixed point, such that ig2 (f",p) = 1-m < 1 for some r € N (r = 2 if f reverses orientation).
Then there exist m unstable (stable) branches, in the classical sense, {U;}({S;}) for f” at p such that:

(1) f~t and f act as permutations in {U;} and {S;}, respectively;
(2) limy,—, o f *(x) = p for every x € U;, lim,,_, . f"(y) = p for every y € S;;

(3) there exists a closed disc D, C J, with p € int(D,), Ui, (U;US;) C Dy, in such a way that
the intersection of the stable and unstable branches with 0(Dy) alternates in 0(D).

Each generalized repelling (attracting) petal contains p in its boundary. As a
corollary of the Main Theorems for both orientation preserving and orientation reversing
homeomorphisms, we will obtain the following result (see [11] for the orientation preserving
case).

Theorem 2.19 (Petal’s theorem). Let f : U — W be an arbitrary local homeomorphism with p
being a non-accumulated and isolated fixed point such that ig2(f",p) = 1+ m > 1 for some r € N.
Then there exist m generalized repelling petals {R;} and m generalized attracting petals { A;} for f*
at p such that:

(1) int(A;) Nint(A;) = int(R;) Nint(R;) = @ for all i # j, and int(A;) Nint(R;) = @ for all i, j;
(2) the map f (f~1) acts as a permutation in { A;} ({R;});

(3) limy,—, o f *(x) = p for every x € Ry, limy, .o, f"(y) = p for every y € A;;

(4) the sequences {f™(Ri)} ey and {f™(Ai)},ey determine ends containing p and

MNuen [ (Ry) and (V,.en f™ (Aj) are fT-invariant continua containing p;

(5) there is a Jordan curve y around p such that y intersects alternatively the sets {A;} and
{R;}, with y N A; and y N R; being closed arcs.

Remark 2.20. Using the petal’s theorem, one can prove the following consequences that
extend a theorem due to Le Calvez (see [5]).

If f: U — W isalocal homeomorphism such that Fix(f) = {p} and 1 #ig(f",p) > 1—-gq
for some r € N (r = 2if f reverses orientation), take a disc J such that p € int(J) C cl(J) c U.
We have the following two properties.

(a) If there exist g generalized stable branches for f" at p, then there exists a domain
Vi € U such that the domains of the sequence {f"(V1)},cy are well defined and
disjoint.

(b) If there exist g4 generalized unstable branches for f” at p, then there exists a
domain V, C U such that the domains of the sequence {f™(V2)},cy are well
defined and disjoint.

As a corollary, if ig2(f",p) > 1 for some r € N, there exist domains V;, V, C U such that
the domains of the sequences { (V1) },en and { f7"(V2) } ,e are well defined and disjoint.
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The last remark can be applied to the following interesting situation: let M be an
oriented compact 2-dimensional manifold with boundary and let f : U ¢ M — M be an
orientation preserving homeomorphism. Let p € 0(M) N U be an isolated fixed point of f.
Denote by DM the double of the manifold M and Df : DM — DM the natural map
induced by f.

Then,

(a) if p is a saddle point of f|ya) and ippm (D f,p) > 0, then there exist domains Vi, V, C
U such that the domains of the sequences { f"(V1)},cny and { f7(V2) },,en are well
defined and disjoint;

(b) if p is an attractor of f|sr) and ipam(Df,p) > -1, then there exists a domain V; ¢ U
such that the domains of the sequence { f"(V1)},,cy are well defined and disjoint;

(c) if p is a repeller of flsm) and ipm(Df,p) > -1, then there exists a domain V, ¢ U
such that the domains of the sequence { f™(V>)},,c are well defined and disjoint.

Note that in this particular setting, since p is isolated using Brouwer’s lemma on
translation arcs, it is not necessary to assume that ippr(Df,p) #1.

For orientation and area preserving homeomorphisms in surfaces, we have the
following Nielsen type theorem (see [30] for the particular case where M is a disc).

Corollary 2.21. Let M be an oriented compact 2-dimensional manifold with boundary and let f :
M — M be an area and orientation preserving homeomorphism such that f|aay has n attracting
fixed points and n repelling fixed points. Then f has, at least, n + A(f) fixed points in int(M) where
A(f) denotes the Lefschetz number of f. As a consequence, if M is the 2-dimensional disc, we have
that f has, at least, n + 1 fixed points in int(M).

Restricting ourselves to orientation reversing homeomorphisms and using the fact that
ir2(f,p) € {-1,0,1}, we shall produce a sharp theorem. The proof will be obtained easily by
using the previous results.

Theorem 2.22. Let f : U — W be an orientation reversing local homeomorphism with p being a
non-accumulated, indifferent fixed point, and ir2(f?,p) # 1. Then there are u, generalized unstable
branches and r,, generalized repelling petals for f> at p such that ix2(f*,p) = 1 —u, + 1, and

(a) the generalized unstable (stable) branches and the generalized repelling (attracting) petals
are negatively (positively) invariant for f%;

(b.1) if ir2(f%,p) = 1+m > 1, then r, > m and there are, at least, m generalized attracting
petals for f2 at p (m of the generalized attracting petals alternate with m of the generalized
repelling petals around p);

(b.2) ifir2(f? p) = 1—m < 1, then u, > m and there are, at least, m generalized stable branches
for % at p (m of the generalized stable branches alternate with m of the generalized unstable
branches around p);

(c.1) ifig2(f,p) = 1, then there are neither generalized repelling petals nor generalized unstable
branches for f* at p, negatively invariant for f. On the other hand, there are two generalized
attracting petals or two generalized stable branches or a generalized stable branch and a
generalized attracting petal for 2 at p, positively invariant for f.

The numbers u, and r, are even. Therefore, ig2(f, p) is odd;
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(c.2) ifig2(f, p) = =1, then there are two generalized repelling petals or two generalized unstable
branches or a generalized unstable branch and a generalized repelling petal for f* at p,
negatively invariant for f. On the other hand, there are neither generalized attracting petals
nor generalized stable branches for f? at p, positively invariant for f.

The number u, + 1, is even and ig: (f?,p) is odd;

(c.3) ifigz (f, p) = 0, then there are a generalized unstable branch or a generalized repelling petal
for f2 at p negatively invariant for f. On the other hand, there are a generalized stable
branch or a generalized attracting petal for f* at p, positively invariant for f.

The number u, + 1, is odd and ig2(f2,p) is even.

Corollary 2.23. Let f : S> — S? be an orientation reversing and area preserving homeomorphism.
If f has a fixed point, then | Per(f)| = oo.

3. Computation of ix:(f*,p)
3.1. Orientation Preserving Case

Let f : U — W be an orientation preserving local homeomorphism with p being a non-
accumulated, indifferent fixed point for f. Let J, be a Jordan domain, with p € J, being the
unique periodic orbit contained in cl(J,), K,N9(J,) # @, and such that p € 0(K,). Given k € N,

—k —
we can select a small enough Jordan domain J C J, such that Fix(f |,;,) = {p} (the map f
is defined after Remark 2.7) and such that the above continuum K, is also the connected
component of Inv(cl(J), f) which contains p. Then

is(Fp) +is (75217 ) =2 (3.1)

We have (after identification if necessary) that Per( j? | a(D)) is a finite set. Then f | (D) has
q periodic orbits of period r.
If k € rN, then

Fix(f¥lo)) = {{pras - p1rb oo (pat - Par )}, (3.2)

with {pj1,...,pj} being the periodic orbits of f|a(D) forj=1,...,4q
—k
We have that Fix(f [5;)) = () and Fix(fk|p(1<pma(}))) = (.

Let A = (J\ K,) ud(D) C D. Then isz(fk, S\ ) = iD(P‘,D \ A) and, since D is
contractible,

q

iD<fk,D\A> +1’Zip<fk,p]~1> =1 (3.3)

j=1

Then we have the following proposition.
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Proposition 3.1. Under the above setting,

() =io (F9) =219 (7511 ) =2o0( 01 4) 10 B ().
j=1
(3.4)

For each fixed point pj; of ]a‘, we have a strong filtration pair adapted to D, (N1, Lj1),
with pj1 € Kj1 = Inv(cl(Nj1 \ le),fk) (see Lemma 2.10).

The set Lj; is a finite amount of disjoint discs and it is easy to see that ip( P‘,pﬂ) =
1 - g; with g; being the number of components L}Tl‘ of Lj; such that fk(aNﬂ (L;'l‘)) C intD(L}Tl‘)

(see [4]). Since f is a homeomorphism, the number g; is the same for any other p;x with
kel{l,...,r}.
Then, if k € rN,

q
iRz<fk,p> = 1+r<q—qu>. (3.5)
=

If f la(p) has no periodic orbits, it is obvious that ig:(f*,p) = 1 for all k € N.
If k ¢ N, then Fix(f¥|, ) = 0 and iz (f*, p) = 1.
Therefore, we have proved the following theorem (see [5]).

Theorem 3.2. If f : U — W is an orientation preserving local homeomorphism with p being a
non-accumulated, indifferent fixed point, then

(@) if Per(flyp)) = 0,

iz (f5,p) =1 VkeN. (3.6)

(b) if Per(f] op)) 1S a nonempty finite set, then fl o(p) has g periodic orbits of period r, and

1 Ifk¢rN,

i (f*,p) = 37
lR(f P) 1+r<q—éqj> If k e rN, 7

j=1

with q; € N defined as above. Let us recall that we obtain ixz(f*,p) for all k € N by
observing f".

As an application of these techniques, we shall give an explicit simple example of an
area and orientation preserving homeomorphism h : R> — R? such that Fix(h) = Per(h) =
{0}, 0 is neither stable for h nor for h™! and the fixed point indices ig:(h*,0) = 1 for every
k € Z. Moreover, there are no h-invariant subsets of positive finite Lebesgue measure.
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Example 3.3. Let g, : R*> — R? be a rotation with center of the origin and angle « € R \ Q.

Let S' be the unit circle and xy € S!. For every point of the orbit of xo, {(gx)"(x0) :
n € 7}, following the classical construction of Denjoy, we paste an interval I,, in each point
()" (x0) for every n € Z such that:

(@) I(Iy+1) < I(I;) and I(I,) = I(I-y) for every m € Nand >, [(I,) = 27 < oo where
I(I) denotes the length of the interval I;

(b) limy, — o[ (Tne1) /(1) = 1.

Extending radially to the whole plane the corresponding map of Denjoy, we obtain a
homeomorphism g : R? — R2.

Let Q, = {a € R?: there are A > 0 and b, € I, such that a = Ab,}.

The homeomorphism h, we are looking for, will satisfy that g2, , 0, = &-

Let us define h in |J,,c; Q. Consider n € Z and take an isometric copy of Q,,, denoted
by ©, C R x [0, o) such that ©, is obtained by rotating Q, in such a way that the line x = 0
divides ©, into two symmetric sectors, O} and ©;,. We shall denote by 2a,, € [0, ir) the interior
angle determined by O,,.

It is clear that ©,,.1 C O, and ©_,, C ©O_;;41 for every m € N. For each n € Z, let us
denote by j, : Q, — ©, the obvious isometry.

To define the required homeomorphism h, we will consider, for every n € Z, area and
orientation preserving linear homeomorphisms f;, 41 : O — Opi1.

Let fuus1: ©) — O, be given by the formula

(3.8)

sin a1 sina, COS Ay i1 cos ay,
. X, n + X " - — .
sina, sin a1 sin a,, Sin a1

fann(x,y) = (

Since fnn41(0,y) = (0, y(sina,/ sina,,1)), we can extend fr 1 : ©, — O, , by the
obvious symmetry.

On the other hand, f, ,+1(rsina,, r cosa,) = (rsinay,.1,7 cos ay.1). Then, it is easy to
check that f, ,+1 is an area and orientation preserving injective map such that f, ,.1(0,) =
e11+1-

Moreover, fui1ni2 © fanit = fam2 and 1 < || funa(2)|/]1z]| < sina,/sinayq (1 >
| fune1(2)|1/]12]| > sinay,/ sinay,q) for every z € ©, and n > 0 (n < 0).

Now we are in a position to give an explicit definition of the homeomorphism h :
R? — R2by

() b2y, 0, = 8
(ii) h(z) = ((jn+1)_1 © funs1 0 ju)(2) € Qua for z € Qp.

By the construction, it is obvious that & is a bijective and area preserving map such
that Fix(h) = Per(h) = {0}.

(1) h is continuous in 0. Indeed, for any ¢ > 0 take 6 > 0 such that ¢ =
6 max{sinay,/sina,.; : m € N}. Then, if B(0,s) denotes the open ball centered
in 0 and radius s, we have that h(B(0,8)) ¢ B(0,¢) and h™'(B(0,6)) C B(0,¢).

(2) h is continuous in any z € R?\ {0}. In fact, we only have to pay attention to z €
R? \ U,ez int(Q,). For such points, we use polar coordinates z = (r,0) and g(r,0) =
(r, £2(0)). Since fy, y41(rsina,, rcos a,) = (rsinay,.1, ¥ cos a1 ) for every n € Z, we
have that h(z) = h(r,0) = (1, (0)).
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Consider any open neighborhood V = (r —¢,7 + €) x (g2(0) — €,£2(0) + €) of h(z) and
take any open neighborhood U of z such that g(U) c V and U N Q, #0 just for |n| such that
sina,/ sin a1 is close enough to 1. Then, if z' € U then ||h(2')||/||Z'|| is close enough to 1 and
|h(z)|| € (r—€,7 +e).

(3) 0 is neither stable for h nor for h™!. Indeed, take any z € int(Q,) with m € N
such that j(z) € {(x,y) : x =0, y > 0} C Op. Then, || fume1 (jm @)/ jm ()| =
sina,,/ sin a;,41.

Now, consider any k € N. There exists k,, € Nsuch that j.x, (" (z)) € {(x,y) : x =0,
Y >0} C Ok, and sina,,/ sin amk, > 25/||z||. Then, ||h=(z)|| > 2.

In the same way, we have that 0 is not stable for h™'. The same arguments allow
to prove that neither the positive semiorbit nor the negative semiorbit of z € int(Q,) are
bounded. On the other hand, any h-invariant subset has null or infinite Lebesgue measure.

(4) For any closed disc, D, centered in 0, we have that Inv(D, h) = (R?\ U,,c;, int(Q,)) N
D. Then, Inv(D, h) has no h-periodic prime ends and consequently, ip2(HK,0) =
ig2(h7%,0) = 1 for every k € N.

3.2. Orientation Reversing Case

Let f : U — W be an orientation reversing local homeomorphism with p being a non-
accumulated, indifferent fixed point and let ], and K, be as in the orientation preserving
case. Note that from a theorem of Kuperberg, see [31], p € 0(K}).

Given k € N, we can select a small enough Jordan domain J C J, such that

—k
Fix(f |c1(1)) = {p} and such that K, is the connected component of Inv(cl(J), f) which
contains p.
Since f : S> — S? is orientation reversing,

isi(Fp) wis (75217 - { 0 irkodd (3.9)

2 if k even,

and, since Per(f] o(p)) 18, after identification if necessary, a finite set, then fl o(p) has q periodic
orbits of period 2 and two fixed points {po, p1}.
Let us divide the computation of ig: (f¥, p) into two cases: k odd and k even.

Case 1. Let us suppose that k is odd.

Since 7k is orientation reversing,

. (Zk =k

i\ f.p)+is(f,S\])=0. (3.10)
On the other hand, since Fix(ﬁ‘|a(D)) = {po,p1},

in(f5,D\ A) +ip(f5po) +in(f5p1) = 1. (3.11)



Fixed Point Theory and Applications 21
Then we have the following proposition.

Proposition 3.4. Under the above setting,
iz (f5,p) = io(f5,po) +in(f5,p1) - 1. (3.12)

Let us compute ip(f*, po) for k odd.
There exists a strong filtration pair adqpted to D, (Ny, Ly), associa_ted to po.

If 4° is the number of components {L{)} of Ly such that fk(aNO(L{))) C intD(Lé), since

]ﬂ‘ is orientation reversing, we have that g° € {0,1} (see [4]).
We obtain that

in(f*,po) =1-4". (3.13)
In the same way, we have
in(fXp1) =1-4' (3.14)

with g' € {0,1} defined as g°.
Then, for k being odd and f being an orientation reversing local homeomorphism,

iw (f5p) = (1-9°) + (1-9") -1=1-4"-q" € {-1,0,1) (3.15)

and Case 1 is finished.

Case 2. Let us suppose that k is even.
Then P‘ is an orientation preserving homeomorphism with Fix( P‘ lbpy) =
{ro,p1, (P11, P12}, ..., {Pg1, P42} }. Following the steps of the orientation preserving case,

in(fYpp)=1-q; forjef{l,....q), in(f'p)=1-q forie{0,1).  (316)

Then

iz (f5,p) =2-ip(f5, D\ A) =2- [1—2217:(1—%-) -(1-4°)-(1-9")
= (3.17)
q

:3+2q—q0—q1—22q]-.

j=1

Let us observe that in this case (k even) we have not g' € {0,1}.
Therefore, we have the following theorem.



22 Fixed Point Theory and Applications

Theorem 3.5. Let f : U — W be an orientation reversing local homeomorphism with p being a

non-accumulated, indifferent fixed point such that Per(f]| o)) 1 a finite set (two fixed points and g
periodic orbits of period 2). Then

1-¢4°-q' € {-1,0,1}  ifk odd,

. k) = g 3.18
]R2<f P> 3+2q—q0—q1—ZZ‘7j if k even, ( :

j=1

with qj, q°, and q" defined as above. Let us recall that we obtain ig2(f*, p), for all k € N, by observing
fand f2.

4. Dynamical Meaning of i:(f*,p)

Proof of Main Theorem 1 (Orientation preserving case). Let f : U — W be an orientation
preserving local homeomorphism with p being a non-accumulated, indifferent fixed point
for f in the conditions of the orientation preserving case of Section 2. Then Per(f| a(D)) isa
finite set of g periodic orbits of period r. Let p;1 € Fix( 7 opy) With k € rN. We will relate
ip( ﬁ‘,pﬂ) with the dynamical behavior of f* in the proximity of pj1- This fact permits us to
establish a new relation between ig: (f*, p) and the dynamical meaning of f at a neighborhood
of p.
~k

Let (Nj, L;) be a pair, as in Lemma 2.10, for f; at pj;. If (N}, L)) is a strong filtration

pair, the period of (Nj,L;) is 1. We have then a family (perhaps empty) {U;,...,Us} of
~k ~k

unstable branches of (N, L;) associated to f; atpj; withs=1-is(fs ,pj1).

If (Nj1,Lj1) is a strong filtration pair adapted to D for p;;, we call u; the number of
unstable branches of (Nj;, Lj1) associated to P‘ at pj1. If we select any other pjx with k €

{1,...,r}, since f is a homeomorphism, we obtain the same numbers u; associated to pjx. Let
us study the relations between the numbers u; and g;.

Case 1. 1f pj; is an attractor for fk|a(D), then Lj; n0(D) = @ and g; = u;.

If g; = 0, then Nj; is an attracting petal associated to f* at pj1, that is, YN j1) C
intD(le).

Case 2. Let us suppose that p;; is a repeller for f7<| a(D):
Then g; > 1. We have two subcases.

Sub case 2.1. If q; = 1, Nj; is a repelling petal associated to f* at pj1, that is, Nj; C
intp (]?"(N]-l)), we have u; = 0.

Sub case 2.2. If g; > 1, we obtain u; = g; — 2.

Case 3. If pj1 is a saddle point for fkla(D), theng; = u; + 1.
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Let us denote

A: {] € {1//q} :pjl iS 11‘1 Case 1},

Ri={je{1,...,q) : pj1 is in Case 2.1},
(4.1)
Ry={je({1,...,q) : pj1 is in Case 22},

S={je{l,...,q9} : pjs is in Case 3}.

Since P‘| o(p) is orientation preserving, the sets A and R = R; U R; have the same
number of elements. There are r|A| = r|R| attractors (and repellers) and r|S| = r(q — 2|A])
saddle points for f¥| a(D)"

If we come back to the computation of ig: (f¥, p), then

iz (f5,p) =1+ r<q - i%)
j=1

:1+rlq—Zuj—|R1|—Z(u]-+2)—Z(uj+1)] (4.2)

jeA j€R, jes

=1-r Z u]-+r|R1|.
iEAURzUS

If we associate the number u;,, = u; to each point pj,, then

iRz<fk,p>:1— Z ujm+r|R1|. (4.3)

The number u;,, is the number of unstable branches of (N, Lj») associated to f " at
Pjm-

Let U, be an unstable (stable) branch of (N, Ljn) associated to f "at pjp. It is easy
to see that the continuum clg2 (U \ pjm) C U is a generalized unstable (stable) branch for f”
atp.

We can select the repelling petals Nj;, in such a way that the arcs 0p(Nj;,) are cross-
cuts of 0(K}), that is, their end points are exactly two points in 0(K,) (the set of elements
of 0(D) which are accessible by arcs on U \ K}, is dense in d(D)). Then, the continuum
clg>(int(Nj;,)) is a generalized repelling petal for f" at p.

The generalized attracting petals for f” at p are constructed in an analogous way:.

We define u, = 3 u;, to be the number of generalized unstable branches for f" at p
and r, = r|Ry| to be the number of generalized repelling petals for f” at p.
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We have proved that if f is an orientation preserving local homeomorphism, then
1y, up € rNand

1 if k¢rN,

iz (f,p) = { (4.4)

1-u,+r, if kerN.

Let us recall that ig2(f*,p) is computed by observing f ". The numbers u, and 7,
depend on the choice of the Jordan domain J and of the set of strong filtration pairs adapted
to D (if Per(fs(p)) is not a finite set). However, the difference r, — 1, does not change. O

Remark 4.1. Note that the above techniques allow us to compute ig2(f,p) even if p is an
accumulated isolated fixed point. Using Lemma 2.10, there are no problems to construct
strong filtration pairs adapted to each fixed prime end. Since it is well known that for an
accumulated isolated fixed point pigz(f,p) = 1, we have that the number of generalized
unstable (stable) branches and generalized repelling (attracting) petals that are negatively
(positively) invariant for f coincide.

Corollary 4.2. Let pj; € Fix(]a‘|a(D)) with k € rN and let (N}l, L;.l) be a pair as in Lemma 2.10 and
(Nj1,Ljr) = (N}1 NnD, L}l N D) a strong filtration pair adapted to D at pjy. Then

ujy  otherwise,

_ YV -1 ifon, (L) =S",
in(f*, Nj) - is <fs ,Nﬂ) ={ () (4.5)
with ujy being the number of unstable branches of (N1, Lj1) associated to f*at pj1. Therefore,

S io(F Njw) = S (£ Ny ) ==
S in(fNw) - s ( f;‘,N;.m) .

JER JER

(4.6)

Proof of Main Theorem 2 (Orientation reversing case). Let f : U — W be an orientation
reversing local homeomorphism and let p be a non-accumulated, indifferent fixed point for
f in the conditions of the orientation reversing case of Section 2. Then, Per( f | o D)) is a finite
set with two fixed points and g periodic orbits of period two.

If k is even, we have that P‘ is orientation preserving and Fix( ﬁ‘| apy)) =
{po,p1, {p11, P12}, - {Pg1, Pg2} }- Then

is (f5,p) = 1= up +15, (47)

with 7, and u, being the number of generalized repelling petals and unstable branches for f?
at p. The petals and branches are constructed as in the orientation preserving case.
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If k is odd, then let Fix(ﬁ‘la(D)) = {po, p1} with {(No, Lo), (N1, L1)} be strong filtration
pairs adapted to D for py and pi. Let u,, and r,, be the number of unstable branches and
generalized repelling petals associated to f¥ at the fixed points of (D) which are negatively
invariant for f*. Since f¥ is orientation reversing, we obtain that u,<2,r,<2andr, +u, =
q° +g' < 2. Then

iw (f5p) =1-0"-q" =1-1, -1, € {-1,0,1}. (4.8)

If f is an orientation reversing local homeomorphism,

1-u,+r, ifkeven,
iz (f*,p) = { (49)

1—u;—r;, if k odd,

with ig2(f¥,p) € {-1,0,1} if k is odd. The numbers {u,,7,} and {u,,r,} are computed by
observing f2 and f. O

Definition 4.3 (Irreducibility of branches and petals). Let p € ] be a non-accumulated
and indifferent fixed point with ] being a Jordan domain such that K, N 9(J) #0, and let
us construct the Carathéodory’s compactification of S? \ K, D, and the homeomorphism
f:D — D.If p; € Fix(f¥| o(py) 18 an isolated fixed prime end (and not an identification to a
point of an interval I; of prime ends) and it gives us a family of generalized unstable branches
for f” at p, we call them irreducible unstable branches for f” at p in J. In the same way;, if p; gives
us a generalized repelling petal for f" at p, we call it irreducible repelling petal for f™ atpin J.

Remark 4.4. If the set of isolated fixed prime ends of ﬁ‘ | (D) is not finite then, given m € N, we

can obtain another identification homeomorphism, which we call again P‘ :D — D, which
gives us a number >m of generalized unstable branches and a number >m of generalized
repelling petals at p (obviously, we have u, > m and r, > m). However, the number r, — u, =
ir2(f¥,p) — 1 is constant and it just depends on the germ of f.

Remark 4.5. Let us observe that if f is orientation reversing, since Fix(f] ap)) 1s a set of two
fixed prime ends for every f, then the numbers u, and r, of ir2(f,p) = 1 - u, — 1, are
independent of the map f considered (this fact is not true for u, and ).

The following proposition is a consequence of our previous results.

Proposition 4.6. Let us suppose that ig2(f",p) #1 for some r € N (r = 2 if f reverses orientation).
There exists a family of u, generalized unstable branches, {U;}, and a family of r,, generalized repelling
petals, {R;}, for f" at p such that ig>(f",p) =1 —up + 1, and

(1) the open repelling petals and the sets {U; \ K, } are two families of mutually disjoint sets.
Moreover, each set of a family is disjoint from the sets of the other family;
(2) limy— oo f7(x) = {p} and lim,, .o, f " (y) = {p} for every x € U; and every y € R;;

3) Npen [ (U;) and N,en ™ (R;) are fT-invariant continua containing p and the
sequence { f " (R;) } e determines an end containing p.
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If f is orientation reversing, the numbers u,, < 2 and r,, < 2, of the decomposition ig:(f, p) =
1 —u, —r,, determine the number of generalized unstable branches and generalized repelling petals of
our families which are negatively invariant for f.

Proof. Let us select an adequate | such that Fix(f"|;) = {p}. Given a fixed point p; for f " (D)
and a strong filtration pair (Nj, L;) adapted to D, the unstable branches {Uy;, ..., Us;} for f r
at p; are compact sets of trivial shape. We define generalized unstable branches {U;} as the
closure in R? of the sets {Uy; \ {pi},...,Us \ {pi}} for every p; € Fix(fg(D)).

Since ig2(f",p) #1 and Fix(f"|;) = {p}, it is not difficult to prove that for every x €
clre (Ui \ {pi}), f7™(x) — {p} (see [12, Proposition 2]).

Let us construct generalized repelling petals {R;}. There are r,, generalized repelling
petals {Ny,..., N, }| associated to the fixed points of fr|a(D). We can select generalized
repelling petals {N;} in such a way that each arc y; = dp(N;) has two end points in 9(K}).
Each p; has associated a union of prime ends {/;}. At least one of these prime ends, p;, is
a fixed prime end for f ". We call P; the set of points of p;. It is not difficult to prove that
P; C 0(K,) is a continuum, invariant for f", with p € P;.

For each p;, we obtain a generalized repelling petal, R;, for f" atp

R; = clg: (ints: (N})) (4.10)

with p € P; C 9(R;). The associated open repelling petals are disjoint and it is obvious that
they are disjoint from the sets {U; \ K} which are also disjoint. O

Remark 4.7. 1f a generalized unstable branch (or a generalized repelling petal) for f” at p, Uy,
is irreducible, then N,y f 7" (Uo) C 0(K}) is a continuum, invariant for f”, and it is the set of

points of a fixed prime end for f.

Remark 4.8. Note that from our techniques one can provide reasonable notions of local
hyperbolic and elliptic sectors in terms of the generalized stable/unstable branches and
generalized attracting/repelling petals such that the classical Poincaré formula remains true
(Question 1.16 of [11]).

5. The Remaining Proofs

Proof of Theorem 2.18. We can assume that p € 9(K}).

The fixed point index ig2(f",p) = 1 —u, + 1, < 1 gives us m = u,, — r,. We obtain that
there are 1, > m unstable branches {Uj, ..., Uy, } for f " at the fixed points in (D).

Let a, and r, be the number of fixed points in d(D) associated to attracting and

repelling petals for f7. If the disc N; of a strong filtration pair adapted to D, (Nj, L;), is not
an attracting nor a repelling petal, then we say that N; is an unstable petal. We call R > r, the

number of repelling fixed points for f7| o(p)- Ris also the number of attracting fixed points for

flaw)-
Given a point p; € Fix(f"[5p,) associated to an unstable petal N;, there are three cases.
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Case 1. If p; is a saddle point for f "ls(py then there are the same number of unstable and stable

branches for f7 at p;.

Case 2. p; is a repelling fixed point for f "la(py- If 7i is the number of unstable branches for f "
at p;, then there are 7; + 1 stable branches at p;.

Case 3. p; is an attracting fixed point for f "la(py- I i is the number of unstable branches for f r
at p;, then there are r; — 1 stable branches at p;.

We have a family {S;, ..., Ss, } of stable branches for f " at the fixed points in 0(D) with
sp=up— (R—ap)+ (R—1p) =up+a,—1, > u,—1, =m. (5.1)

Let {p;} be the family of fixed points of f "lapy and let {N;} be the family of attracting,
repelling and unstable petals of the strong filtration pairs adapted to D, {(N;, L;) }, associated
to each fixed point. We denote N,, = |J; N; such that N; is unstable.

Let us consider the Jordan curve contained in D,

y = (8(D) \ Ni,) Udp(Ny). (5.2)

Let L = U, L], with L] being the components of each L; such that L] C ints:(D) and
f’ (aNi(Lf)) C intsz(Lf). Let Uy be an unstable branch for f’ at D with Uy Ny C I;, where [; is
the connected component of L N y which intersects U;. Two unstable branches {U;,U,} are
adjacent if there is an arc I, » in y joining the arcs I; and I, with [y Ul, C I, in such a way that
11,2 NL=LUL.

If two unstable and adjacent branches for f’, {U,,U,}, are contained in the same
region N1, there exists a stable branch S; in N7 between U; and U,.

If two unstable and adjacent branches {U;,U,} are contained in disjoint regions N
and N, associated to fixed points p; and p,, then we have the following two situations.

(i) If there is a stable branch S; which intersects I, N 0p (N1 U N3), then S; is a stable
branch between U; and U in [ ;.

(ii) If there is not a stable branch which intersects 1, N 0p(IN1 U N>), then the points p;
and p; are attractors on the right side and on the left side, respectively, for f7| (D)
By this observation, if p1p, C 0(D) is the arc induced by I;, joining p; and p,, we
have that there exists a repelling fixed point p' for f "lapy contained in the interior
of pip>. The point p’ has associated an unstable or repelling petal N'.

If N' is unstable, there exists in N’ a stable branch S; (between U; and U, in 11 5).

Since there are r,, repelling petals, we can construct, at least, u, —r, = m stable branches
{S1,...,Sm} alternating in y with m unstable branches {Uy, ..., U,}.

The stable and unstable branches for f "atD, {Si,...,Sn) and {Uy,..., Uy}, give us
the alternating set of generalized stable and generalized unstable branches for f” at p which
we are looking for.

Let us consider a Jordan curve yy C D near enough 0(D) and let

11 = (y0 \ Nu) Udp(Ny). (5.3)
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The closed disc D, C J (and containing p) determined by y; is the disc we are looking
for. O

Proof of Theorem 2.19. Since ig2(f",p) = 1 + m > 1, we have that p is indifferent. On the other
hand, p € 0(K},) (if p € int(K},), then p is stable and ir:(f", p) = 1; see [25]).

We have ig2(f¥,p) = ig2(f7,p) =1 - up + 1, > 1 for all k € rN with r being the period
of the periodic orbits of f]| op)- We obtain that there is a family of r, generalized repelling
petals (see Proposition 4.6), {R;}, with int(R;) N int(R;) = @ for i #j. The fixed point index
ip2(f",p) =1 -u, + 1, gives us m = r, — u,. Since r, > m, there are, at least, m generalized
repelling petals.

Let us construct the m generalized attracting petals {A;}. Since f”| o(py has, at least, 7,
repelling fixed points, then there are also r,, attracting fixed points {py,...,p; } (f "lapy is an
orientation preserving homeomorphism). From these r, fixed points, there are no more than
u, without generalized attracting petals. Then, the remainder points (at least r, — u, = m) are
points with associated generalized attracting petals N:. We define the generalized attracting
petals A; as

A;j = clge (intsz (N;) ) . (5.4)

It only remains to construct the Jordan curve y around p. Let us consider two repelling
fixed points {p1,p2} of f "la(py, with repelling petals { N1, N>}, and adjacent in the set of fixed
points R = {p1,...,p,, } C 3(D) associated to repelling petals. Given the arc y1, C 9(D) joining
the points p; and p, (with y12 N R = {p1,p2}), there are A; unstable branches in D associated
to the fixed points of f "lapy contained in y; . In the same way, we consider the arcs y; ;1 for
{pi, pix1} and the numbers \; of unstable branches of the fixed points in the arcs y;;+1. Then

Tp

Z)‘i =Upy=Tp—Mm. (5.5)
i=1
There are, at least, m elements {\;,, ..., A;, } C{A1,..., Ay, } suchthat A; =---=4;, =0.
Since p;, and pj .1 are repellers for f7[, ), there exists, at least, an attractor for f'|, ),
p;, in the interior of y; ;1. Since A; = 0, then p; is associated to an attracting petal

N; . In the same way, we construct attracting petals {N;,...,N; } which alternate with
the repelling petals {N;,..., N;, } around 0(D). The required Jordan curve is obtained by
selecting y C int(D) near enough 0(D). The generalized attracting petals {A;,..., Ai,}
associated to { N lfl, .. .,lem} and the generalized repelling petals {R;,,...,R;,} associated to
{Ni,, ..., N;,} alternate with respect to y. O

Proof of Corollary 2.21. Let DM be the double of the manifold M andlet Df : DM — DM be
the homeomorphism induced by f.

We only have to pay attention to the case where Fix(f) Nint(M) is finite.

Let p1,...,pn € 0(M), (q1,...,Gn € O(M)) the repellers (attractors) of f|aar, and
r1,...,14 the fixed points of f in int(M).

We know that the index of D f at each fixed point is <1 because there are no generalized
repelling petals.
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Note that the saddle points in 0(M) have index <0 because there exists, at least, a
generalized unstable branch.
Then,

jell,..q) e{1,..n} ie{l,...,n}

Now;, since there exist al least two generalized unstable (stable) branches with each
repeller (attractor), ipm(Df,pi) < —1and ipm(Df, g;) < -1 foreveryi€ {1,...,n}.

Then 2A(f) = A(Df) 2 3Xieps,..q im(f,75) — 21,

Therefore, A(f) +n < Xy, q im(f,17) and g > A(f) +n. O

Remark 5.1. In the particular case where M is the closed 2-disc much more can be said. Indeed,
if f has a fixed point in the boundary, then it has another fixed point in int(M). Then Df :
§* — §?is an area and orientation preserving homeomorphism with at least three fixed
points. Therefore, using a theorem of Franks [32] (see also [5]), we have that D f has infinite
periodic orbits. Consequently, f also has infinite periodic orbits.

Proof of Theorem 2.22. The proof of (a), (b.1), and (b.2) follows as in the orientation preserving
case. Let us prove (c.1). Since ig2(f,p) = 1- u;g —r;, =1, we obtain that there are no generalized
repelling petals and generalized unstable branches for f? at p, negatively invariant for f (that
are associated to the two fixed points for f , {po,p1})-

An easy topological argument allows us to say that pg and p; are attracting or repelling
fixed points for f| o(p)- For each one of the three cases (two attractors, two repellers or an
attractor and a repeller), we obtain the three situations of the case (c.1).

Since uy, = r;, = 0 and f is orientation reversing, it is easy to see that u, and r,, are even.

P~ 'p
This fact gives us ig2(f%,p) = 1 —u, + 1, odd.
The proofs of (c.2) and (c.3) are analogous. O

Proof of Corollary 2.23. We shall give a proof based on our results and a strong theorem of
existence of periodic orbits of orientation and area preserving homeomorphisms in the 2-
sphere. Note that it can be used also the results of Bonino in [33].

If | Fix(f)| > 3, then | Fix(f?)| > 3 and, since f? is an orientation and area preserving
homeomorphism, by a theorem of Franks [32] (see also [5]) we have that | Per(f?)| = oo and,
therefore, | Per(f)| = co.

If 1 < |Fix(f)| < 2, let us see that | Per(f)| = oo. If we suppose that | Per(f)| < oo, then
each p; € Fix(f) is an isolated periodic orbit and we have is:(f,p;) < 1 (see [29]). If p; is
stable, the index is 1 (see [9]). If p; is not indifferent, then the index is 1 -6 € {-1,0,1} (see
[12]). If p; is indifferent, then the index is 1 - u;,]_ € {0,1}. Let us observe the following two
equalities:

0=is:(£,8) = 3, ie(f.p),

pjeFix(f)

2=ig(f2,87) = Y ie(fir)+ X is(fAa).

pi<Fix(f) q;€Fix(f2)\Fix(f)

(5.7)
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It is easy to see that is2(f?,p;) <is2(f,pj). In fact, if p; is stable the index for f2 is 1. If
pj is not indifferent, the index for f 2is1-6-2q<1-6 (see [12]) and, if pj is indifferent, the
index for f2is1-u, <1- u,, . Using the above two equalities, we have that | Fix(f 2)| > 3and
we obtain a contradiction which gives us |Per(f)| = oo. O
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