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Let {Si}Ni=1 be N strict pseudocontractions defined on a closed convex subset C of a real Hilbert
space H. Consider the problem of finding a common element of the set of fixed point of
these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic
algorithms. In this paper, we propose new iterative schemes for solving this problem and prove
these schemes converge strongly by hybrid methods.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let f be a
bifunction from C × C to R, where R is the set of real numbers.

The equilibrium problem for f : C × C → R is to find x ∈ C such that

f
(
x, y

) ≥ 0 (1.1)

for all y ∈ C. The set of such solutions is denoted by EP(f).
A mapping S of C is said to be a κ-strict pseudocontraction if there exists a constant

κ ∈ [0, 1) such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(I − S)x − (I − S)y

∥∥2 (1.2)

for all x, y ∈ C; see [1]. We denote the set of fixed points of S by F(S) (i.e., F(S) = {x ∈ C :
Sx = x}).
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Note that the class of strict pseudocontractions strictly includes the class of
nonexpansive mappings which are mapping S on C such that

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥ (1.3)

for all x, y ∈ C. That is, S is nonexpansive if and only if S is a 0-strict pseudocontraction.
Numerous problems in physics, optimization, and economics reduce to finding a

solution of the equilibrium problem. Some methods have been proposed to solve the
equilibrium problem (1.1); see for instance [2–5]. In particular, Combettes and Hirstoaga [6]
proposed several methods for solving the equilibrium problem. On the other hand, Mann
[7], Nakajo and Takahashi [8] considered iterative schemes for finding a fixed point of a
nonexpansive mapping.

Recently, Acedo and Xu [9] considered the problem of finding a common fixed point
of a finite family of strict pseudocontractive mappings by the parallel and cyclic algorithms.
Very recently, Liu [3] considered a general iterative method for equilibrium problems and
strict pseudocontractions. In this paper, motivated by [3, 5, 9–12], applying parallel and cyclic
algorithms, we obtain strong convergence theorems for finding a common element of the set
of fixed points of a finite family of strict pseudocontractions and the set of solutions of the
equilibrium problem (1.1) by the hybrid methods.

We will use the notation

(1) ⇀ for weak convergence and → for strong convergence,

(2) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

We need some facts and tools in a real Hilbert space H which are listed as below.

Lemma 2.1. LetH be a real Hilbert space. There hold the following identities.

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, for all x, y ∈ H.

(ii) ‖tx + (1 − t)y‖2 = t‖x‖2+(1− t)‖y‖2− t(1− t)‖x − y‖2, for all t ∈ [0, 1], for all x, y ∈ H.

Lemma 2.2 (see [4]). Let H be a real Hilbert space. Given a nonempty closed convex subset C ⊂ H
and points x, y, z ∈ H and given also a real number a ∈ R, the set

{
v ∈ C :

∥∥y − v
∥∥2 ≤ ‖x − v‖2 + 〈z, v〉 + a

}
(2.1)

is convex (and closed).

Recall that given a nonempty closed convex subset C of a real Hilbert spaceH, for any
x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ∥∥x − y
∥∥ (2.2)

for all y ∈ C. Such a PC is called the metric (or the nearest point) projection of H onto C.
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Lemma 2.3 (see [4]). Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x ∈ H and z ∈ C, then y = PCx if and only if there holds the relation

〈
x − y, y − z

〉 ≥ 0 ∀z ∈ C. (2.3)

Lemma 2.4 (see [13]). Let C be a nonempty closed convex subset ofH. Let {xn} is a sequence inH
and u ∈ H. Let q = PCu. Suppose {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ∥
∥u − q

∥
∥ ∀n. (2.4)

Then xn → q.

Lemma 2.5 (see [9]). Let C be a nonempty closed convex subset of H. Let {xn} is a sequence in H
and u ∈ H. Assume

(i) the weak ω-limit set ωw(xn) ⊂ C,

(ii) for each z ∈ C, limn→∞‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.

Proposition 2.6 (see [9]). Assume C be a nonempty closed convex subset of a real Hilbert spaceH.

(i) If T : C → C is a κ-strict pseudocontraction, then T satisfies the Lipschitz condition

∥∥Tx − Ty
∥∥ ≤ 1 + κ

1 − κ

∥∥x − y
∥∥, ∀x, y ∈ C. (2.5)

(ii) If T : C → C is a κ-strict pseudocontraction, then the mapping I − T is demiclosed (at 0).
That is, if {xn} is a sequence in C such that xn ⇀ x and (I −T)xn → 0, then (I −T)x = 0.

(iii) If T : C → C is a κ-strict pseudocontraction, then the fixed point set of F(T) of T is closed
and convex so that the projection PF(T) is well defined.

(iv) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N, Ti : C → C be a κi-strict
pseudocontraction for some 0 ≤ κi < 1. Assume {λi}Ni=1 is a positive sequence such that∑N

i=1 λi = 1. Then
∑N

i=1 λiTi is a κ-strict pseudocontraction, with κ = max{κi : 1 ≤ i ≤
N}.

(v) Let {Ti}Ni=1 and {λi}Ni=1 be given as in (iv) above. Suppose that {Ti}Ni=1 has a common fixed
point. Then

F

(
N∑

i=1

λiTi

)

=
N⋂

i=1

F(Ti). (2.6)

Lemma 2.7 (see [1]). Let S : C → H be a κ-strict pseudocontraction. Define T : C → H by
Tx = λx + (1 − λ)Sx for each x ∈ C. Then, as λ ∈ [κ, 1), T is a nonexpansive mapping such that
F(T) = F(S).
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For solving the equilibrium problem, let us assume that the bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C,

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C,

(A3) for each x, y, z ∈ C, lim supt→ 0f(tz + (1 − t)x, y) ≤ f(x, y),

(A4) f(x, ·) is convex and lower semicontionuous for each x ∈ C.

We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.8 (see [14]). Let C be a nonempty closed convex subset ofH, let f be bifunction from C×C
to R satisfying (A1)–(A4) and let r > 0 and x ∈ H. Then there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.7)

Lemma 2.9 (see [6]). For r > 0, x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C | f(z, y) + 1

r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.8)

for all x ∈ H. Then, the following statements hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤ 〈

Trx − Try, x − y
〉
; (2.9)

(iii) F(Tr) = EP(f);

(iv) EP(f) is closed and convex.

3. Parallel Algorithm

In this section, we apply the hybrid methods to the parallel algorithm for finding a common
element of the set of fixed points of strict pseudocontractions and the set of solutions of the
equilibrium problem (1.1) in Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH and f a bifunction
from C × C to R satisfying (A1)–(A4). Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N, Si : C → C
be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ = max{κi : 1 ≤ i ≤ N}. Assume the set
F =

⋂N
i=1 F(Si) ∩ EP(f)/= ∅. Assume also {η(n)

i }Ni=1 is a finite sequence of positive numbers such that
∑N

i=1 η
(n)
i = 1 for all n ∈ N and infn≥1η

(n)
i > 0 for all 1 ≤ i ≤ N. Let the mapping An be defined by

An =
N∑

i=1

η
(n)
i Si. (3.1)
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Given x1 ∈ C, let {xn}, {un}, and {yn} be sequences generated by the following algorithm:

un = Trnxn,

Aλn
n = λnI + (1 − λn)An,

yn = αnxn + (1 − αn)A
λn
n un,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx1

(3.2)

for every n ∈ N, where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and
{rn} ⊂ (0,∞) satisfies lim infn→∞rn > 0. Then, {xn} converge strongly to PFx1.

Proof. The proof is divided into several steps.

Step 1. Show first that {xn} is well defined.
It is obvious that Cn is closed and Qn is closed convex for every n ∈ N. From

Lemma 2.2, we also get Cn is convex.

Step 2. Show F ⊂ Cn ∩Qn for all n ∈ N.
Indeed, take p ∈ F, from un = Trnxn,we have

∥∥un − p
∥∥ =

∥∥Trnxn − Trnp
∥∥ ≤ ∥∥xn − p

∥∥ (3.3)

for all n ∈ N. From Proposition 2.6, Lemma 2.7, and (3.3), we get

∥∥yn − p
∥∥ =

∥∥∥αnxn + (1 − αn)A
λn
n un − p

∥∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥∥Aλn
n un − p

∥∥∥

≤ ∥∥xn − p
∥∥.

(3.4)

So p ∈ Cn for all n. Next we show that F ⊂ Qn for all n ∈ N by induction. For n = 1, we have
F ⊂ C = Q1. Assume that F ⊂ Qn for some n ≥ 1. Since xn+1 = PCn∩Qnx1, we obtain

〈xn+1 − z, x1 − xn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn. (3.5)

As F ⊂ Cn∩Qn by induction assumption, the inequality holds, in particular, for all z ∈ F. This
together with the definition of Qn+1 implies that F ⊂ Qn+1. Hence F ⊂ Qn holds for all n ≥ 1.

Step 3. Show that

‖xn − x1‖ ≤ ∥∥x1 − q
∥∥, where q = PFx1. (3.6)
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Notice that the definition ofQn actually xn = PQnx1. This together with the fact F ⊂ Qn further
implies

‖xn − x1‖ ≤ ∥
∥x1 − p

∥
∥ ∀p ∈ F. (3.7)

Then {xn} is bounded and (3.6) holds. From (3.3), (3.4), and Proposition 2.6(i), we also obtain
{un}, {yn}, and {Sixn} are bounded.

Step 4. Show that

‖xn+1 − xn‖ −→ 0. (3.8)

From xn = PQnx1 and xn+1 ∈ Qn, we get 〈xn+1 − xn, xn − x1〉 ≥ 0. This together with
Lemma 2.1(i) implies

‖xn+1 − xn‖2 = ‖xn+1 − x1 − (xn − x1)‖2

= ‖xn+1 − x1‖2 − ‖xn − x1‖2 − 2〈xn+1 − xn, xn − x1〉

≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.

(3.9)

Then ‖xn−x1‖ ≤ ‖xn+1−x1‖, that is, the sequence {‖xn−x1‖} is nondecreasing. Since {‖xn−x1‖}
is bounded, limn→∞‖xn − x1‖ exists. Then (3.8) holds.

Step 5. Show that

‖Anxn − xn‖ −→ 0. (3.10)

From xn+1 ∈ Cn, we have

∥∥yn − xn

∥∥ ≤ ‖xn+1 − xn‖ +
∥∥yn − xn+1

∥∥ ≤ 2‖xn+1 − xn‖. (3.11)

By (3.8), we obtain

∥∥yn − xn

∥∥ −→ 0. (3.12)

For p ∈ F, we have

∥∥un − p
∥∥2 =

∥∥Trnxn − Trnp
∥∥2 ≤ 〈

Trnxn − Trnp, xn − p
〉

=
〈
un − p, xn − p

〉
=

1
2

(∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖xn − un‖2

)
,

(3.13)

hence,

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2. (3.14)
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Therefore, by the convexity of ‖ · ‖2, we get

∥
∥yn − p

∥
∥2 ≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥
∥Aλn

n un − p
∥
∥
∥
2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥un − p

∥
∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

(∥
∥xn − p

∥
∥2 − ‖xn − un‖2

)

=
∥
∥xn − p

∥
∥2 − (1 − αn)‖xn − un‖2.

(3.15)

Since {αn} ⊂ [0, a], we get

(1 − αn)‖xn − un‖2 ≤
∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2

≤ ∥∥xn − yn

∥∥(∥∥xn − p
∥∥ +

∥∥yn − p
∥∥).

(3.16)

It follows that

‖xn − un‖ −→ 0 (3.17)

from (3.12). Observe that ‖yn − un‖ ≤ ‖yn − xn‖ + ‖xn − un‖, we also have ‖yn − un‖ → 0. On
the other hand, from yn = αnxn + (1 − αn)A

λn
n un, we compute

(1 − αn)
∥∥∥Aλn

n un − un

∥∥∥ =
∥∥∥(1 − αn)

(
Aλn

n un − un

)∥∥∥

=
∥∥yn − un − αn(xn − un)

∥∥

≤ ∥∥yn − un

∥∥ + αn‖xn − un‖.

(3.18)

From {αn} ⊂ [0, a], (3.17), and ‖yn − un‖ → 0, we obtain ‖Aλn
n un − un‖ → 0. It is easy to get

∥∥∥Aλn
n xn − xn

∥∥∥ ≤
∥∥∥Aλn

n xn −Aλn
n un

∥∥∥ +
∥∥∥Aλn

n un − un

∥∥∥ + ‖un − xn‖

≤ 2‖un − xn‖ +
∥∥∥Aλn

n un − un

∥∥∥.
(3.19)

Combining the above results, we obtain ‖Aλn
n xn − xn‖ → 0. From (3.2), we have

∥∥∥Aλn
n xn − xn

∥∥∥ = ‖λnxn + (1 − λn)Anxn − xn‖

= (1 − λn)‖Anxn − xn‖ −→ 0.
(3.20)

It follows from {λn} ⊂ [κ, b] that ‖Anxn − xn‖ → 0.
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Step 6. Show that

ωw(xn) ⊂ F. (3.21)

We first show ωw(xn) ⊂
⋂N

i=1 F(Si). To see this, we take ω ∈ ωw(xn) and assume that xnj ⇀ ω
as j → ∞ for some subsequence {xnj} of xn.

Without loss of generality, we may assume that

η
(nj )
i −→ ηi

(
as j −→ ∞)

, 1 ≤ i ≤ N. (3.22)

It is easily seen that each ηi > 0 and
∑N

i=1 η
(n)
i = 1. We also have

Anjx −→ Ax
(
as j −→ ∞) ∀x ∈ C, (3.23)

whereA =
∑N

i=1 ηiSi.Note that by Proposition 2.6,A is κ-strict pseudocontraction and F(A) =⋂N
i=1 F(Si). Since

∥∥∥Axnj − xnj

∥∥∥ ≤
∥∥∥Anjxnj −Axnj

∥∥∥ +
∥∥∥Anjxnj − xnj

∥∥∥

≤
N∑

i=1

∣∣∣η
(nj )
i − ηi

∣∣∣
∥∥∥Sixnj

∥∥∥ +
∥∥∥Anjxnj − xnj

∥∥∥,
(3.24)

we obtain by virtue of (3.10) and (3.22)

∥∥∥Axnj − xnj

∥∥∥ −→ 0. (3.25)

So by the demiclosedness principle (Proposition 2.6(ii)), it follows thatω ∈ F(A) =
⋂N

i=1 F(Si)
and hence ωw(xn) ⊂

⋂N
i=1 F(Si) holds.

Next we show ωw(xn) ⊂ EP(f), take ω ∈ ωw(xn), and assume that xnj ⇀ ω as j → ∞
for some subsequence {xnj} of xn. From (3.17), we obtain unj ⇀ ω. Since {unj} ⊂ C and C is
closed convex, we get ω ∈ C.

By un = Trnxn, we have

f
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.26)

From the monotonicity of f , we get

1
rn

〈
y − un, un − xn

〉 ≥ f
(
y, un

)
, ∀y ∈ C, (3.27)
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hence

〈

y − unj ,
unj − xnj

rnj

〉

≥ f
(
y, unj

)
, ∀y ∈ C. (3.28)

From (3.17) and condition (A4), we have

0 ≥ f
(
y,ω

)
, ∀y ∈ C. (3.29)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)ω. Since y ∈ C and ω ∈ C, we obtain yt ∈ C
and hence f(yt, ω) ≤ 0. So, we have

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, ω

) ≤ tf
(
yt, y

)
. (3.30)

Dividing by t, we get

f
(
yt, y

) ≥ 0, ∀y ∈ C. (3.31)

Letting t → 0 and from (A3), we get

f
(
ω, y

) ≥ 0 (3.32)

for all y ∈ C and ω ∈ EP(f). Hence (3.21) holds.

Step 7. From (3.6) and Lemma 2.4, we conclude that xn → q, where q = PFx1.

A very similar result obtained in a way completely different is Theorem 3 of [11].

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH and f a bifunction
from C × C to R satisfying (A1)–(A4). Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N, Si : C → C
be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ = max{κi : 1 ≤ i ≤ N}. Assume the set
F =

⋂N
i=1 F(Si) ∩ EP(f)/= ∅. Assume also {η(n)

i }Ni=1 is a finite sequence of positive numbers such that
∑N

i=1 η
(n)
i = 1 for all n and infn≥1η

(n)
i > 0 for all 1 ≤ i ≤ N. Let the mapping An be defined by

An =
N∑

i=1

η
(n)
i Si. (3.33)



10 Fixed Point Theory and Applications

Given x1 ∈ C = C1, let {xn}, {un}, and {yn} be sequences generated by the following algorithm:

cun = Trnxn,

Aλn
n = λnI + (1 − λn)An,

yn = αnxn + (1 − αn)A
λn
n un,

Cn+1 =
{
z ∈ Cn :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x1

(3.34)

for every n ∈ N, where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and
{rn} ⊂ (0,∞) satisfies lim infn→∞rn > 0. Then, {xn} converge strongly to PFx1.

Proof. The proof of this theorem is similar to that of Theorem 3.1.

Step 1. {xn} is well defined for all n ≥ 1.
We show Cn is closed convex for all n by induction. For n = 1, we have C = C1 is closed

convex. Assume that Cn for some n ≥ 1 is closed convex, from Lemma 2.2, we have Cn+1 is
also closed convex. The assumption holds.

Step 2. F ⊂ Cn.

Step 3. ‖xn − x1‖ ≤ ‖q − x1‖ for all n, where q = PFx1.

Step 4. ‖xn+1 − xn‖ → 0.

Step 5. ‖Anxn − xn‖ → 0.

Step 6. ωw(xn) ⊂ F.

Step 7. xn → q.

The proof of Steps 2–7 is similar to that of Theorem 3.1.

A very similar result obtained in a way completely different is Theorem 3.1 of [10].

4. Cyclic Algorithm

Let C be a closed convex subset of a Hilbert space H and let {Si}N−1
i=0 be Nκi-strict

pseudocontractions on C such that the common fixed point set

N−1⋂

i=0

F(Si)/= ∅. (4.1)
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Let x0 ∈ C and let {αn}∞n=0 be a sequence in (0, 1). The cyclic algorithm generates a sequence
{xn}∞n=1 in the following way:

x1 = α0x0 + (1 − α0)S0x0,

x2 = α1x1 + (1 − α1)S1x1,

...

xN = αN−1xN−1 + (1 − αN−1)SN−1xN−1,

xN+1 = αNxN + (1 − αN)S0xN,

...

(4.2)

In general, xn+1 is defined by

xn+1 = αnxn + (1 − αn)S[n]xn, (4.3)

where S[n] = Si, with i = n(mod)N, 0 ≤ i ≤ N − 1.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH and f a bifunction
from C × C to R satisfying (A1)–(A4). LetN ≥ 1 be an integer. Let, for each 0 ≤ i ≤ N −1, Si : C →
C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ = max{κi : 0 ≤ i ≤ N − 1}. Assume the
set F =

⋂N−1
i=0 F(Si) ∩ EP(f)/= ∅. Given x0 ∈ C, let {xn}, {un}, and {yn} be sequences generated by

the following algorithm:

cun = Trnxn,

Sλn
[n] = λnI + (1 − λn)S[n],

yn = αnxn + (1 − αn)S
λn
[n]un,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0

(4.4)

for every n ∈ N, where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and
{rn} ⊂ (0,∞) satisfies lim infn→∞rn > 0. Then, {xn} converge strongly to PFx0.

Proof. The proof of this theorem is similar to that of Theorem 3.1. The main points include the
following.

Step 1. {xn} is well defined for all n ≥ 1.

Step 2. F ⊂ Cn ∩Qn.
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Step 3. ‖xn − x0‖ ≤ ‖q − x0‖ for all n, where q = PFx0.

Step 4. ‖xn+1 − xn‖ → 0.

Step 5. ‖S[n]xn − xn‖ → 0.

To prove the above steps, one simply replacesAn with S[n] in the proof of Theorem 3.1.

Step 6. Show that ωw(xn) ⊂ F.

Indeed, assume ω ∈ ωw(xn) and xni ⇀ ω for some subsequence {xni} of {xn}. We may
further assume l = ni(modN) for all i. Since by ‖xn+1 − xn‖ → 0, we also have xni+j ⇀ ω for
all j ≥ 0, we deduce that

∥
∥xni+j − S[l+j]xni+j

∥
∥ =

∥
∥xni+j − S[ni+j]xni+j

∥
∥ −→ 0. (4.5)

Then the demiclosedness principle (Proposition 2.6(ii)) implies that ω ∈ F(S[l+j]) for all j.
This ensures that ω ∈ ⋂N−1

i=0 F(Si).
The proof of ω ∈ EP(f) is similar to that of Theorem 3.1.

Step 7. Show that xn → q.

The strong convergence to q of {xn} is the consequence of Step 3, Step 5, and
Lemma 2.4.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH and f a bifunction
from C × C to R satisfying (A1)–(A4). LetN ≥ 1 be an integer. Let, for each 0 ≤ i ≤ N −1, Si : C →
C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ = max{κi : 0 ≤ i ≤ N − 1}. Assume
the set F =

⋂N−1
i=0 F(Si) ∩ EP(f)/= ∅. Given x0 ∈ C = C0, let {xn}, {un}, and {yn} be sequences

generated by the following algorithm:

cun = Trnxn,

Sλn
[n] = λnI + (1 − λn)S[n],

yn = αnxn + (1 − αn)S
λn
[n]un,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0

(4.6)

for every n ∈ N, where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and
{rn} ⊂ (0,∞) satisfies lim infn→∞rn > 0. Then, {xn} converge strongly to PFx0.

Proof. The proof of this theorem can consult Step 1 of Theorem 3.2 and Steps 2–7 of
Theorem 4.1.
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