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We prove that the set of common fixed points of a given countable family of relatively nonex-
pansive mappings is identical to the fixed-point set of a single strongly relatively nonexpansive
mapping. This answers Kohsaka and Takahashi’s question in positive. We also introduce the
concept of strongly generalized nonexpansive mappings and prove the analogue version of the
result above for Ibaraki-Takahashi’s generalized nonexpansive mappings. The duality theorem
for two classes of strongly relatively nonexpansive mappings and of strongly generalized
nonexpansive mappings is proved.

1. Introduction

Let C be a subset of a Banach space E. A mapping T : C → E is nonexpansive if ‖Tx − Ty‖ ≤
‖x −y‖ for all x, y ∈ C. In this paper, the fixed-point set of the mapping T is denoted by F(T),
that is, F(T) = {x ∈ C : x = Tx}. In 1973, Bruck [1] proved that for a given countable family of
nonexpansive mappings in a strictly convex Banach space there exists a single nonexpansive
mapping whose fixed-point set is identical to the set of common fixed points of the family.
More precisely, the following is obtained.

Theorem 1.1. Let C be a closed convex subset of a strictly convex Banach space E and let {Ti :
C → E}∞i=1 be a sequence of nonexpansive mappings such that

⋂∞
i=1 F(Ti)/= ∅. Suppose that {αi}∞i=1 is
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a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and U : C → E is defined by

Ux =
∞∑

i=1

αiTix for each x ∈ C. (1.1)

ThenU is nonexpansive and F(U) =
⋂∞

i=1 F(Ti).

Recall that E is strictly convex if whenever x and y are norm-one elements in E
satisfying ‖x + y‖ = 2 it follows that x = y. It is worth mentioning that Bruck’s result above
remains true for the class of quasi-nonexpansive mappings, that is, the set of common fixed
points of a countable family of quasi-nonexpansive mappings is identical to the fixed-point
set of a single quasi-nonexpansive mapping. A mapping T : C → E is quasi-nonexpansive if
F(T)/= ∅ and ‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ C and p ∈ F(T).

In 2004, Matsushita and Takahashi [2–4] introduced the so-called relatively nonexpan-
sive mappings in Banach spaces. This class of mappings includes the resolvent of a maximal
monotone operator and Alber’s generalized projection. For more examples, we refer to [2–
6]. Recently, Kohsaka and Takahashi [7] proved an analogue version of Bruck’s result for a
family of relatively nonexpansive mappings and they asked the following question.

Question 1. For a given countable family of relatively nonexpansive mappings, is there a single
strongly relatively nonexpansive mapping such that its fixed-point set is identical to the set of common
fixed points of the family?

A positive answer to this question is given in [7] for a finite family of mappings. The
purpose of this paper is to give the answer of Kohsaka and Takahashi’s question in positive.
We also introduce a concept of strongly generalized nonexpansive mappings and present
the analogue version of the result above for Ibaraki-Takahashi’s generalized nonexpansive
mappings. Finally, inspired by [8], we prove the duality theorem for two classes of strongly
relatively nonexpansive mappings and of strongly generalized nonexpansive mappings.

2. Preliminaries

We collect together some definitions and preliminaries which are needed in this paper. The
strong and weak convergences of a sequence {xn} in a Banach space E to an element x ∈ E
are denoted by xn → x and xn ⇀ x, respectively. A Banach space E is uniformly convex if
whenever {xn} and {yn} are sequences in E satisfying ‖xn‖ → 1, ‖yn‖ → 1 and ‖xn+yn‖ → 2
it follows that xn − yn → 0. It is known that if E is uniformly convex, then it is reflexive and
strictly convex. We say that E is uniformly smooth if the dual space E∗ of E is uniformly convex.
A Banach space E is smooth if the limit limt→ 0(‖x+ty‖−‖x‖)/t exists for all norm-one elements
x and y in E. It is not hard to show that if E is reflexive, then E is smooth if and only if E∗

is strictly convex. The value of x∗ ∈ E∗ at x ∈ E is denoted by 〈x, x∗〉. The duality mapping
J : E → 2E

∗
is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(2.1)
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for all x ∈ E. The following facts are known (e.g., see [9, 10]).

(a) If E is smooth, then J is single valued.

(b) If E is strictly convex, then J is one-to-one, that is, x /=y implies that Jx ∩ Jy = ∅.
(c) If E is reflexive, then J is onto.

(d) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

For a smooth Banach space E, Alber [5] considered the functional ϕ : E × E → [0,∞)
defined by

ϕ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥
∥y

∥
∥2 ∀x, y ∈ E. (2.2)

Using this functional, Matsushita and Takahashi [2–4] studied and investigated the following
mappings in Banach spaces. Suppose that C is a subset of a smooth Banach space E. A
mapping T : C → E is relatively nonexpansive if the following properties are satisfied.

(R1) F(T)/= ∅.

(R2) ϕ(p, Tx) ≤ ϕ(p, x) for all p ∈ F(T) and x ∈ C.

(R3) I−T is demiclosed at zero, that is; whenever a sequence {xn} inC converges weakly
to p and {xn − Txn} converges strongly to 0, it follows that p ∈ F(T).

In a Hilbert spaceH, the duality mapping J is an identity mapping and ϕ(x, y) = ‖x−y‖2 for
all x, y ∈ H. Hence, if T : C → H is relatively nonexpansive, then it is quasi-nonexpansive
and I − T is demiclosed at zero.

Recently, Kohsaka and Takahashi [7] proved an analogue version of Bruck’s result for
a family of relatively nonexpansive mappings. More precisely, they obtained the following.

Theorem 2.1 (see [7, Theorem 3.4]). Let C be a closed convex subset of a uniformly convex and
uniformly smooth Banach space E and let {Ti : C → E}mi=1 be a finite family of relatively nonexpansive
mappings such that

⋂m
i=1 F(Ti)/= ∅. Suppose that {αi}mi=1 ⊂ (0, 1) and {βi}mi=1 ⊂ (0, 1) are finite

sequences such that
∑m

i=1 αi = 1 and R : C → E is defined by

Rx = J−1
(

m∑

i=1

αi

(
βiJx +

(
1 − βi

)
JTix

)
)

for each x ∈ C. (2.3)

Then R is strongly relatively nonexpansive and F(R) =
⋂m

i=1 F(Ti).

Recall that a relatively nonexpansive mapping T : C → E [6] is strongly relatively
nonexpansive if whenever {xn} is a bounded sequence in C such that ϕ(p, xn)−ϕ(p, Txn) → 0
for some p ∈ F(T) it follows that ϕ(Txn, xn) → 0.

To obtain the result for a countable family of relatively nonexpansive mappings, the
same authors proved the following result.
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Theorem 2.2 (see [7, Theorem 3.3]). Let C and E be as in Theorem 2.1 and let {Ti : C → E}∞i=1 be
a sequence of relatively nonexpansive mappings such that

⋂∞
i=1 F(Ti)/= ∅. Suppose that {αi}∞i=1 ⊂ (0, 1)

and {βi}∞i=1 ⊂ (0, 1) are sequences such that
∑∞

i=1 αi = 1 and U : C → E is defined by

Ux = J−1
( ∞∑

i=1

αi

(
βiJx +

(
1 − βi

)
JTix

)
)

for each x ∈ C. (2.4)

ThenU is relatively nonexpansive and F(U) =
⋂∞

i=1 F(Ti).

Remark 2.3. They also asked the question of whether the mapping U in Theorem 2.2 is
strongly relatively nonexpansive (see [7, Problem 3.5]).

The following lemmas are needed in proving the result.

Lemma 2.4 (see [11, Theorem 2]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0, 2r] → [0,∞) such that
g(0) = 0 and

∥
∥αx + (1 − α)y

∥
∥2 ≤ α‖x‖2 + (1 − α)

∥
∥y

∥
∥2 − α(1 − α)g

(∥
∥x − y

∥
∥
)

(2.5)

for all α ∈ [0, 1] and x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.5. Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly
increasing, continuous and convex function g : [0, 2r] → [0,∞) such that g(0) = 0 and

∥
∥
∥
∥
∥

∞∑

i=1

αixi

∥
∥
∥
∥
∥

2

≤
∞∑

i=1

αi‖xi‖2 − α1αkg(‖x1 − xk‖), (2.6)

for all {xi}∞i=1 ⊂ Br, {αi}∞i=1 ⊂ (0, 1) with
∑∞

i=1 αi = 1, and k ∈ N.

Proof. We note that both series
∑∞

i=1 αixi and
∑∞

i=1 αi‖xi‖2 converge. For r > 0, let g : [0, 2r] →
[0,∞) be a function satisfying the properties of Lemma 2.4. Using the convexity of ‖ · ‖2, we
have

∥
∥
∥
∥
∥

∞∑

i=1

αixi

∥
∥
∥
∥
∥

2

≤ (α1 + αk)
∥
∥
∥
∥

α1

α1 + αk
x1 +

αk

α1 + αk
xk

∥
∥
∥
∥

2

+
∑

i /= 1,k

αi‖xi‖2

≤ (α1 + αk)

(
α1

α1 + αk
‖x1‖2 + αk

α1 + αk
‖xk‖2 − α1αk

(α1 + αk)
2
g(‖x1 − xk‖)

)

+
∑

i /= 1,k

αi‖xi‖2
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=
∞∑

i=1

αi‖xi‖2 − α1αk

(α1 + αk)
g(‖x1 − xk‖)

≤
∞∑

i=1

αi‖xi‖2 − α1αkg(‖x1 − xk‖).

(2.7)

This completes the proof.

Lemma 2.6 (see [12, Lemma 2.10]). Let E be a strictly convex Banach space and let {αi}∞i=1 ⊂ (0, 1)
with

∑∞
i=1 αi = 1. If {xi}∞i=1 is a sequence in E such that both series

∑∞
i=1 αixi and

∑∞
i=1 αi‖xi‖2

converge, and

∥
∥
∥
∥
∥

∞∑

i=1

αixi

∥
∥
∥
∥
∥

2

=
∞∑

i=1

αi‖xi‖2, (2.8)

then {xi}∞i=1 is a constant sequence.

Lemma 2.7 (see [13, Proposition 2]). Let E be a smooth and uniformly convex Banach space.
Suppose that either {xn} or {yn} is a bounded sequence in E and ϕ(xn, yn) → 0. Then xn −yn → 0.

3. Relatively Nonexpansive Mappings and
Quasi-Nonexpansive Mappings

We first start with some observation which is a tool for proving Theorem 3.2.

Theorem 3.1. Let C be a closed convex subset of a uniformly convex and uniformly smooth Banach
space E and let {Ti : C → E}∞i=1 be a sequence of mappings such that

⋂∞
i=1 F(Ti)/= ∅ and

ϕ
(
p, Tix

) ≤ ϕ
(
p, x

) ∀x ∈ C, p ∈
∞⋂

i=1

F(Ti), i ∈ N. (3.1)

Suppose that {αi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and S : C → E is defined by

Sx = J−1
( ∞∑

i=1

αiJTix

)

for each x ∈ C. (3.2)

Let {xn} be a bounded sequence in C. Then the following are equivalent.

(a) xn − Sxn → 0.

(b) xn − Tixn → 0 for each i ∈ N.

In particular, F(S) =
⋂∞

i=1 F(Ti).
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Proof. For fixed p ∈ ⋂∞
i=1 F(Ti) and x ∈ C, we have

(
∥
∥p

∥
∥ − ‖Tix‖)2 ≤ ϕ

(
p, Tix

) ≤ ϕ
(
p, x

) ≤ (
∥
∥p

∥
∥ + ‖x‖)2. (3.3)

In particular, ‖Tix‖ ≤ ‖x‖ + 2‖p‖ for all i ∈ N and x ∈ C. Hence, for each x ∈ C, the series
∑∞

i=1 αiJTix converges (absolutely). This implies that the mapping S is well defined.
Let {xn} be a bounded sequence in C. Suppose that

xn − Sxn −→ 0. (3.4)

By the boundedness of {xn},we put

M := sup{‖xn‖ : n ∈ N} + 2
∥
∥p

∥
∥ < ∞. (3.5)

Then ‖JTixn‖ = ‖Tixn‖ ≤ M for all i, n ∈ N.We now consider the following estimates for each
k ∈ N such that k /= 1 and for any n ∈ N:

ϕ
(
p, Sxn

)
= ϕ

(

p,
∞∑

i=1

αiJTixn

)

=
∥
∥p

∥
∥2 − 2

〈

q,
∞∑

i=1

αiJTixn

〉

+

∥
∥
∥
∥
∥

∞∑

i=1

αiJTixn

∥
∥
∥
∥
∥

2

≤ ∥
∥p

∥
∥2 −

∞∑

i=1

2αi

〈
q, JTixn

〉
+

∞∑

i=1

αi‖JTixn‖2 − α1αkg(‖JT1xn − JTkxn‖)

=
∞∑

i=1

αiϕ
(
p, Tixn

) − α1αkg(‖JT1xn − JTkxn‖)

≤ ϕ
(
p, xn

) − α1αkg(‖JT1xn − JTkxn‖),

(3.6)

where g is the function given in Lemma 2.5 associated with the uniform convexity of E∗ and
the number M. Notice that ϕ(p, xn) − ϕ(p, Sxn) → 0. Consequently, for k /= 1,

α1αkg(‖JT1xn − JTkxn‖) −→ 0. (3.7)

This implies that

JT1xn − JTkxn −→ 0. (3.8)

We next prove that

JT1xn − JSxn −→ 0. (3.9)

Let ε > 0 be given. We choose an integer K such that
∑∞

i=K+1 αi < (ε/4M). Since JT1xn −
JTixn → 0 as n → ∞ for all i = 1, . . . , K, we now choose an integer N such that

‖JT1xn − JTixn‖ <
ε

2
(3.10)



Fixed Point Theory and Applications 7

for all n ≥ N and i = 2, . . . , K. Then, if n ≥ N,

‖JT1xn − JSxn‖ =

∥
∥
∥
∥
∥

∞∑

i=2

αi(JT1xn − JTixn)

∥
∥
∥
∥
∥

≤
K∑

i=2

αi‖JT1xn − JTixn‖ +
∞∑

i=K+1

αi‖JT1xn − JTixn‖

<

(
K∑

i=2

αi

)
ε

2
+

( ∞∑

i=K+1

αi

)

2M < ε.

(3.11)

This implies that (3.9) holds. In particular, since J−1 is uniformly norm-to-norm continuous
on each bounded set, we can conclude from (3.8) that

T1xn − Tkxn −→ 0 for each k /= 1 (3.12)

and from (3.9) that

T1xn − Sxn −→ 0. (3.13)

This together with (3.4) gives

T1xn − xn −→ 0. (3.14)

Assertion (b) follows immediately from (3.12) and (3.14).
Conversely, we assume that xn − Tixn → 0 for each i ∈ N. Since J is uniformly norm-

to-norm continuous on each bounded set,

Jxn − JTixn −→ 0 for each i ∈ N. (3.15)

We show that

Jxn − JSxn −→ 0. (3.16)

Let ε > 0. Then there exist positive integers K,N such that
∑∞

i=K+1 αi < (ε/4M) and

‖Jxn − JTixn‖ <
ε

2
(3.17)
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for all n ≥ N and i = 1, . . . , K. If n ≥ N, then

‖Jxn − JSxn‖ =

∥
∥
∥
∥
∥

∞∑

i=1

αi(Jxn − JTixn)

∥
∥
∥
∥
∥

≤
K∑

i=1

αi‖Jxn − JTixn‖ +
∞∑

i=K+1

αi‖Jxn − JTixn‖

<

(
K∑

i=1

αi

)
ε

2
+

( ∞∑

i=K+1

αi

)

2M < ε.

(3.18)

By the uniform norm-to-norm continuity of J−1 on each bounded set, we can conclude
assertion (a) from (3.16). This completes the proof.

Theorem 3.2. Let C be a closed convex subset of a uniformly convex and uniformly smooth Banach
space E and let {Ti : C → E}∞i=1 be a countable family of relatively nonexpansive mappings such that
⋂∞

i=1 F(Ti)/= ∅. Suppose that {αi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and S : C → E is
defined by

Sx = J−1
( ∞∑

i=1

αiJTix

)

for each x ∈ C. (3.19)

Then S is relatively nonexpansive and F(S) =
⋂∞

i=1 F(Ti).

Proof. To show that S is relatively nonexpansive, we prove only that I − S is demiclosed at
zero. Suppose that {xn} is a sequence in C such that xn ⇀ p ∈ C and xn − Sxn → 0. From
Theorem 3.1, we have xn − Tixn → 0 for each i ∈ N. Since each I − Ti is demiclosed at zero,
p ∈ F(Ti). Consequently, p ∈ ⋂∞

i=1 F(Ti) = F(S), as desired.

We now give an answer of Kohsaka and Takahashi’s question in positive.

Theorem 3.3. The mapping U in Theorem 2.2 is strongly relatively nonexpansive.

Proof. The mapping U can be rewritten as

U = J−1
( ∞∑

i=1

αi

(
βiJ +

(
1 − βi

)
JTi

)
)

= J−1
(( ∞∑

i=1

αiβi

)

J +
∞∑

i=1

αi

(
1 − βi

)
JTi

)

= J−1
( ∞∑

i=0

γiJTi

)

,

(3.20)

where T0 is the identity mapping, γ0 =
∑∞

i=1 αiβi > 0, γi = αi(1 − βi) > 0 for all i ∈ N, and
∑∞

i=0 γi = 1. It follows from Theorem 3.2 that S := J−1(
∑∞

i=1 γ̂iJTi) is relatively nonexpansive,
where γ̂i ≡ γi/(

∑∞
i=1 γi). Consequently, by Theorem 2.1 with m = 1, the mapping

U = J−1
(
γ0J +

(
1 − γ0

)
JS

)
(3.21)

is strongly relatively nonexpansive.
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Using the same idea as in Theorem 3.1, we also have the following result whose proof
is left to the reader to verify.

Theorem 3.4. Let C be a closed convex subset of a uniformly convex Banach space E and let {Ti :
C → E}∞i=1 be a sequence of quasi-nonexpansive mappings such that

⋂∞
i=1 F(Ti)/= ∅. Suppose that

{αi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and U : C → E is defined by

Ux =
∞∑

i=1

αiTix for each x ∈ C. (3.22)

Then I −U is demi-closed at zero if and only if each mapping I − Ti is demi-closed at zero.

4. Ibaraki-Takahashi’s Generalized Nonexpansive Mappings

Let C be a subset of a smooth Banach space E. In 2007, Ibaraki and Takahashi [14] introduced
the following mapping. A mapping T : C → E is generalized nonexpansive if the following
properties are satisfied:

(G1) F(T)/= ∅,
(G2) ϕ(Tx, p) ≤ ϕ(x, p) for all p ∈ F(T) and x ∈ C.

A mapping T : C → E satisfies property (G3) if whenever {xn} is a sequence in C such
that Jxn

∗
⇀ Jp and Jxn − JTxn → 0 it follows that p ∈ F(T). Here ∗

⇀ denotes the weak∗

convergence in the dual space.
The generalized resolvent (I + λBJ)−1 of the maximal monotone operator B ⊂ E∗ × E,

where E is a smooth and uniformly convex Banach space, and the sunny generalized
nonexpansive retraction from a strictly convex, smooth, and reflexive Banach space onto
its closed subset are examples of generalized nonexpansive mappings satisfying property
(G3) (see [15]). The relation between two classes of relatively nonexpansive mappings and
of generalized nonexpansive mappings is recently obtained in [8].

The property (G3) of the mapping T and the demiclosedness of I − T are related as
shown in the following remark.

Remark 4.1. Let C be a subset of a smooth Banach space E and T : C → E. Then the following
assertions hold true.

(1) If E is uniformly smooth, the duality mapping J is weakly sequentially continuous,
and T satisfies property (G3), then I − T is demiclosed at zero.

(2) If E is uniformly convex, J−1 is weakly sequentially continuous, and I − T is demi-
closed at zero, then T satisfies property (G3).

Theorem 4.2. Let C be a closed convex subset of a smooth Banach space E and let {Ti : C → E}∞i=1
be a sequence of generalized nonexpansive mappings such that

⋂∞
i=1 F(Ti)/= ∅. Suppose that {αi}∞i=1 is

a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and Ŝ : C → E is defined by

Ŝx =
∞∑

i=1

αiTix for each x ∈ C. (4.1)
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Then the mapping Ŝ is well defined and the following assertions hold true.

(i) If E is strictly convex, then F(Ŝ) =
⋂∞

i=1 F(Ti) and Ŝ is generalized nonexpansive.

(ii) If E is uniformly convex and {xn} is a bounded sequence inC, then the following statements
are equivalent:

(a) xn − Ŝxn → 0,
(b) xn − Tixn → 0 for each i ∈ N.

(iii) The mapping I − Ŝ is demi-closed at zero if and only if each mapping I − Ti is demi-closed
at zero.

(iv) Suppose that E is uniformly convex and uniformly smooth. Then the mapping Ŝ satisfies
property (G3) if and only if each mapping Ti satisfies property (G3).

Proof. Using some basic properties of the functional ϕ, we have ‖Tix‖ ≤ ‖x‖ + 2‖p‖ for all
x ∈ C, p ∈ F(Ti). Since

⋂∞
i=1 F(Ti)/= ∅, the sequence {Tix}∞i=1 is bounded for each x ∈ C and,

hence the series
∑∞

i=1 αiTix converges (absolutely). This implies that Ŝ is well defined. For
fixed p ∈ ⋂∞

i=1 F(Ti) and x ∈ C, we have the following expressions:

ϕ
(
Ŝx, p

)
= ϕ

( ∞∑

i=1

αiTix, p

)

=

∥
∥
∥
∥
∥

∞∑

i=1

αiTix

∥
∥
∥
∥
∥

2

− 2

〈 ∞∑

i=1

αiTix, Jp

〉

+
∥
∥p

∥
∥2
,

∞∑

i=1

αi‖Tix‖2 − 2

〈 ∞∑

i=1

αiTix, Jp

〉

+
∥
∥p

∥
∥2 =

∞∑

i=1

αiϕ
(
Tix, p

) ≤ ϕ
(
x, p

)
.

(4.2)

(i) The inclusion
⋂∞

i=1 F(Ti) ⊂ F(Ŝ) is obvious. To see the reverse inclusion, let x ∈ F(Ŝ).
By the convexity of ‖ · ‖2, ϕ(Ŝx, p) = ϕ(x, p), and the expressions of (4.2), we have

∥
∥
∥
∥
∥

∞∑

i=1

αiTix

∥
∥
∥
∥
∥

2

=
∞∑

i=1

αi‖Tix‖2. (4.3)

It follows from Lemma 2.6 that {Tix}∞i=1 is a constant sequence, and hence x = Ŝx =
∑∞

i=1 αiTix = Tjx for all j ∈ N. This implies that x ∈ ⋂∞
i=1 F(Ti), that is, F(Ŝ) ⊂

⋂∞
i=1 F(Ti). Now F(Ŝ) =

⋂∞
i=1 F(Ti)/= ∅. Again, using the convexity of ‖ · ‖2, we can

show that Ŝ satisfies property (G2), and hence it is generalized nonexpansive, as
desired.

(ii) Since the proof of this assertion is very similar to that of Theorem 3.1, it is omitted.

(iii) and (iv) follow directly from (ii).

Remark 4.3. Theorem 4.2(i) generalizes [16, Theorem 3.3] from a finite family to a countable
one.

Following Reich [6], we introduced the following concept. A generalized nonexpan-
sive mapping T : C → E is strongly generalized nonexpansive if whenever {xn} is a bounded
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sequence in C such that ϕ(xn, p) − ϕ(Txn, p) → 0 for some p ∈ F(T) it follows that
ϕ(xn, Txn) → 0.

Lemma 4.4. Let C be a closed convex subset of a strictly convex and smooth Banach space E. Suppose
that T, S : C → E is a generalized nonexpansive mapping and a strongly generalized nonexpansive
mapping, respectively, and suppose that F(T) ∩ F(S)/= ∅. For α ∈ (0, 1), let the mappingU : C → E
be defined by

Ux = αSx + (1 − α)Tx ∀x ∈ C. (4.4)

Then F(U) = F(T) ∩ F(S). If, in addition, E is uniformly convex, then U is strongly generalized
nonexpansive.

Proof. The first assertion follows from Theorem 4.2(i). We now assume that E is uniformly
convex. Suppose that {xn} is a bounded sequence in C such that ϕ(xn, p) − ϕ(Uxn, p) → 0
for some p ∈ F(U) = F(T) ∩ F(S). It is clear that the sequences {Sxn} and {Txn} are both
bounded. By the uniform convexity of E, we have

‖αSxn + (1 − α)Txn‖2 ≤ α‖Sxn‖2 + (1 − α)‖Txn‖2 − α(1 − α)g(‖Sxn − Txn‖), (4.5)

where g is a function given by Lemma 2.4. Since T and S are generalized nonexpansive,

ϕ
(
Uxn, p

) ≤ αϕ
(
Sxn, p

)
+ (1 − α)ϕ

(
Txn, p

) − α(1 − α)g(‖Sxn − Txn‖)
≤ ϕ

(
xn, p

) − α(1 − α)g(‖Sxn − Txn‖).
(4.6)

Consequently, Sxn − Txn → 0, and hence Sxn − Uxn → 0. This implies that ϕ(xn, p) −
ϕ(Sxn, p) → 0. Since S is strongly generalized nonexpansive, ϕ(xn, Sxn) → 0. It follows from
Lemma 2.7 that xn − Sxn → 0, and hence xn −Uxn → 0. This implies that ϕ(xn,Uxn) → 0
and U is strongly generalized nonexpansive, as desired.

The following is an analogue version of Kohsaka and Takahashi’s question for a
countable family of generalized nonexpansive mappings.

Theorem 4.5. Let C be a closed convex subset of a smooth and uniformly convex Banach space E
and let {Ti : C → E}∞i=1 be a countable family of generalized nonexpansive mappings such that
⋂∞

i=1 F(Ti)/= ∅. Then there exists a strongly generalized nonexpansive mapping S : C → E such that
F(S) =

⋂∞
i=1 F(Ti).

Proof. Suppose that {αi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 αi = 1 and α ∈ (0, 1). We
define S : C → E by

Sx = αx + (1 − α)
∞∑

i=1

αiTix ∀x ∈ C. (4.7)

Notice that
∑∞

i=1 αiTi is generalized nonexpansive and F(
∑∞

i=1 αiTi) =
⋂∞

i=1 F(Ti) by
Theorem 4.2(i).Moreover, by Lemma 4.4 and the fact that the identity is strongly generalized
nonexpansive, the conclusion is satisfied by the mapping S.
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5. Duality between Strongly Relatively Nonexpansive Mappings
and Strongly Generalized Nonexpansive Mappings

Let C be a subset of a smooth, strictly convex and reflexive Banach space E and let T : C → E
be a mapping. We can define the duality T ∗ : JC → E∗ of T by (see [8])

T ∗x∗ = JTJ−1x∗ ∀x∗ ∈ JC. (5.1)

We now consider a functional from E∗ × E∗ into [0,∞), still denoted by ϕ, by

ϕ
(
x∗, y∗) = ‖x∗‖2 − 2

〈
x∗, J∗y∗〉 +

∥
∥y∗∥∥2 (

x∗, y∗ ∈ E∗), (5.2)

where J∗ is the duality mapping from E∗ onto E∗∗ = E. It is clear that J∗ = J−1. Then, whenever
x, y are elements in E and x∗, y∗ are elements in E∗ satisfying x∗ = Jx and y∗ = Jy, it follows
that

ϕ
(
x∗, y∗) = ϕ

(
y, x

)
. (5.3)

Remark 5.1. The following assertions hold (see [8]).

(A) If x ∈ C and x∗ = Jx, then T ∗x∗ = JTx. In particular, F(T ∗) = JF(T). Moreover, if
{xn} is a sequence in C and x∗

n ≡ Jxn, then

(i) x∗
n − T ∗x∗

n → 0 if and only if Jxn − JTxn → 0,

(ii) J∗x∗
n − J∗T ∗x∗

n → 0 if and only if xn − Txn → 0.

(B) If x ∈ C, p ∈ F(T), x∗ = Jx and p∗ = Jp, then

ϕ
(
Jp, T ∗x∗) = ϕ

(
Tx, p

)
, ϕ

(
T ∗x∗, Jp

)
= ϕ

(
p, Tx

)
. (5.4)

The following duality theorem is proved in [8].

Theorem 5.2. Let C be a subset of a smooth, strictly convex and reflexive Banach space E and let
T : C → E be a mapping. Suppose that T ∗ : JC → E∗ is the duality of T . Then the following
assertions hold true.

(1) If T is relatively nonexpansive, then T ∗ is generalized nonexpansive with property (G3).

(2) If T is generalized nonexpansive with property (G3), then T ∗ is relatively nonexpansive.

We now prove the duality theorem for strongly relatively nonexpansive mappings and
strongly generalized nonexpansive mappings.
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Theorem 5.3. Let C be a subset of a smooth, strictly convex and reflexive Banach space E and let T :
C → E be a mapping. Suppose that T ∗: JC → E∗ is the duality of T . Then the following assertions
hold true.

(1) If T is strongly relatively nonexpansive, then T ∗ is strongly generalized nonexpansive with
property (G3).

(2) If T is strongly generalized nonexpansive with property (G3), then T ∗ is strongly relatively
nonexpansive.

Proof. We prove only (1) and leave (2) for the reader to verify. Suppose that {x∗
n} is a bounded

sequence in JC such that ϕ(x∗
n, p

∗) − ϕ(T ∗x∗
n, p

∗) → 0 for some p∗ ∈ F(T ∗). We assume that
{xn} is a sequence in C such that Jxn ≡ x∗

n and p is a point in F(T) such that Jp = p∗. Clearly,
{xn} is bounded. Moreover, by Remark 5.1, we have ϕ(p, xn) ≡ ϕ(x∗

n, p
∗) and ϕ(p, Txn) ≡

ϕ(T ∗x∗
n, p

∗). Consequently, ϕ(p, xn) − ϕ(p, Txn) → 0. It follows from the strongly relative
nonexpansiveness that ϕ(x∗

n, T
∗x∗

n) = ϕ(Txn, xn) → 0. This completes the proof.

Acknowledgment

The corresponding author was supported by the Centre of Excellence in Mathematics, the
Commission on Higher Education of Thailand.

References

[1] R. E. Bruck Jr., “Properties of fixed-point sets of nonexpansive mappings in Banach spaces,”
Transactions of the American Mathematical Society, vol. 179, pp. 251–262, 1973.

[2] S.-Y. Matsushita and W. Takahashi, “An iterative algorithm for relatively nonexpansive mappings by
a hybrid method and applications,” inNonlinear Analysis and Convex Analysis, pp. 305–313, Yokohama
Publishers, Yokohama, Japan, 2004.

[3] S.-Y. Matsushita and W. Takahashi, “Weak and strong convergence theorems for relatively
nonexpansive mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2004, no. 1, pp.
37–47, 2004.

[4] S.-Y. Matsushita and W. Takahashi, “A strong convergence theorem for relatively nonexpansive
mappings in a Banach space,” Journal of Approximation Theory, vol. 134, no. 2, pp. 257–266, 2005.

[5] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and
applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol.
178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Marcel Dekker, New York, NY, USA,
1996.

[6] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” in
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes
in Pure and Applied Mathematics, pp. 313–318, Marcel Dekker, New York, NY, USA, 1996.

[7] F. Kohsaka and W. Takahashi, “The set of common fixed points of an infinite family of relatively
nonexpansive mappings,” in Banach and Function Spaces II, pp. 361–373, Yokohama Publishers,
Yokohama, Japan, 2008.

[8] T. Honda, T. Ibaraki, and W. Takahashi, “Duality theorems and convergence theorems for nonlinear
mappings in Banach spaces and applications,” International Journal of Mathematics and Statistics, vol. 6,
no. 10, pp. 46–64, 2010.

[9] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[10] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yokohama
Publishers, Yokohama, Japan, 2000.

[11] H. K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 16, no. 12, pp. 1127–1138, 1991.



14 Fixed Point Theory and Applications

[12] W. Nilsrakoo and S. Saejung, “Strong convergence to common fixed points of countable relatively
quasi-nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2008, Article ID 312454, 19
pages, 2008.

[13] S. Kamimura and W. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach
space,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 938–945, 2002.

[14] T. Ibaraki and W. Takahashi, “A new projection and convergence theorems for the projections in
Banach spaces,” Journal of Approximation Theory, vol. 149, no. 1, pp. 1–14, 2007.

[15] T. Ibaraki andW. Takahashi, “Generalized nonexpansive mappings and a proximal-type algorithm in
Banach spaces,” to appear in Nonlinear Analysis and Optimization.

[16] T. Ibaraki and W. Takahashi, “Block iterative methods for a finite family of generalized nonexpansive
mappings in Banach spaces,” Numerical Functional Analysis and Optimization, vol. 29, no. 3-4, pp. 362–
375, 2008.


