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Let U ⊂ R
2 be an open subset and f : U → R

2 be an arbitrary local homeomorphism with
Fix(f) = {p}. We compute the fixed point indices of the iterates of f at p, iR2(fk, p), and we identify
these indices in dynamical terms. Therefore, we obtain a sort of Poincaré index formula without
differentiability assumptions. Our techniques apply equally to both orientation preserving and
orientation reversing homeomorphisms. We present some new results, especially in the orientation
reversing case.

1. Introduction

There is abundant literature about the fixed point index of a homeomorphism f , in a
neighborhood of an isolated fixed point and the local dynamical behavior of f . There are
results in both directions, that is, bounds (or explicit computation) for the fixed point index
from dynamical properties of f and conversely how the knowledge of the fixed point index
is used to describe the dynamics locally.

One can notice that due to the systematic use of Brouwer’s translation arcs
theorem (see [1] or [2]), most of the known results are limited to orientation preserving
homeomorphisms.

It is well known that the classical Poincaré index formula relates the index of a planar
vector field with the elliptic and hyperbolic regions in a neighborhood of a critical point.
Such a formula, for the iterates of an arbitrary homeomorphism, will give a geometric
interpretation of the fixed point indices of the iterates, it could help to attack some open
problems and it will provide simple proofs of many of the strongest theorems in the subject.
This is the main goal of this article.
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The Ulam’s problem about the existence of minimal homeomorphisms in the
multipunctured plane was solved completely in the negative by Le Calvez and Yoccoz in
[3]. The main technique in the proof of their theorem is the computation of the fixed point
index of all iterates of an orientation preserving homeomorphism in a neighborhood of a
fixed point p which is an isolated invariant set, neither an attractor nor a repeller. Given an
orientation preserving local homeomorphism f : U ⊂ R

2 → R
2, they carry out a detailed

local study, near the fixed point p. Then they prove the existence of integers r, q ≥ 1 such that

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 − rq if k ∈ rN,
1 if k /∈ rN.

(1.1)

The authors, in [4], using Conley index ideas, gave, in a quite simple way, a general
theorem extending the above result to arbitrary local homeomorphisms. In particular, if f
reverses the orientation, there are integers δ ∈ {0, 1, 2} and q such that

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 − δ if k odd,

1 − δ − 2q if k even.
(1.2)

Later, Le Calvez extended his theorem with Yoccoz to arbitrary isolated fixed points
of orientation preserving planar homeomorphisms. Again the fixed point indices of the
iterations of the homeomorphism have periodical behavior. Le Calvez, in [5], uses in a very
clever way the nice Carathéodory’s prime ends theory (see [6, 7]). The idea of applying the
compactification of Carathéodory to study planar dynamical problems is not new. It was
introduced by Pérez-Marco in [8] and it was used more recently by the first author, in [9], to
prove that the index of arbitrary stable planar fixed points is equal to 1.

On the other hand, Baldwin and Slaminka, in [10], dealt with the problem of relating
the fixed point index of an orientation and area preserving homeomorphism around an
isolated fixed point p and the number of branches in which the stable/unstable “manifold”
of p decomposes. The results of Baldwin and Slaminka were improved by Le Roux, in [11],
where the fixed point index is used not only to detect stable/unstable branches but also Leau-
Fatou petals around p. The authors, in [12], gave a stable/unstable “manifold” theorem for
arbitrary planar homeomorphisms near a fixed point admitting nice filtration pairs.

There are some papers dedicated to the study of the analogous problem in dimension
3. See [13–16] and its references.

The computation of the fixed point index of any iteration of any planar homeomor-
phism at an isolated fixed point laying in an isolated invariant compactum was done by
the authors in [4, 12]. As we said above, when p does not belong to any isolated invariant
compactum and the homeomorphism is orientation preserving, Le Calvez improved a result
of Brown, see [17], showing that the sequence of indices is periodic. We will find with our
methods the same formula for orientation preserving homeomorphisms and we shall solve
the problem also for orientation reversing homeomorphisms. The main fact to obtain our
results is the existence of special classes of filtration pairs in the Carathéodory’s prime ends
compactification that will allow us to by-pass the technical problem that occurs if the fixed
point does not lay in an isolated invariant compactum.

Roughly speaking, if a fixed point p does not lay in arbitrary small isolated compacta,
we can consider any disc J containing p in its interior and take Kp, the component containing
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p of the maximal invariant set contained in J . By using the Carathéodory’s compactification
of S2 \ Kp, we work in a disc and we can compute the index at p from the local indices (in
semidiscs) of the fixed prime ends that now will admit isolating blocks. The existence of
such isolating blocks around the fixed prime ends not only provides a simple technique to
compute the index of the iterations of arbitrary homeomorphisms but also allows to identify
such indices in a geometrical way. Given a disc J the existence of isolating blocks, around the
fixed points that appear in the compactification, allows to find dynamical objects (generalized
stable/unstable branches and generalized attracting/repelling petals whose definitions we
will precise later) which are the keys for the computations of the indices.

Essentially, the index of the homeomorphism at p only provides “optimal” dynamical
information if p admits isolating blocks. Otherwise, the set of indices of the induced
homeomorphism in the Carathéodory’s compactification of S2 \ Kp at the new fixed points
provides much more information than the index at p.

The main goals of this paper are the following:

(a) The first goal is to provide a general geometrical method to compute the fixed point
index of the iterations of an arbitrary local homeomorphism at an isolated fixed
point;

(b) Given any Jordan domain J , Inv(cl(J), f) ∩ ∂(J)/= ∅ and an isolating block, N, is a
neighborhood that isolates the fixed (or periodical) prime ends of the component of
Inv(cl(J), f) containing p, to prove that J andN determine canonically a number of
generalized unstable (stable) branches and generalized repelling (attracting) petals
around the fixed point (see Definition 2.6). Their number depends on J and N but
their difference depends just on the germ of f ;

(c) The third goal is to provide some dynamical consequences. We shall give new and
short proofs of some known results and new theorems in the orientation reversing
framework.

The paper is organized as follows: in Section 2 we start with some preliminary
definitions. We will dedicate subsections to recall the results we will need in the special
case where the fixed point is an isolated invariant set and to give a brief presentation of
the Carathéodory’s prime ends theory. At the end of the section, we give the statement of
the main results. Section 3 is devoted to the computation of the fixed point indices of the
iterations of arbitrary planar homeomorphisms at an isolated fixed point. In Section 4, we
will give the proof of the main theorems and the dynamical meaning of the indices. First we
shall study the case where the homeomorphism has a finite number of periodic prime ends.
The general case follows easily from this previous simpler case (see Remark 2.12). Finally
Section 5 contains the proofs of a number of corollaries of our techniques.

2. Preliminary Definitions and Results. The Main Construction
and the Statement of the Principal Results

2.1. Preliminary Definitions

Given A ⊂ B ⊂ N, cl(A), clB(A), int(A), intB(A), ∂(A) and ∂B(A) will denote the closure of
A, the closure of A in B, the interior of A, the interior of A in B, the boundary of A, and the
boundary of A in B, respectively.
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Let U ⊂ X be an open set. By a (local) semidynamical system, we mean a local
homeomorphism f : U → X. The invariant part of N, Inv(N, f), is defined as the set of
all x ∈N such that there is a full orbit γ with x ∈ γ ⊂N.

Inv+(N, f) (resp., Inv−(N, f)) will denote the set of all x ∈ N such that fj(x) ∈ N for
every j ∈ N (resp., f−j(x) is well defined and belongs to N for every j ∈ N).

A compact set S ⊂ X is invariant if f(S) = S. A compact invariant set S is isolated
with respect to f if there exists a compact neighborhood N of S such that Inv(N, f) = S. The
neighborhood N is called an isolating neighborhood of S.

An isolating blockN is a compactum such that cl(int(N)) =N and f−1(N)∩N∩f(N) ⊂
int(N). Isolating blocks are a special class of isolating neighborhoods.

We consider the exit set of N to be defined as

N− =
{
x ∈N : f(x)/∈ int(N)

}
. (2.1)

If X is a locally compact ANR (absolute neighborhood retract for metric spaces),
iX(f, S) will denote the fixed point index of f in a small enough neighborhood of S. The
reader is referred to the text of [18–22] for information about the fixed point index theory.

An isolated fixed point p is said to be indifferent if for every small enough disc D such
that p ∈ int(D), Inv(D, f) ∩ ∂(D)/= ∅.

An isolated fixed point p is accumulated if p ∈ cl(Per(f |V )\{p}) for every neighborhood
V of p.

2.2. Strong Filtration Pairs

The next definition is based on the notion of filtration introduced by Franks and Richeson, in
[23]. It is the key for the direct computation of the fixed point index of any iteration of any
homeomorphism of the plane.

Definition 2.1. Let f : U ⊂ R
2 → R

2 be a local homeomorphism. Suppose that L ⊂ N is a
compact pair contained in the interior of U. The pair (N,L) is said to be a strong filtration pair
for f provided N and L are each the closure of their interiors and

(1) N and ∂(N \ L) are homeomorphic to a disc and S1, respectively.

(2) cl(N \ L) is an isolating neighborhood.

(3) f(cl(N \ L)) ⊂ int(N) (i.e., L is a neighborhood of N− in N).

(4) For any component Li of L, ∂N(Li) is an arc and there exists a topological disc Bi
such that ∂N(Li) ⊂ Bi ⊂ Li, Bi ∩N− /= ∅, and f(Bi) ∩ cl(N \ L) = ∅.

Theorem 2.2 (see [4, 12]). Let f : U ⊂ R
2 → f(U) ⊂ R

2 be a homeomorphism. Suppose that there
exists a strong filtration pair, (N,L), for f and letK = Inv(cl(N \L), f). Then, there are an absolute
retract for metric spaces, D0, containing a neighborhood V ⊂ R

2 of K, a finite subset {q1, . . . , qm} ⊂
D0, and a map f : D0 → D0 such that f |V = f |V and for every k ∈ N, Fix((f)k) ⊂ K∪{q1, . . . , qm}.
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Moreover,

(a) if f preserves the orientation, then

iR2

(
fk,K

)
=

⎧
⎨
⎩

1 − rq if k ∈ rN,
1 if k /∈ rN,

(2.2)

where k ∈ N, q is the number of periodic orbits of f in {q1, . . . , qm}, and r is their period;
(b) if f reverses the orientation, then

iR2

(
fk,K

)
=

⎧
⎨
⎩

1 − δ if k odd,

1 − δ − 2q if k even,
(2.3)

where δ ∈ {0, 1, 2} and q are the number of fixed points and period two orbits of f in
{q1, . . . , qm}, respectively.

Definition 2.3. Under the setting of the above theorem, the integer r (r = 2 if f is orientation
reversing) is called the period of the strong filtration pair (N,L).

We conclude this subsection with the next theorem that resumes the main results of
[12]. We will construct a family of branches of the stable and unstable “manifolds” associated to a
fixed point p which admits a strong filtration pair (N,L). The minimum number of elements
of these families depends on the fixed point index iR2(fr, p) with r being the period of the
strong filtration pair (N,L). In order to make the paper as self-contained as possible, we will
sketch the proof which contains some ingredients we will need in the future.

Theorem 2.4. Let f : U ⊂ R
2 → f(U) ⊂ R

2 be a homeomorphism with p being an isolated
fixed point of f , and let us assume that there is a strong filtration pair of period r, (N,L), such that
p ∈ int(N \ L), L/= ∅, fj(cl(N \ L)) ⊂ U for j ∈ {1, . . . , r} and Fix(fr) ∩ cl(N \ L) = {p}. Let us
suppose that the connected component of K = Inv(cl(N \ L), f) which contains p isKp = {p}. Then
there exist trivial shape continua S1, . . . , Ss,U1, . . . , Us in cl(N \ L), with s = 1 − iR2(fr, p), such
that:

(1)
⋃s
i=1 Si ⊂ K+

p and
⋃s
i=1 Ui ⊂ K−

p , with K
+
p and K−

p being the connected components of
K+ = Inv+(cl(N \ L), f) and K− = Inv−(cl(N \ L), f) which contain p;

(2) Si ∩ Sj = Ui ∩Uj = {p} for all i /= j and Si ∩Uj = {p} for all i, j ∈ {1, . . . , s};
(3) fr(Si) ⊂ Si, f−r(Ui) ⊂ Ui, and

⋂
n∈N

f−nr(Ui) =
⋂
n∈N

fnr(Si) = {p} for every i ∈
{1, . . . , s};

(4) the sets Si ∩ ∂(cl(N \ L)) andUi ∩ ∂(cl(N \ L)) alternate in ∂(cl(N \ L)).

Proof. If L = L1 ∪ · · · ∪ Lm, let us consider the quotient space NL obtained from cl(N \ L) by
identifying each ∂N(Li) to a point qi for i = 1, . . . , m. Take the projection map π : cl(N \ L) →
NL and the retraction r : N → cl(N \ L). The map

f ′ = π ◦ r ◦ f ◦ π−1 : NL \
{
q1, . . . , qm

} −→NL (2.4)
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induces in a natural way a continuous map f : NL → NL. It is easy to see that
f({q1, . . . , qm}) ⊂ {q1, . . . , qm}. Let θ = {p1, . . . , ps} be the biggest subset of {q1, . . . , qm} on
which f acts as a permutation. It is clear that θ is an attractor for f (is locally constant for
every pi ∈ θ). Let A be the region of attraction of θ,

A =
{
x ∈NL : there is n0 such that

(
f
)n0

(x) ∈ θ
}

(2.5)

and let A(pj) be the component of A containing pj ∈ θ. Let us observe that K−
p and K+

p are
trivial shape continua such that limk→∞f−k(x) = p for every x ∈ K−

p and limk→∞fk(x) = p
for every x ∈ K+

p (see the Main Theorem in [12] for a proof). Then it is not difficult to see that
p ∈ cl(A(pj)) for all j = 1, . . . , s.

Let Ki =
⋂
n∈N

(f)nr(cl(A(pi)) for i ∈ {1, . . . , s}. Since (f)r(cl(A(pi)) ⊂ cl(A(pi)), it is
clear that Ki is a continuum with {p, pi} ⊂ Ki = (f)r(Ki) ⊂ cl(A(pi)). Then we have that⋃
i∈{1,...,s}(Ki \ {pi}) ⊂ K−

p , then ∂N(Li) ∩K−
p /= ∅ for all i = 1, . . . , s.

Let us define the continuumUi = π−1(Ki)∩K−
p . We have thatUi is negatively invariant

for fr and contains p.
On the other hand, Ui∩K = {p}. In fact, since

⋂
n∈N

f−nr(Ui) is an invariant continuum
for fr which contains p, then

⋂
n∈N

f−nr(Ui) ⊂ Kp = {p}. If x ∈ Ui∩K, then x ∈ ⋂n∈N
f−nr(Ui) ⊂

Kp = {p}.
Let us see that Ui has a trivial shape. In fact, if Ui has a hole V , then there are a ∈ V

and n0 ∈ N such that frn0(a) ∈ int(Li) and frn(a) ∈ cl(N \ L) for all n ∈ Z, n < n0. Then it is
immediate that a ∈ Ui which is a contradiction.

Let us prove that Ui ⊂ π−1(A(pi)) ∪ {p}. If x ∈ Ui \ {p}, then there exists n0 ∈ N

such that fnr(x) ∈ cl(N \ L) for all integer n < n0 and fn0r(x) ∈ int(Li) (if this is not true,
x ∈ K and we have x = p). Then it follows that x ∈ π−1(A(pi)). As a corollary, we obtain that
Ui = (π−1(A(pi)) ∪ {p}) ∩K−

p .
It is obvious that Ui ∩ ∂(cl(N \ L)) ⊂ ∂N(Li).
If we repeat this construction for i ∈ {1, . . . , s}, we obtain U1, . . . , Us with Ui∩Uj = {p}

for every i /= j.
Let us construct the sets S1, . . . , Ss. Let us consider the set θ = {p1, . . . , ps} with pi−1

adjacent to pi (there is an arc γ ⊂ π(∂(N \ L)) joining pi−1 with pi such that γ ∩ θ = {pi−1, pi}).
If pi−1pi is the arc in π(∂(cl(N \ L)) which makes adjacent pi−1 and pi, we have that there is
a component Kpi ⊂ K+

p of ∂(A(pi)) separating pi from θ \ pi (see the Main Theorem in [12])
with Kpi ∩ pi−1pi /= ∅.

Let Bi be the connected component of cl(N \L) \ (Ui−1 ∪Ui) which contains π−1(Kpi ∩
pi−1pi). Then we define Si = (Bi ∪ {p}) ∩K+

p . Following the steps given with the family {Ui},
it is easy to prove the analogous properties for the family {Si}.

2.3. Carathéodory’s Prime Ends

Let B ⊂ C be the unit open disc and let f : B → G ⊂ C ∪ {∞} be an onto and conformal
mapping. The problem whether f admits an extension to cl(B) = B ∪ S1, by defining
f(z) = limx→ zf(x) for z ∈ S1, has a topological answer. Indeed, f admits that an extension
if and only if ∂(G) is locally connected. The problem whether f has an injective extension
has also an answer of topological nature: f has an injective extension if and only if ∂(G) is
a Jordan curve (Carathéodory’s Theorem, see [24]). If ∂(G) is locally connected but not a
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Jordan curve, there are points of ∂(G) that have several preimages. The situation becomes
much more complicated if ∂(G) is not locally connected. Carathéodory introduced the notion
of prime end to describe this setting. The points z ∈ S1 correspond one-to-one to the prime
ends of G and the limit f(z) exists if and only if the prime end has only one point (Prime End
Theorem, see [24]).

Let D ⊂ R
2 be a simply connected open domain containing the point at infinity such

that ∂(D) contains more than one point. Then ∂(D) is bounded. A cross-cut is a simple arc,
C, lying in D, except in the end points, with different extremities. If C is a cross-cut of D
then D \ C has exactly two components A1 and A2 such that D ∩ ∂(A1) = D ∩ ∂(A2) =
C \ {end points}.

A sequence {Cn} of mutually disjoint cross-cuts and such that each Cn separates Cn−1

and Cn+1 is called a chain. A chain of cross-cuts induces a nested chain of domains (bounded
by each Cn) · · ·Dn+1 ⊂ Dn · · · . Each chain of cross-cuts defines an end. Two chains of cross-
cuts, {Cn} and {C′

n}, are equivalent if for any n ∈ N there is m(n) such that Dm ⊂ D′
n and

D′
m ⊂ Dn for every m > m(n). Equivalent chains of cross-cuts are said to induce the same

end. If P and Q are ends represented by chains of cross-cuts {C(P)n} and {C(Q)n} such that
for every n, D(P)m ⊂ D(Q)n for m > m(n), we say that P divides Q. A prime end P is an end
which cannot be divided by any other.

Let P be a prime end. The set of points of P is the intersection E =
⋂
n∈N

cl(D(P)n) where
{D(P)n} is the sequence of domains bounded by any sequence of cross-cuts representing P .
A principal point of P is a limit point of a chain of cross-cuts representing P tending to a point.
The set HP ⊂ E of principal points of a prime end P is a continuum (compact connected set)
(see [6] or [7] for details).

Each chain of cross-cuts inducing a prime end P determines a basis of neighborhoods
of P . We obtain in this way a topology in the set of prime ends of D. More precisely, if P is the
set of prime ends ofD and D∗ is the disjoint union ofD and P, we can introduce a topology in
D∗ in such a way that it becomes homeomorphic to the closed disk and the boundary being
composed by the prime ends. It is enough to define a basis of neighborhoods of a prime end
P ∈ P. Given the sequence of domains {D(P)n}, we produce a basis of neighborhoods {Un}
of P in D∗. Each Un is composed by the points in D(P)n and by the prime ends Q such that
D(Q)m ⊂ D(P)n for m large enough.

If S2 is the 2-sphere R
2 ∪ {∞} and ∞ ∈ D ⊂ S2 is a simply connected open domain, the

natural compactification, due to Carathéodory, see [6], of D obtained by attaching to D a set
homeomorphic to the one-dimensional sphere S1 is called the prime ends compactification of D.
We identify R

2 = C and we consider a conformal homeomorphism g : D → S2 \ B (where B
is the disc B = {z ∈ C : |z| ≤ 1}). Now a one-dimensional sphere S1 is attached to D using g.
Each point of S1 corresponds to a prime end of D.

2.4. The Main Construction

Let f : U → W be a local homeomorphism with U,W ⊂ R
2 open subsets and let p be a

nonaccumulated and indifferent fixed point in a small enough Jordan domain J with {p}
being the unique periodic orbit contained in cl(J) and such that Kp ∩∂(J)/= ∅ for Kp being the
connected component of K = Inv(cl(J), f) which contains p. We will suppose that p ∈ ∂(Kp)
(e.g., if p is not stable and J is small enough, then p ∈ ∂(Kp)).

Remark 2.5. Let us observe that, given p being a non-accumulated and indifferent fixed point,
if iR2(fk, p)/= 1 for some k ∈ N, then we can select a Jordan domain J , as above, with p ∈ ∂(Kp).
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In fact, if p ∈ int(Kp) for every small enough Jordan domain J , then p is stable for fk and
iR2(fk, p) = 1 (see [9, 25]).

It is easy to see that the set Kp ⊂ cl(J) has a trivial shape, that is, Kp and R
2 \ Kp are

connected.
We follow with some of the most important notions of the paper: the generalized

stable/unstable branches and generalized attracting/repelling petals. The first ones are
essentially branches, in a classical sense, for the map that our homeomorphism f induces
in the compactification of R

2 \Kp at a fixed prime end.
Let p ∈ J be an indifferent and non-accumulated fixed point for f in the above

conditions. Given the open domain S2 \Kp, for each open arc γ ⊂ J with end-points a, b ∈ Kp

(we do not exclude the possibility a = b) such that γ ∩ Kp = ∅, we call Dγ the bounded
connected component of R

2 \ (γ ∪Kp). The set Dγ is an open ball contained in J .

Definition 2.6. A continuum Up ⊂ cl(J) is a generalized unstable branch for f at p if:

(i) Up ∩ Kp is an invariant continuum contained in ∂(Kp) such that p ∈ Up ∩ Kp and
Up \Kp ⊂ J is nonempty and has trivial shape components;

(ii) f−1(Up) ⊂ Up and
⋂
n∈N

f−n(Up) = Up ∩Kp;

(iii) there exists an open ball Dγ associated to an open arc γ , as above, with Up ⊂ cl(Dγ),
Up ∩ γ a compact set, and such that:

(a) the set Up is locally maximal, that is, if U′
p ⊂ cl(Dγ) satisfies conditions (i) and

(ii), then U′
p ⊂ Up;

(b) for every open neighborhood V of Up, there exists x ∈ Dγ ∩ V with
f−nx(x)/∈ cl(Dγ) for some nx ∈ N.

In an analogous way, we define generalized stable branches Sp for f at p. We only have
to replace f by f−1 in (ii) and (iii).

A set Rp is a generalized repelling petal for f at p if:

(i) Rp = cl(Dγ) ⊂ cl(J) withDγ being an open ball associated to an open arc γ , as above,
such that cl(γ) = γ ∪ {q1, q2} with p /∈ {q1, q2};

(ii) f−1(Rp) ⊂ Rp and
⋂
n∈N

f−n(Rp) ⊂ ∂(Kp) is an invariant continuum for f which
contains p.

In an analogous way, we define generalized attracting petals for f at p. We only have to
replace f by f−1 in (ii).

Remark 2.7. The stable and unstable branches in the classical sense associated to f at p
and constructed in the proof of Theorem 2.4, are, of course, particular cases of generalized
unstable and stable branches if we consider the map f ′ = fr and Kp = {p}. It is easy to obtain
an adequate arc γj ⊂ cl(N \ L) for each unstable (stable) branch Uj .

Let U′ be a Jordan domain such that cl(J) ⊂ U′ ⊂ U ⊂ S2 and let f : S2 → S2 be a
homeomorphism such that f |U′ = f . The Carathéodory’s compactification of S2 \Kp is a disc
(obtained by gluing S1 to S2 \Kp) which we call D. The homeomorphism f |S2\Kp

: S2 \Kp →
S2 \Kp can be extended to a homeomorphism f̂ : D → D. Let us denote D \ (S2 \Kp) = ∂(D)
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and let us consider the set of prime ends obtained from the accessible points Kp ∩ ∂(J) (by
arcs on U \ cl(J)) and which we call P(Kp ∩ ∂(J)) ⊂ ∂(D).

If f̂ is orientation preserving and there exist periodic orbits for f̂ |∂(D), then all of them

have the same period r. If f̂ is orientation reversing, then f̂ |∂(D) has exactly two fixed points
and period two periodic orbits.

Let us see that the compact sets Per(f̂ |∂(D)) and P(Kp ∩ ∂(J)) are disjoint. Let P0 be

a prime end in P(Kp ∩ ∂(J)) associated with a point p0 ∈ Kp ∩ ∂(J). Then P0 /∈ Per(f̂ |∂(D)).

In fact, if this is not true, P0 is a fixed prime end for f̂ r (r = 2 if f̂ is orientation reversing)
and, since p0 is accessible by an arc γp0 ⊂ U \ cl(J) such that cl(γp0) \ γp0 = {p0}, then the
principal points of the fixed prime end P0 are the continuum, invariant for fr , HP0 = {p0}
(HP0 ⊂ cl(γp0) \ γp0 = {p0}). Then, p0 must be a fixed point for fr . But this is a contradiction.

Remark 2.8. Note that both f̂ and the set of fixed prime ends of f̂ depend on the Jordan
domain J such that Inv(cl(J), f) ∩ ∂(J)/= ∅. See Example 2.9.

Example 2.9. Let us consider the dynamical system of Figure 1, which gives us a homeomor-
phism f of R

2 with p being a non-accumulated and indifferent fixed point.
The Jordan domains J1 and J2 of Figure 1 are such that Inv(cl(J1), f) = K1p is a “petal”

which contains p and such that K1p ∩ ∂(J1)/= ∅. On the other hand, Inv(cl(J2), f) = K2p are
two “petals” which contain p and such that K2p ∩ ∂(J2)/= ∅.

The maps f̂ : D → D have the dynamical behavior in Figure 2 .
The map f̂ for J1 has, in ∂(D), a fixed prime end p1 and the map f̂ for J2 has, in ∂(D),

two fixed prime ends {p1, p2}.
Following with the main construction, there are two possible situations:

(a) Per(f̂ |∂(D)) is a finite set of n points;

(b) Per(f̂ |∂(D)) is an infinite set of points.

Let us suppose that we are in case (a). Remark 2.12 permit us to reduce case (b) to case
(a) by identifications to points of adequate intervals in ∂(D). If f̂ is an orientation preserving
homeomorphism, we have that n = qr for certain q, r ∈ N with r being the period of the
periodic orbits of f̂ |∂(D) and q the number of periodic orbits. On the other hand, if f̂ is
orientation reversing, we obtain q periodic orbits of period 2 and two fixed points in ∂(D). It
is obvious that n = 2q + 2.

Let us suppose that D ⊂ S2 and let us denote by f̂s : S2 → S2 the homeomorphism
obtained by pasting along ∂(D) a symmetric copy of f̂ : D → D.

The next lemma is needed for the computation of the fixed point index iR2(fk, p) by
using strong filtration pairs.

Lemma 2.10. Given a fixed point p1 of f̂s
k|∂(D), (k ∈ rN if f is orientation preserving), there is a pair

(N1, L1) which is in one of the following two situations.

(a) (N1, L1) is a strong filtration pair for f̂s
k

: S2 → S2, in a neighborhood of p1. The period of
the strong filtration pair is 1 if f is orientation preserving or 2 if f reverses the orientation.

(b) The pair (N1, L1) has the properties (1), (2), and (3) of strong filtration pairs with L1 being

a disc with a hole, ∂N1(L1) � S1 andN1 ⊂ int(f̂s
k
(N1)).
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J1

J2

p

Figure 1

p1

f̂ for J1

(a)

p1 p2

f̂ for J2

(b)

Figure 2

Proof. Given a fixed point p1 of f̂s
k|∂(D), let us see that there exists the pair (N1, L1) for f̂s

k
in

S2 with p1 ∈ Inv(cl(N1 \ L1), f̂s
k
).

Take a small enough arc [a, b] ⊂ ∂(D) with p1 ∈ (a, b) and such that
Inv([a, b], f̂ k|∂(D)) = p1. The set [a, b] is an isolating block for f̂ k|∂(D). Let us consider a
small enough disc M in D with M ∩ ∂(D) = [a, b] and Fix(f̂ k|M) = {p1}. Since the space
of components of Inv(M, f̂k) is a zero-dimensional compactum, it is easy to construct a disc
M1 ⊂ M such that [a, b] ⊂ M1 and Inv(M, f̂k) ∩ ∂D(M1) = ∅. If we choose the disc N ⊂ S2

obtained by joining M1 with its reflected disc on ∂(D), M2, we have that N is an isolating

neighborhood for f̂s
k
.

It is not difficult to construct a disc N1 ⊂ int(N), N1 symmetric with respect to ∂(D),

and isolating block for f̂s
k
(see [12, 26]), with ∂(N1) ∩ Inv(N, f̂s

k
) = ∅ and p1 = Fix(f̂s

k|N1
).

If there is not a disc B ⊂N1 such that p1 ∈ int(B) and B ⊂ int(f̂s
k
(B)), then there exists

a strong filtration pair (N1, L1) for f̂s
k

with L1 being a finite (perhaps empty) union of disjoint
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discs (see [4, 12]). By the symmetry property with respect to ∂(D) of f̂s
k
, it is immediate that

the period of the generalized filtration pair is 1 if f̂s
k

is orientation preserving and 2 if f̂s
k

is
orientation reversing (see [4]). Therefore, we are in the conditions of (a).

On the other hand, it there exists the above disc B, we obtain in an easy way the pair
(N1, L1) of the case (b).

Definition 2.11. We are interested, for each fixed point pi of f̂s
k|∂(D), in the pairs (Ni ∩D, Li ∩

D) = (N ′
i, L

′
i) which we call strong filtration pairs adapted to D for pi. Let us observe that the

pair (N ′
i, L

′
i) has the properties of the strong filtration pairs for f̂ k : D → D at each fixed point

pi ∈ ∂(D). We will suppose without loss of generality that each arc γi = ∂D(N ′
i) corresponds

in J to an arc with two end points in Kp.
There are three possible cases.

(i) If Li = ∅, then f̂ k(N ′
i) ⊂ intD(N ′

i) and we say that N ′
i is an attracting petal associated

to f̂ k at pi.

(ii) If ∂Ni(Li) � S1, then N ′
i ⊂ intD(f̂ k(N ′

i)) and we say that N ′
i is a repelling petal

associated to f̂ k at pi.

(iii) If (Ni, Li) is a strong filtration pair with Li /= ∅, given the sets of stable and unstable

branches {Sj} and {Uj} of (Ni, Li) associated to f̂s
k

at pi (see Theorem 2.4), we
select the subsets of branches {Sm} and {Um} which are contained in (N ′

i \ ∂(D)) ∪
{pi}. We call {Sm} and {Um} stable and unstable branches of (N ′

i, L
′
i) associated to f̂ k

at pi.

Remark 2.12. If Per(f̂ |∂(D)) is not a finite set of points (we supposed before), we can select

a finite and disjoint union I = I1 ∪ · · · ∪ In, of closed arcs of ∂(D), with f̂(I) = I, such
that Per(f̂ |∂(D)) ⊂ I and P(Kp ∩ ∂(J)) ∩ I = ∅. Let us identify each component of I to a

point. We obtain a new disc which we call D again. If f̂ : D → D is the new induced
homeomorphism, we have that Per(f̂ |∂(D)) is a finite set and the construction of the strong
filtration pairs adapted to D is also valid (see Figure 3). It is obvious that this construction
depends on the choice of the set I.

Example 2.13. Let us consider the dynamical system of Figure 4. We obtain a homeomorphism
f of R

2 with p being a non-accumulated and indifferent fixed point and Inv(cl(J), f) = Kp an
infinite family of petals which contain p in their boundary.

The dynamic of the map f̂ in D is given in Figure 5(a). We have an infinite family
of fixed prime ends (fixed points for f̂ in ∂(D)). If we consider the two invariant arcs
for f̂ , I1 and I2, of Figure 5(a) and make an identification of them to points p1 and p2,
we obtain a new homeomorphism (which we call in the same way) f̂ : D → D. This
homeomorphism has only two fixed points in ∂(D) and we are in case (a); see Figure 5(b).
The new map f̂ has a repelling point in p2 and an unstable branch in p1. Let us observe
that the choice of the invariant intervals which contain the fixed prime ends, I = I1 ∪ I2, is
not unique. We can select I with an arbitrary family of intervals of this type which gives
us a different dynamic for f̂ and a different set of fixed points in ∂(D) for the identification
map.
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pi

Case (i)

pi

Case (ii)

Li
⋂
D

pi

Case (iii)

Li
⋂
D

U1

S1S2

Figure 3

Kp

p

J

Figure 4

Definition 2.14. Given a Jordan domain J , a set of strong filtration pairs adapted to D is a finite

collection of pairs {(Ni ∩D, Li ∩D)}i associated to the family {pi}i of fixed points of f̂s
k|∂(D).

Let us observe that this set depends on the choice of J and, if Per(f̂ |∂(D)) is not finite,

on the choice of the set I such that, after an identification, it transforms Per(f̂ |∂(D)) in a finite
set .
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I1 I2

(a)

p1 p2

(b)

Figure 5

2.5. The Statement of the Principal Results

To conclude this section, we summarize below the main results of this article.
Let f : U → W be a local homeomorphism with U,W ⊂ R

2 open subsets and let p
be a non-accumulated, indifferent fixed point. If p is stable, that is, if there exists a basis of
neighborhoods {Un}n∈N

of p such that f(Un) ⊂ Un for all n ∈ N, we obtain iR2(fk, p) = 1 for
all k ∈ N (see [9, 25]).

We are interested in the relation between the fixed point index of the iterations of f at
p and the local dynamics at p, with p being a nonstable fixed point.

Main Theorem 1 (Poincaré formula: Orientation preserving case). Let f : U → W be
an orientation preserving local homeomorphism with p being an unstable, non-accumulated, and
indifferent fixed point. Let us select a Jordan domain J such that p ∈ J ⊂ cl(J) ⊂ U withKp∩∂(J)/= ∅,
and let {(Ni ∩ D, Li ∩ D)}i be a set of strong filtration pairs adapted to D, the Carathéodory’s
compactification of S2 \Kp. Then there exist r ∈ N and rp, up, sp, ap ∈ rN such that

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 if k /∈ rN,
1 − up + rp = 1 − sp + ap if k ∈ rN,

=

⎧
⎪⎨
⎪⎩

1 if k /∈ rN,

1 +
1
2
((
rp + ap

) − (up + sp
))

if k ∈ rN.

(2.6)

We have the following dynamical interpretation: there are up (sp) generalized unstable
(stable) branches and rp (ap) generalized repelling (attracting) petals for fr at p (see
Definition 2.6). They are negatively (positively) invariant for fr and f−1(f) acts as a
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permutation on them. Let us observe that the numbers {up, rp, sp, ap} depend on J and the
set of strong filtration pairs but their differences depend only on the germ of f .

Remark 2.15. The last result gives us, as a corollary, a theorem due to Le Calvez (see [5])
which says that if p is a non-accumulated, indifferent fixed point, there exist r ≥ 1 and q ∈ Z

such that

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 if k /∈ rN,
q if k ∈ rN.

(2.7)

On the other hand, if f preserves or contracts (expands) areas, then rp = 0 (ap = 0)
and we obtain a corollary which improves a result of Simon (see [27]) about the existence
of a bound for the fixed point index of the area and orientation preserving homeomor-
phisms at an isolated fixed point. More precisely, if f preserves or contracts areas then
iR2(f, p) ≤ 1.

From the above considerations, given an orientation preserving homeomorphism h :
U ⊂ R

2 → R
2 which preserves a measure supported in the open sets, such that Fix(h) =

Per(h) = {0} and iR2(hk, 0) = 1 for every k ∈ Z, it is natural to ask if 0 must be a stable
(in the past or in the future) fixed point. The famous example of Anosov and Katok, [28],
is a counterexample to this problem. They produced a diffeomorphism of the disc which
preserves natural measures and it is ergodic. This map is constructed inductively as a limit of
an appropriate sequence of diffeomorphisms. In the next section (see Example 3.3), we will
exhibit an explicit, very simple and geometric example of an orientation and area preserving
homeomorphism h : R

2 → R
2 such that Fix(h) = Per(h) = {0}, 0 is stable neither for h nor

for h−1, and the fixed point indices iR2(hk, 0) = 1 for every k ∈ Z. Moreover, there will not be
h-invariant subsets of positive finite measure.

For the orientation reversing case, we prove the following theorem.

Main Theorem 2 (Poincaré formula: Orientation reversing case). Let f : U → W be an
orientation reversing local homeomorphism with p being an unstable, non-accumulated, indifferent
fixed point. Let us select a Jordan domain J such that p ∈ J ⊂ cl(J) ⊂ U, with Kp ∩ ∂(J)/= ∅, and let
{(Ni∩D, Li∩D)}i be a set of strong filtration pairs adapted toD, the Carathéodory’s compactification
of S2 \Kp. Then there exist up, u′p, rp, r

′
p ∈ N with u′p ≤ up, r ′p ≤ rp, u′p + r ′p ≤ 2 such that

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 − up + rp if k even,

1 − u′p − r ′p if k odd,
(2.8)

and with the following dynamical meaning: there are up generalized unstable branches for f2 at p with
u′p ≤ 2of them negatively invariant for f (f−1 sends each of the u′p generalized unstable branches to
a subset of itself). In the same way, there are rp generalized repelling petals for f2 at p and r ′p ≤ 2 of
them are negatively invariant for f .

As in the orientation preserving case, we have similar formulas involving generalized
stable branches and generalized attracting petals.
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Remark 2.16. As a corollary, iR2(f, p) ∈ {−1, 0, 1} for f an orientation reversing local
homeomorphism and p a non-accumulated fixed point. This is Bonino’s theorem (see [29])
when p is non-accumulated.

Remark 2.17. The Main Theorem for orientation reversing homeomorphisms says that
iR2(f2n, p) is constant. Then it solves Problem 7.3.9. of [21].

Theorem 2.18. Let f : U → W be an arbitrary local homeomorphism with Fix(f) = {p} being an
indifferent fixed point, such that iR2(fr, p) = 1−m < 1 for some r ∈ N (r = 2 if f reverses orientation).
Then there existm unstable (stable) branches, in the classical sense, {Ui}({Si}) for fr at p such that:

(1) f−1 and f act as permutations in {Ui} and {Si}, respectively;
(2) limn→∞f−n(x) = p for every x ∈ Ui, limn→∞fn(y) = p for every y ∈ Si;
(3) there exists a closed discDp ⊂ J , with p ∈ int(Dp),

⋃m
i=1(Ui ∪Si) ⊂ Dp, in such a way that

the intersection of the stable and unstable branches with ∂(Dp) alternates in ∂(Dp).

Each generalized repelling (attracting) petal contains p in its boundary. As a
corollary of the Main Theorems for both orientation preserving and orientation reversing
homeomorphisms, we will obtain the following result (see [11] for the orientation preserving
case).

Theorem 2.19 (Petal’s theorem). Let f : U → W be an arbitrary local homeomorphism with p
being a non-accumulated and isolated fixed point such that iR2(fr, p) = 1 + m > 1 for some r ∈ N.
Then there exist m generalized repelling petals {Ri} and m generalized attracting petals {Ai} for fr

at p such that:

(1) int(Ai)∩ int(Aj) = int(Ri)∩ int(Rj) = ∅ for all i /= j, and int(Ai)∩ int(Rj) = ∅ for all i, j;
(2) the map f (f−1) acts as a permutation in {Ai} ({Ri});
(3) limn→∞f−n(x) = p for every x ∈ Ri, limn→∞fn(y) = p for every y ∈ Ai;

(4) the sequences {f−nr(Ri)}n∈N
and {fnr(Ai)}n∈N

determine ends containing p and⋂
n∈N

f−nr(Ri) and
⋂
n∈N

fnr(Ai) are fr-invariant continua containing p;

(5) there is a Jordan curve γ around p such that γ intersects alternatively the sets {Ai} and
{Ri}, with γ ∩Ai and γ ∩ Ri being closed arcs.

Remark 2.20. Using the petal’s theorem, one can prove the following consequences that
extend a theorem due to Le Calvez (see [5]).

If f : U → W is a local homeomorphism such that Fix(f) = {p} and 1/= iR2(fr, p) > 1−q
for some r ∈ N (r = 2 if f reverses orientation), take a disc J such that p ∈ int(J) ⊂ cl(J) ⊂ U.
We have the following two properties.

(a) If there exist q generalized stable branches for fr at p, then there exists a domain
V1 ⊂ U such that the domains of the sequence {fn(V1)}n∈N

are well defined and
disjoint.

(b) If there exist q generalized unstable branches for fr at p, then there exists a
domain V2 ⊂ U such that the domains of the sequence {f−n(V2)}n∈N

are well
defined and disjoint.

As a corollary, if iR2(fr, p) > 1 for some r ∈ N, there exist domains V1, V2 ⊂ U such that
the domains of the sequences {fn(V1)}n∈N

and {f−n(V2)}n∈N
are well defined and disjoint.
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The last remark can be applied to the following interesting situation: let M be an
oriented compact 2-dimensional manifold with boundary and let f : U ⊂ M → M be an
orientation preserving homeomorphism. Let p ∈ ∂(M) ∩ U be an isolated fixed point of f .
Denote by DM the double of the manifold M and Df : DM → DM the natural map
induced by f .

Then,

(a) if p is a saddle point of f |∂(M) and iDM(Df, p) > 0, then there exist domains V1, V2 ⊂
U such that the domains of the sequences {fn(V1)}n∈N

and {f−n(V2)}n∈N
are well

defined and disjoint;

(b) if p is an attractor of f |∂(M) and iDM(Df, p) > −1, then there exists a domain V1 ⊂ U
such that the domains of the sequence {fn(V1)}n∈N

are well defined and disjoint;

(c) if p is a repeller of f |∂(M) and iDM(Df, p) > −1, then there exists a domain V2 ⊂ U
such that the domains of the sequence {f−n(V2)}n∈N

are well defined and disjoint.

Note that in this particular setting, since p is isolated using Brouwer’s lemma on
translation arcs, it is not necessary to assume that iDM(Df, p)/= 1.

For orientation and area preserving homeomorphisms in surfaces, we have the
following Nielsen type theorem (see [30] for the particular case where M is a disc).

Corollary 2.21. Let M be an oriented compact 2-dimensional manifold with boundary and let f :
M → M be an area and orientation preserving homeomorphism such that f |∂(M) has n attracting
fixed points and n repelling fixed points. Then f has, at least, n + Λ(f) fixed points in int(M) where
Λ(f) denotes the Lefschetz number of f . As a consequence, if M is the 2-dimensional disc, we have
that f has, at least, n + 1 fixed points in int(M).

Restricting ourselves to orientation reversing homeomorphisms and using the fact that
iR2(f, p) ∈ {−1, 0, 1}, we shall produce a sharp theorem. The proof will be obtained easily by
using the previous results.

Theorem 2.22. Let f : U → W be an orientation reversing local homeomorphism with p being a
non-accumulated, indifferent fixed point, and iR2(f2, p)/= 1. Then there are up generalized unstable
branches and rp generalized repelling petals for f2 at p such that iR2(f2, p) = 1 − up + rp and

(a) the generalized unstable (stable) branches and the generalized repelling (attracting) petals
are negatively (positively) invariant for f2;

(b.1) if iR2(f2, p) = 1 + m > 1, then rp ≥ m and there are, at least, m generalized attracting
petals for f2 at p (m of the generalized attracting petals alternate withm of the generalized
repelling petals around p);

(b.2) if iR2(f2, p) = 1−m < 1, then up ≥ m and there are, at least,m generalized stable branches
for f2 at p (m of the generalized stable branches alternate withm of the generalized unstable
branches around p);

(c.1) if iR2(f, p) = 1, then there are neither generalized repelling petals nor generalized unstable
branches for f2 at p, negatively invariant for f . On the other hand, there are two generalized
attracting petals or two generalized stable branches or a generalized stable branch and a
generalized attracting petal for f2 at p, positively invariant for f .
The numbers up and rp are even. Therefore, iR2(f2, p) is odd;
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(c.2) if iR2(f, p) = −1, then there are two generalized repelling petals or two generalized unstable
branches or a generalized unstable branch and a generalized repelling petal for f2 at p,
negatively invariant for f . On the other hand, there are neither generalized attracting petals
nor generalized stable branches for f2 at p, positively invariant for f .
The number up + rp is even and iR2(f2, p) is odd;

(c.3) if iR2(f, p) = 0, then there are a generalized unstable branch or a generalized repelling petal
for f2 at p negatively invariant for f . On the other hand, there are a generalized stable
branch or a generalized attracting petal for f2 at p, positively invariant for f .
The number up + rp is odd and iR2(f2, p) is even.

Corollary 2.23. Let f : S2 → S2 be an orientation reversing and area preserving homeomorphism.
If f has a fixed point, then |Per(f)| = ∞.

3. Computation of iR2(fk, p)

3.1. Orientation Preserving Case

Let f : U → W be an orientation preserving local homeomorphism with p being a non-
accumulated, indifferent fixed point for f . Let Jp be a Jordan domain, with p ∈ Jp being the
unique periodic orbit contained in cl(Jp),Kp∩∂(Jp)/= ∅, and such that p ∈ ∂(Kp). Given k ∈ N,

we can select a small enough Jordan domain J ⊂ Jp such that Fix(f
k|cl(J)) = {p} (the map f

is defined after Remark 2.7) and such that the above continuum Kp is also the connected
component of Inv(cl(J), f) which contains p. Then

iS2

(
f
k
, p

)
+ iS2

(
f
k
, S2 \ J

)
= 2. (3.1)

We have (after identification if necessary) that Per(f̂ |∂(D)) is a finite set. Then f̂ |∂(D) has
q periodic orbits of period r.

If k ∈ rN, then

Fix
(
f̂ k|∂(D)

)
=
{{
p11, . . . , p1r

}
, . . . ,

{
pq1, . . . , pqr

}}
, (3.2)

with {pj1, . . . , pjr} being the periodic orbits of f̂ |∂(D) for j = 1, . . . , q.

We have that Fix(f
k|∂(J)) = ∅ and Fix(f̂ k|P(Kp∩∂(J))) = ∅.

Let A = (J \ Kp) ∪ ∂(D) ⊂ D. Then iS2(f
k
, S2 \ J) = iD(f̂ k, D \ A) and, since D is

contractible,

iD
(
f̂ k, D \A

)
+ r

q∑
j=1

iD
(
f̂ k, pj1

)
= 1. (3.3)

Then we have the following proposition.
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Proposition 3.1. Under the above setting,

iR2

(
fk, p

)
= iS2

(
f
k
, p

)
= 2 − iS2

(
f
k
, S2 \ J

)
= 2 − iD

(
f̂ k, D \A

)
= 1 + r

q∑
j=1

iD
(
f̂ k, pj1

)
.

(3.4)

For each fixed point pj1 of f̂ k, we have a strong filtration pair adapted to D, (Nj1, Lj1),
with pj1 ∈ Kj1 = Inv(cl(Nj1 \ Lj1), f̂ k) (see Lemma 2.10).

The set Lj1 is a finite amount of disjoint discs and it is easy to see that iD(f̂ k, pj1) =
1 − qj with qj being the number of components Lmj1 of Lj1 such that f̂ k(∂Nj1(L

m
j1)) ⊂ intD(Lmj1)

(see [4]). Since f̂ is a homeomorphism, the number qj is the same for any other pjk with
k ∈ {1, . . . , r}.

Then, if k ∈ rN,

iR2

(
fk, p

)
= 1 + r

⎛
⎝q −

q∑
j=1

qj

⎞
⎠. (3.5)

If f̂ |∂(D) has no periodic orbits, it is obvious that iR2(fk, p) = 1 for all k ∈ N.
If k /∈ rN, then Fix(f̂ k|∂(D)) = ∅ and iR2(fk, p) = 1.
Therefore, we have proved the following theorem (see [5]).

Theorem 3.2. If f : U → W is an orientation preserving local homeomorphism with p being a
non-accumulated, indifferent fixed point, then

(a) if Per(f̂ |∂(D)) = ∅,

iR2

(
fk, p

)
= 1 ∀k ∈ N. (3.6)

(b) if Per(f̂ |∂(D)) is a nonempty finite set, then f̂ |∂(D) has q periodic orbits of period r, and

iR2

(
fk, p

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 If k /∈ rN,

1 + r

⎛
⎝q −

q∑
j=1

qj

⎞
⎠ If k ∈ rN,

(3.7)

with qj ∈ N defined as above. Let us recall that we obtain iR2(fk, p) for all k ∈ N by
observing f̂ r .

As an application of these techniques, we shall give an explicit simple example of an
area and orientation preserving homeomorphism h : R

2 → R
2 such that Fix(h) = Per(h) =

{0}, 0 is neither stable for h nor for h−1 and the fixed point indices iR2(hk, 0) = 1 for every
k ∈ Z. Moreover, there are no h-invariant subsets of positive finite Lebesgue measure.
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Example 3.3. Let gα : R
2 → R

2 be a rotation with center of the origin and angle α ∈ R \ Q.
Let S1 be the unit circle and x0 ∈ S1. For every point of the orbit of x0, {(gα)n(x0) :

n ∈ Z}, following the classical construction of Denjoy, we paste an interval In in each point
(gα)

n(x0) for every n ∈ Z such that:

(a) l(Im+1) < l(Im) and l(Im) = l(I−m) for every m ∈ N and
∑

n∈Z
l(In) = 2π < ∞ where

l(I) denotes the length of the interval I;

(b) limn→∞l(In+1)/l(In) = 1.

Extending radially to the whole plane the corresponding map of Denjoy, we obtain a
homeomorphism g : R

2 → R
2.

Let Qn = {a ∈ R
2 : there are λ ≥ 0 and bn ∈ In such that a = λbn}.

The homeomorphism h, we are looking for, will satisfy that h|R2\⋃n∈Z
Qn

= g.
Let us define h in

⋃
n∈Z

Qn. Consider n ∈ Z and take an isometric copy of Qn, denoted
by Θn ⊂ R × [0,∞) such that Θn is obtained by rotating Qn in such a way that the line x = 0
divides Θn into two symmetric sectors, Θ+

n and Θ−
n. We shall denote by 2αn ∈ [0, π) the interior

angle determined by Θm.
It is clear that Θm+1 ⊂ Θm and Θ−m ⊂ Θ−m+1 for every m ∈ N. For each n ∈ Z, let us

denote by jn : Qn → Θn the obvious isometry.
To define the required homeomorphism h, we will consider, for every n ∈ Z, area and

orientation preserving linear homeomorphisms fn,n+1 : Θn → Θn+1.
Let fn,n+1 : Θ+

n → Θ+
n+1 be given by the formula

fn,n+1
(
x, y
)
=
(

sinαn+1

sinαn
x, y

sinαn
sinαn+1

+ x
(

cosαn+1

sinαn
− cosαn

sinαn+1

))
. (3.8)

Since fn,n+1(0, y) = (0, y(sinαn/ sinαn+1)), we can extend fn,n+1 : Θ−
n → Θ−

n+1 by the
obvious symmetry.

On the other hand, fn,n+1(r sinαn, r cosαn) = (r sinαn+1, r cosαn+1). Then, it is easy to
check that fn,n+1 is an area and orientation preserving injective map such that fn,n+1(Θn) =
Θn+1.

Moreover, fn+1,n+2 ◦ fn,n+1 = fn,n+2 and 1 ≤ ‖fn,n+1(z)‖/‖z‖ ≤ sinαn/ sinαn+1 (1 ≥
‖fn,n+1(z)‖/‖z‖ ≥ sinαn/ sinαn+1) for every z ∈ Θn and n ≥ 0 (n ≤ 0).

Now we are in a position to give an explicit definition of the homeomorphism h :
R

2 → R
2 by

(i) h|R2\⋃n∈Z
Qn

= g,

(ii) h(z) = ((jn+1)
−1 ◦ fn,n+1 ◦ jn)(z) ∈ Qn+1 for z ∈ Qn.

By the construction, it is obvious that h is a bijective and area preserving map such
that Fix(h) = Per(h) = {0}.

(1) h is continuous in 0. Indeed, for any ε > 0 take δ > 0 such that ε =
δmax{sinαm/ sinαm+1 : m ∈ N}. Then, if B(0, s) denotes the open ball centered
in 0 and radius s, we have that h(B(0, δ)) ⊂ B(0, ε) and h−1(B(0, δ)) ⊂ B(0, ε).

(2) h is continuous in any z ∈ R
2 \ {0}. In fact, we only have to pay attention to z ∈

R
2 \⋃n∈Z

int(Qn). For such points, we use polar coordinates z = (r, θ) and g(r, θ) =
(r, g2(θ)). Since fn,n+1(r sinαn, r cosαn) = (r sinαn+1, r cosαn+1) for every n ∈ Z, we
have that h(z) = h(r, θ) = (r, g2(θ)).
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Consider any open neighborhood V = (r − ε, r + ε) × (g2(θ) − ε, g2(θ) + ε) of h(z) and
take any open neighborhood U of z such that g(U) ⊂ V and U ∩Qn /= ∅ just for |n| such that
sinαn/ sinαn+1 is close enough to 1. Then, if z′ ∈ U then ‖h(z′)‖/‖z′‖ is close enough to 1 and
‖h(z′)‖ ∈ (r − ε, r + ε).

(3) 0 is neither stable for h nor for h−1. Indeed, take any z ∈ int(Qm) with m ∈ N

such that jm(z) ∈ {(x, y) : x = 0, y ≥ 0} ⊂ Θm. Then, ‖fm,m+1(jm(z))‖/‖jm(z)‖ =
sinαm/ sinαm+1.

Now, consider any k ∈ N. There exists km ∈ N such that jm+km((h
km(z)) ∈ {(x, y) : x = 0,

y ≥ 0} ⊂ Θm+km , and sinαm/ sinαm+km > 2k/‖z‖. Then, ‖hkm(z)‖ > 2k.
In the same way, we have that 0 is not stable for h−1. The same arguments allow

to prove that neither the positive semiorbit nor the negative semiorbit of z ∈ int(Qn) are
bounded. On the other hand, any h-invariant subset has null or infinite Lebesgue measure.

(4) For any closed disc, D, centered in 0, we have that Inv(D,h) = (R2 \⋃n∈Z
int(Qn))∩

D. Then, Inv(D,h) has no h-periodic prime ends and consequently, iR2(hk, 0) =
iR2(h−k, 0) = 1 for every k ∈ N.

3.2. Orientation Reversing Case

Let f : U → W be an orientation reversing local homeomorphism with p being a non-
accumulated, indifferent fixed point and let Jp and Kp be as in the orientation preserving
case. Note that from a theorem of Kuperberg, see [31], p ∈ ∂(Kp).

Given k ∈ N, we can select a small enough Jordan domain J ⊂ Jp such that

Fix(f
k|cl(J)) = {p} and such that Kp is the connected component of Inv(cl(J), f) which

contains p.
Since f : S2 → S2 is orientation reversing,

iS2

(
f
k
, p

)
+ iS2

(
f
k
, S2 \ J

)
=

⎧
⎨
⎩

0 if k odd,

2 if k even,
(3.9)

and, since Per(f̂ |∂(D)) is, after identification if necessary, a finite set, then f̂ |∂(D) has q periodic
orbits of period 2 and two fixed points {p0, p1}.

Let us divide the computation of iR2(fk, p) into two cases: k odd and k even.

Case 1. Let us suppose that k is odd.

Since f
k

is orientation reversing,

iS2

(
f
k
, p

)
+ iS2

(
f
k
, S2 \ J

)
= 0. (3.10)

On the other hand, since Fix(f̂ k|∂(D)) = {p0, p1},

iD
(
f̂ k, D \A

)
+ iD
(
f̂ k, p0

)
+ iD
(
f̂ k, p1

)
= 1. (3.11)
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Then we have the following proposition.

Proposition 3.4. Under the above setting,

iR2

(
fk, p

)
= iD

(
f̂ k, p0

)
+ iD
(
f̂ k, p1

)
− 1. (3.12)

Let us compute iD(f̂ k, p0) for k odd.
There exists a strong filtration pair adapted to D, (N0, L0), associated to p0.
If q0 is the number of components {Lj0} of L0 such that f̂ k(∂N0(L

j

0)) ⊂ intD(L
j

0), since
f̂ k is orientation reversing, we have that q0 ∈ {0, 1} (see [4]).

We obtain that

iD
(
f̂ k, p0

)
= 1 − q0. (3.13)

In the same way, we have

iD
(
f̂ k, p1

)
= 1 − q1 (3.14)

with q1 ∈ {0, 1} defined as q0.
Then, for k being odd and f being an orientation reversing local homeomorphism,

iR2

(
fk, p

)
=
(

1 − q0
)
+
(

1 − q1
)
− 1 = 1 − q0 − q1 ∈ {−1, 0, 1} (3.15)

and Case 1 is finished.

Case 2. Let us suppose that k is even.
Then f̂ k is an orientation preserving homeomorphism with Fix(f̂ k|∂(D)) =

{p0, p1, {p11, p12}, . . . , {pq1, pq2}}. Following the steps of the orientation preserving case,

iD
(
f̂ k, pj1

)
= 1 − qj for j ∈ {1, . . . , q}, iD

(
f̂ k, pi

)
= 1 − qi for i ∈ {0, 1}. (3.16)

Then

iR2

(
fk, p

)
= 2 − iD

(
f̂ k, D \A

)
= 2 −

⎡
⎣1 − 2

q∑
j=1

(
1 − qj

) −
(

1 − q0
)
−
(

1 − q1
)
⎤
⎦

= 3 + 2q − q0 − q1 − 2
q∑
j=1

qj .

(3.17)

Let us observe that in this case (k even) we have not qi ∈ {0, 1}.
Therefore, we have the following theorem.
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Theorem 3.5. Let f : U → W be an orientation reversing local homeomorphism with p being a
non-accumulated, indifferent fixed point such that Per(f̂ |∂(D)) is a finite set (two fixed points and q
periodic orbits of period 2). Then

iR2

(
fk, p

)
=

⎧
⎪⎪⎨
⎪⎪⎩

1 − q0 − q1 ∈ {−1, 0, 1} if k odd,

3 + 2q − q0 − q1 − 2
q∑
j=1

qj if k even,
(3.18)

with qj , q0, and q1 defined as above. Let us recall that we obtain iR2(fk, p), for all k ∈ N, by observing
f̂ and f̂2.

4. Dynamical Meaning of iR2(fk, p)

Proof of Main Theorem 1 (Orientation preserving case). Let f : U → W be an orientation
preserving local homeomorphism with p being a non-accumulated, indifferent fixed point
for f in the conditions of the orientation preserving case of Section 2. Then Per(f̂ |∂(D)) is a

finite set of q periodic orbits of period r. Let pj1 ∈ Fix(f̂ k|∂(D)) with k ∈ rN. We will relate

iD(f̂ k, pj1) with the dynamical behavior of f̂ k in the proximity of pj1. This fact permits us to
establish a new relation between iR2(fk, p) and the dynamical meaning of f at a neighborhood
of p.

Let (Nj, Lj) be a pair, as in Lemma 2.10, for f̂s
k

at pj1. If (Nj, Lj) is a strong filtration
pair, the period of (Nj, Lj) is 1. We have then a family (perhaps empty) {U1, . . . , Us} of

unstable branches of (Nj, Lj) associated to f̂s
k

at pj1 with s = 1 − iS2(f̂s
k
, pj1).

If (Nj1, Lj1) is a strong filtration pair adapted to D for pj1, we call uj the number of
unstable branches of (Nj1, Lj1) associated to f̂ k at pj1. If we select any other pjk with k ∈
{1, . . . , r}, since f̂ is a homeomorphism, we obtain the same numbers uj associated to pjk. Let
us study the relations between the numbers uj and qj .

Case 1. If pj1 is an attractor for f̂ k|∂(D), then Lj1 ∩ ∂(D) = ∅ and qj = uj .

If qj = 0, then Nj1 is an attracting petal associated to f̂ k at pj1, that is, f̂ k(Nj1) ⊂
intD(Nj1).

Case 2. Let us suppose that pj1 is a repeller for f̂ k|∂(D).
Then qj ≥ 1. We have two subcases.

Sub case 2.1. If qj = 1, Nj1 is a repelling petal associated to f̂ k at pj1, that is, Nj1 ⊂
intD(f̂ k(Nj1)), we have uj = 0.

Sub case 2.2. If qj > 1, we obtain uj = qj − 2.

Case 3. If pj1 is a saddle point for f̂ k|∂(D), then qj = uj + 1.



Fixed Point Theory and Applications 23

Let us denote

A =
{
j ∈ {1, . . . , q} : pj1 is in Case 1

}
,

R1 =
{
j ∈ {1, . . . , q} : pj1 is in Case 2.1

}
,

R2 =
{
j ∈ {1, . . . , q} : pj1 is in Case 2.2

}
,

S =
{
j ∈ {1, . . . , q} : pj1 is in Case 3

}
.

(4.1)

Since f̂ k|∂(D) is orientation preserving, the sets A and R = R1 ∪ R2 have the same
number of elements. There are r|A| = r|R| attractors (and repellers) and r|S| = r(q − 2|A|)
saddle points for f̂ k|∂(D).

If we come back to the computation of iR2(fk, p), then

iR2

(
fk, p

)
= 1 + r

⎛
⎝q −

q∑
j=1

qj

⎞
⎠

= 1 + r

⎡
⎣q −

∑
j∈A

uj − |R1| −
∑
j∈R2

(
uj + 2

) −
∑
j∈S

(
uj + 1

)
⎤
⎦

= 1 − r
∑

j∈A∪R2∪S
uj + r|R1|.

(4.2)

If we associate the number ujm = uj to each point pjm, then

iR2

(
fk, p

)
= 1 −

∑
j∈{1,...,q}

m∈{1,...,r}

ujm + r|R1|. (4.3)

The number ujm is the number of unstable branches of (Njm, Ljm) associated to f̂ r at
pjm.

Let Ujm be an unstable (stable) branch of (Njm, Ljm) associated to f̂ r at pjm. It is easy
to see that the continuum clR2(Ujm \ pjm) ⊂ U is a generalized unstable (stable) branch for fr

at p.
We can select the repelling petals Njm in such a way that the arcs ∂D(Njm) are cross-

cuts of ∂(Kp), that is, their end points are exactly two points in ∂(Kp) (the set of elements
of ∂(D) which are accessible by arcs on U \ Kp is dense in ∂(D)). Then, the continuum
clR2(int(Njm)) is a generalized repelling petal for fr at p.

The generalized attracting petals for fr at p are constructed in an analogous way.
We define up =

∑
ujm to be the number of generalized unstable branches for fr at p

and rp = r|R1| to be the number of generalized repelling petals for fr at p.
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We have proved that if f is an orientation preserving local homeomorphism, then
rp, up ∈ rN and

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 if k /∈ rN,
1 − up + rp if k ∈ rN.

(4.4)

Let us recall that iR2(fk, p) is computed by observing f̂ r . The numbers up and rp
depend on the choice of the Jordan domain J and of the set of strong filtration pairs adapted
to D (if Per(f̂∂(D)) is not a finite set). However, the difference rp − up does not change.

Remark 4.1. Note that the above techniques allow us to compute iR2(f, p) even if p is an
accumulated isolated fixed point. Using Lemma 2.10, there are no problems to construct
strong filtration pairs adapted to each fixed prime end. Since it is well known that for an
accumulated isolated fixed point p iR2(f, p) = 1, we have that the number of generalized
unstable (stable) branches and generalized repelling (attracting) petals that are negatively
(positively) invariant for f coincide.

Corollary 4.2. Let pj1 ∈ Fix(f̂ k|∂(D)) with k ∈ rN and let (N ′
j1, L

′
j1) be a pair as in Lemma 2.10 and

(Nj1, Lj1) = (N ′
j1 ∩D,L′

j1 ∩D) a strong filtration pair adapted to D at pj1. Then

iD
(
f̂ k,Nj1

)
− iS2

(
f̂s

k
,N ′

j1

)
=

⎧
⎨
⎩
−1 if ∂N ′

j1

(
L′
j1

)
� S1,

uj1 otherwise,
(4.5)

with uj1 being the number of unstable branches of (Nj1, Lj1) associated to f̂ k at pj1. Therefore,

∑
iD
(
f̂ k,Njm

)
−
∑

iS2

(
f̂s

k
,N ′

jm

)
= up − rp,

∑
j /∈R1

iD
(
f̂ k,Njm

)
−
∑
j /∈R1

iS2

(
f̂s

k
,N ′

jm

)
= up.

(4.6)

Proof of Main Theorem 2 (Orientation reversing case). Let f : U → W be an orientation
reversing local homeomorphism and let p be a non-accumulated, indifferent fixed point for
f in the conditions of the orientation reversing case of Section 2. Then, Per(f̂ |∂(D)) is a finite
set with two fixed points and q periodic orbits of period two.

If k is even, we have that f̂ k is orientation preserving and Fix(f̂ k|∂(D)) =
{p0, p1, {p11, p12}, . . . , {pq1, pq2}}. Then

iR2

(
fk, p

)
= 1 − up + rp, (4.7)

with rp and up being the number of generalized repelling petals and unstable branches for f2

at p. The petals and branches are constructed as in the orientation preserving case.
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If k is odd, then let Fix(f̂ k|∂(D)) = {p0, p1} with {(N0, L0), (N1, L1)} be strong filtration
pairs adapted to D for p0 and p1. Let u′p and r ′p be the number of unstable branches and

generalized repelling petals associated to f̂ k at the fixed points of ∂(D) which are negatively
invariant for f̂ k. Since f̂ k is orientation reversing, we obtain that u′p ≤ 2, r ′p ≤ 2 and r ′p + u

′
p =

q0 + q1 ≤ 2. Then

iR2

(
fk, p

)
= 1 − q0 − q1 = 1 − u′p − r ′p ∈ {−1, 0, 1}. (4.8)

If f is an orientation reversing local homeomorphism,

iR2

(
fk, p

)
=

⎧
⎨
⎩

1 − up + rp if k even,

1 − u′p − r ′p if k odd,
(4.9)

with iR2(fk, p) ∈ {−1, 0, 1} if k is odd. The numbers {up, rp} and {u′p, r ′p} are computed by

observing f̂2 and f̂ .

Definition 4.3 (Irreducibility of branches and petals). Let p ∈ J be a non-accumulated
and indifferent fixed point with J being a Jordan domain such that Kp ∩ ∂(J)/= ∅, and let
us construct the Carathéodory’s compactification of S2 \ Kp, D, and the homeomorphism
f̂ : D → D. If pi ∈ Fix(f̂ k|∂(D)) is an isolated fixed prime end (and not an identification to a
point of an interval Ii of prime ends) and it gives us a family of generalized unstable branches
for fr at p, we call them irreducible unstable branches for fr at p in J . In the same way, if pi gives
us a generalized repelling petal for fr at p, we call it irreducible repelling petal for fr at p in J .

Remark 4.4. If the set of isolated fixed prime ends of f̂ k|∂(D) is not finite then, given m ∈ N, we

can obtain another identification homeomorphism, which we call again f̂ k : D → D, which
gives us a number >m of generalized unstable branches and a number >m of generalized
repelling petals at p (obviously, we have up > m and rp > m). However, the number rp − up =
iR2(fk, p) − 1 is constant and it just depends on the germ of f .

Remark 4.5. Let us observe that if f is orientation reversing, since Fix(f̂ |∂(D)) is a set of two

fixed prime ends for every f̂ , then the numbers u′p and r ′p of iR2(f, p) = 1 − u′p − r ′p are

independent of the map f̂ considered (this fact is not true for up and rp).

The following proposition is a consequence of our previous results.

Proposition 4.6. Let us suppose that iR2(fr, p)/= 1 for some r ∈ N (r = 2 if f reverses orientation).
There exists a family of up generalized unstable branches, {Uj}, and a family of rp generalized repelling
petals, {Ri}, for fr at p such that iR2(fr, p) = 1 − up + rp and

(1) the open repelling petals and the sets {Uj \Kp} are two families of mutually disjoint sets.
Moreover, each set of a family is disjoint from the sets of the other family;

(2) limn→∞f−rn(x) = {p} and limn→∞f−rn(y) = {p} for every x ∈ Ui and every y ∈ Ri;

(3)
⋂
n∈N

f−nr(Ui) and
⋂
n∈N

f−nr(Ri) are fr-invariant continua containing p and the
sequence {f−nr(Ri)}n∈N

determines an end containing p.
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If f is orientation reversing, the numbers u′p ≤ 2 and r ′p ≤ 2, of the decomposition iR2(f, p) =
1 − u′p − r ′p, determine the number of generalized unstable branches and generalized repelling petals of
our families which are negatively invariant for f .

Proof. Let us select an adequate J such that Fix(fr |J) = {p}. Given a fixed point pi for f̂ r |∂(D)

and a strong filtration pair (Ni, Li) adapted to D, the unstable branches {U1i, . . . , Usi} for f̂ r

at pi are compact sets of trivial shape. We define generalized unstable branches {Uj} as the
closure in R

2 of the sets {U1i \ {pi}, . . . , Usi \ {pi}} for every pi ∈ Fix(f̂ r
∂(D)).

Since iR2(fr, p)/= 1 and Fix(fr |J) = {p}, it is not difficult to prove that for every x ∈
clR2(Uli \ {pi}), f−rn(x) → {p} (see [12, Proposition 2]).

Let us construct generalized repelling petals {Ri}. There are rp generalized repelling
petals {N1, . . . ,Nrp} associated to the fixed points of f̂ r |∂(D). We can select generalized
repelling petals {Ni} in such a way that each arc γi = ∂D(Ni) has two end points in ∂(Kp).
Each pi has associated a union of prime ends {Pi}. At least one of these prime ends, Pi, is
a fixed prime end for f̂ r . We call Pi the set of points of Pi. It is not difficult to prove that
Pi ⊂ ∂(Kp) is a continuum, invariant for fr , with p ∈ Pi.

For each pi, we obtain a generalized repelling petal, Ri, for fr at p

Ri = clR2(intS2(Ni)) (4.10)

with p ∈ Pi ⊂ ∂(Ri). The associated open repelling petals are disjoint and it is obvious that
they are disjoint from the sets {Uj \Kp} which are also disjoint.

Remark 4.7. If a generalized unstable branch (or a generalized repelling petal) for fr at p, U0,
is irreducible, then

⋂
n∈N

f−rn(U0) ⊂ ∂(Kp) is a continuum, invariant for fr , and it is the set of
points of a fixed prime end for f̂ r .

Remark 4.8. Note that from our techniques one can provide reasonable notions of local
hyperbolic and elliptic sectors in terms of the generalized stable/unstable branches and
generalized attracting/repelling petals such that the classical Poincaré formula remains true
(Question 1.16 of [11]).

5. The Remaining Proofs

Proof of Theorem 2.18. We can assume that p ∈ ∂(Kp).
The fixed point index iR2(fr, p) = 1 − up + rp < 1 gives us m = up − rp. We obtain that

there are up ≥ m unstable branches {U1, . . . , Uup} for f̂ r at the fixed points in ∂(D).
Let ap and rp be the number of fixed points in ∂(D) associated to attracting and

repelling petals for f̂ r . If the disc Ni of a strong filtration pair adapted to D, (Ni, Li), is not
an attracting nor a repelling petal, then we say that Ni is an unstable petal. We call R ≥ rp the
number of repelling fixed points for f̂ r |∂(D). R is also the number of attracting fixed points for

f̂ r |∂(D).

Given a point pi ∈ Fix(f̂ r |∂(D)) associated to an unstable petal Ni, there are three cases.
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Case 1. If pi is a saddle point for f̂ r |∂(D), then there are the same number of unstable and stable

branches for f̂ r at pi.

Case 2. pi is a repelling fixed point for f̂ r |∂(D). If ri is the number of unstable branches for f̂ r

at pi, then there are ri + 1 stable branches at pi.

Case 3. pi is an attracting fixed point for f̂ r |∂(D). If ri is the number of unstable branches for f̂ r

at pi, then there are ri − 1 stable branches at pi.

We have a family {S1, . . . , Ssp} of stable branches for f̂ r at the fixed points in ∂(D) with

sp = up −
(
R − ap

)
+
(
R − rp

)
= up + ap − rp ≥ up − rp = m. (5.1)

Let {pi} be the family of fixed points of f̂ r |∂(D) and let {Ni} be the family of attracting,
repelling and unstable petals of the strong filtration pairs adapted to D, {(Ni, Li)}, associated
to each fixed point. We denote Nu =

⋃
i Ni such that Ni is unstable.

Let us consider the Jordan curve contained in D,

γ = (∂(D) \Nu) ∪ ∂D(Nu). (5.2)

Let L =
⋃
i,j L

j

i , with L
j

i being the components of each Li such that Lji ⊂ intS2(D) and

f̂ r(∂Ni(L
j

i )) ⊂ intS2(Lji ). Let U1 be an unstable branch for f̂ r at D with U1 ∩ γ ⊂ l1, where l1 is
the connected component of L ∩ γ which intersects U1. Two unstable branches {U1, U2} are
adjacent if there is an arc l1,2 in γ joining the arcs l1 and l2, with l1 ∪ l2 ⊂ l1,2 in such a way that
l1,2 ∩ L = l1 ∪ l2.

If two unstable and adjacent branches for f̂ r , {U1, U2}, are contained in the same
region N1, there exists a stable branch S1 in N1 between U1 and U2.

If two unstable and adjacent branches {U1, U2} are contained in disjoint regions N1

and N2 associated to fixed points p1 and p2, then we have the following two situations.

(i) If there is a stable branch S1 which intersects l1,2 ∩ ∂D(N1 ∪N2), then S1 is a stable
branch between U1 and U2 in l1,2.

(ii) If there is not a stable branch which intersects l1,2 ∩ ∂D(N1 ∪N2), then the points p1

and p2 are attractors on the right side and on the left side, respectively, for f̂ r |∂(D).
By this observation, if p1p2 ⊂ ∂(D) is the arc induced by l1,2 joining p1 and p2, we
have that there exists a repelling fixed point p′ for f̂ r |∂(D) contained in the interior
of p1p2. The point p′ has associated an unstable or repelling petal N ′.

If N ′ is unstable, there exists in N ′ a stable branch S1 (between U1 and U2 in l1,2).
Since there are rp repelling petals, we can construct, at least, up−rp = m stable branches

{S1, . . . , Sm} alternating in γ with m unstable branches {U1, . . . , Um}.
The stable and unstable branches for f̂ r at D, {S1, . . . , Sm} and {U1, . . . , Um}, give us

the alternating set of generalized stable and generalized unstable branches for fr at p which
we are looking for.

Let us consider a Jordan curve γ0 ⊂ D near enough ∂(D) and let

γ1 =
(
γ0 \Nu

) ∪ ∂D(Nu). (5.3)
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The closed disc Dp ⊂ J (and containing p) determined by γ1 is the disc we are looking
for.

Proof of Theorem 2.19. Since iR2(fr, p) = 1 +m > 1, we have that p is indifferent. On the other
hand, p ∈ ∂(Kp) (if p ∈ int(Kp), then p is stable and iR2(fr, p) = 1; see [25]).

We have iR2(fk, p) = iR2(fr, p) = 1 − up + rp > 1 for all k ∈ rN with r being the period
of the periodic orbits of f̂ |∂(D). We obtain that there is a family of rp generalized repelling
petals (see Proposition 4.6), {Ri}, with int(Ri) ∩ int(Rj) = ∅ for i /= j. The fixed point index
iR2(fr, p) = 1 − up + rp gives us m = rp − up. Since rp ≥ m, there are, at least, m generalized
repelling petals.

Let us construct the m generalized attracting petals {Ai}. Since f̂ r |∂(D) has, at least, rp

repelling fixed points, then there are also rp attracting fixed points {p′1, . . . , p′rp} (f̂ r |∂(D) is an
orientation preserving homeomorphism). From these rp fixed points, there are no more than
up without generalized attracting petals. Then, the remainder points (at least rp − up = m) are
points with associated generalized attracting petals N ′

i. We define the generalized attracting
petals Ai as

Ai = clR2
(
intS2

(
N ′

i

))
. (5.4)

It only remains to construct the Jordan curve γ around p. Let us consider two repelling
fixed points {p1, p2} of f̂ r |∂(D), with repelling petals {N1,N2}, and adjacent in the set of fixed
points R = {p1, . . . , prp} ⊂ ∂(D) associated to repelling petals. Given the arc γ1,2 ⊂ ∂(D) joining
the points p1 and p2 (with γ1,2 ∩ R = {p1, p2}), there are λ1 unstable branches in D associated
to the fixed points of f̂ r |∂(D) contained in γ1,2. In the same way, we consider the arcs γi,i+1 for
{pi, pi+1} and the numbers λi of unstable branches of the fixed points in the arcs γi,i+1. Then

rp∑
i=1

λi = up = rp −m. (5.5)

There are, at least, m elements {λi1 , . . . , λim} ⊂ {λ1, . . . , λrp} such that λi1 = · · · = λim = 0.
Since pi1 and pi1+1 are repellers for f̂ r |∂(D), there exists, at least, an attractor for f̂ r |∂(D),

p′i1 , in the interior of γi1,i1+1. Since λi1 = 0, then p′i1 is associated to an attracting petal
N ′

i1
. In the same way, we construct attracting petals {N ′

i1
, . . . ,N ′

im
} which alternate with

the repelling petals {Ni1 , . . . ,Nim} around ∂(D). The required Jordan curve is obtained by
selecting γ ⊂ int(D) near enough ∂(D). The generalized attracting petals {Ai1 , . . . , Aim}
associated to {N ′

i1
, . . . ,N ′

im
} and the generalized repelling petals {Ri1 , . . . , Rim} associated to

{Ni1 , . . . ,Nim} alternate with respect to γ .

Proof of Corollary 2.21. Let DM be the double of the manifold M and let Df : DM → DM be
the homeomorphism induced by f .

We only have to pay attention to the case where Fix(f) ∩ int(M) is finite.
Let p1, . . . , pn ∈ ∂(M), (q1, . . . , qn ∈ ∂(M)) the repellers (attractors) of f |∂(M), and

r1, . . . , rq the fixed points of f in int(M).
We know that the index ofDf at each fixed point is ≤1 because there are no generalized

repelling petals.
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Note that the saddle points in ∂(M) have index ≤0 because there exists, at least, a
generalized unstable branch.

Then,

Λ
(
Df
) ≤ 2

∑
j∈{1,...,q}

iM
(
f, rj
)
+
∑

i∈{1,...,n}
iDM
(
Df, pi

)
+
∑

i∈{1,...,n}
iDM
(
Df, qi

)
. (5.6)

Now, since there exist al least two generalized unstable (stable) branches with each
repeller (attractor), iDM(Df, pi) ≤ −1 and iDM(Df, qi) ≤ −1 for every i ∈ {1, . . . , n}.

Then 2Λ(f) = Λ(Df) ≤ 2
∑

j∈{1,...,q} iM(f, rj) − 2n.
Therefore, Λ(f) + n ≤∑j∈{1,...,q} iM(f, rj) and q ≥ Λ(f) + n.

Remark 5.1. In the particular case whereM is the closed 2-disc much more can be said. Indeed,
if f has a fixed point in the boundary, then it has another fixed point in int(M). Then Df :
S2 → S2 is an area and orientation preserving homeomorphism with at least three fixed
points. Therefore, using a theorem of Franks [32] (see also [5]), we have that Df has infinite
periodic orbits. Consequently, f also has infinite periodic orbits.

Proof of Theorem 2.22. The proof of (a), (b.1), and (b.2) follows as in the orientation preserving
case. Let us prove (c.1). Since iR2(f, p) = 1−u′p−r ′p = 1, we obtain that there are no generalized
repelling petals and generalized unstable branches for f2 at p, negatively invariant for f (that
are associated to the two fixed points for f̂ , {p0, p1}).

An easy topological argument allows us to say that p0 and p1 are attracting or repelling
fixed points for f̂ |∂(D). For each one of the three cases (two attractors, two repellers or an
attractor and a repeller), we obtain the three situations of the case (c.1).

Since u′p = r
′
p = 0 and f is orientation reversing, it is easy to see that up and rp are even.

This fact gives us iR2(f2, p) = 1 − up + rp odd.
The proofs of (c.2) and (c.3) are analogous.

Proof of Corollary 2.23. We shall give a proof based on our results and a strong theorem of
existence of periodic orbits of orientation and area preserving homeomorphisms in the 2-
sphere. Note that it can be used also the results of Bonino in [33].

If |Fix(f)| ≥ 3, then |Fix(f2)| ≥ 3 and, since f2 is an orientation and area preserving
homeomorphism, by a theorem of Franks [32] (see also [5]) we have that |Per(f2)| = ∞ and,
therefore, |Per(f)| = ∞.

If 1 ≤ |Fix(f)| ≤ 2, let us see that |Per(f)| = ∞. If we suppose that |Per(f)| < ∞, then
each pj ∈ Fix(f) is an isolated periodic orbit and we have iS2(f, pj) ≤ 1 (see [29]). If pj is
stable, the index is 1 (see [9]). If pj is not indifferent, then the index is 1 − δ ∈ {−1, 0, 1} (see
[12]). If pj is indifferent, then the index is 1 − u′pj ∈ {0, 1}. Let us observe the following two
equalities:

0 = iS2

(
f, S2

)
=

∑

pj∈Fix(f)
iS2
(
f, pj

)
,

2 = iS2

(
f2, S2

)
=

∑

pj∈Fix(f)
iS2

(
f2, pj

)
+

∑

qj∈Fix(f2)\Fix(f)
iS2

(
f2, qj

)
.

(5.7)
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It is easy to see that iS2(f2, pj) ≤ iS2(f, pj). In fact, if pj is stable the index for f2 is 1. If
pj is not indifferent, the index for f2 is 1 − δ − 2q ≤ 1 − δ (see [12]) and, if pj is indifferent, the
index for f2 is 1−upj ≤ 1−u′pj . Using the above two equalities, we have that |Fix(f2)| ≥ 3 and
we obtain a contradiction which gives us |Per(f)| = ∞.
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