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We present an iterative algorithm for finding a common element x∗ of the set of solutions of
a mixed equilibrium problem and the set of a variational inclusion in a real Hilbert space.
Furthermore, we prove that the proposed iterative algorithms strongly converge to x∗ which solves
some variational inequality.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C → H be a
nonlinear mapping, let ϕ : C → R be a function, and let Θ be a bifunction of C × C into R.
Now we consider the following mixed equilibrium problem:

Find u ∈ C such that Θ
(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

〈
Fu, y − u

〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solution of problem (1.1) is denoted by EP.
If F = 0, then the mixed equilibrium problem (1.1) becomes the following mixed

equilibrium problem:

Find u ∈ C such that Θ
(
u, y

)
+ ϕ

(
y
) − ϕ(u) ≥ 0, ∀y ∈ C, (1.2)
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which was considered by Ceng and Yao [1]. If ϕ = 0, then the mixed equilibrium problem
(1.1) becomes the following equilibrium problem:

Find u ∈ C such that Θ
(
u, y

)
+
〈
Fu, y − u

〉 ≥ 0, ∀y ∈ C, (1.3)

which was studied by S. Takahashi and W. Takahashi [2]. If ϕ = 0 and F = 0, then the mixed
equilibrium problem (1.1) becomes the following equilibrium problem:

Find u ∈ C such that Θ
(
u, y

) ≥ 0, ∀y ∈ C. (1.4)

If Θ(x, y) = 0 for all x, y ∈ C, the mixed equilibrium problem (1.1) becomes the following
variational inequality problem:

Find u ∈ C such that ϕ
(
y
) − ϕ(u) +

〈
Fu, y − u

〉 ≥ 0, ∀y ∈ C. (1.5)

The mixed equilibrium problems include fixed point problems, optimization problems,
variational inequality problems, Nash equilibrium problems, and the equilibrium problems
as special cases; see, for example, [3–8]. Some methods have been proposed to solve the
mixed equilibrium problem and the equilibrium problem. In 1997, Flaim and Antipen [4]
introduced an iterative method of finding the best approximation to the initial data and
proved a strong convergence theorem. Subsequently, S. Takahashi and W. Takahashi [9]
introduced another iterative scheme for finding a common element of the set of solutions of
the equilibrium problem (1.2) and the set of fixed point points of a nonexpansive mapping.
Furthermore, Yao et al. [10] introduced some new iterative schemes for finding a common
element of the set of solutions of the equilibrium problem (1.2) and the set of common
fixed points of finitely (infinitely) nonexpansive mappings. Very recently, Ceng and Yao [1]
considered a new iterative scheme for finding a common element of the set of solutions
of the mixed equilibrium problem and the set of common fixed points of finitely many
nonexpansive mappings. Peng and Yao [11] developed a CQ method. They obtained some
strong convergence results for finding a common element of the set of solutions of the mixed
equilibrium problem (1.1) and the set of the variational inequality and the set of fixed points
of a nonexpansive mapping. Their results extend and improve the corresponding results in
[1, 9, 12].

Recall that a mapping B : C → C is said to be β-inverse strongly monotone if there
exists a constant β > 0 such that 〈Bx−By, x−y〉 ≥ β‖Bx−By‖2, for all x, y ∈ C. AmappingA is
strongly positive onH if there exists a constant μ > 0 such that 〈Ax, x〉 ≥ μ‖x‖2 for all x ∈ H.

Let B : H → H be a single-valued nonlinear mapping and let R : H → 2H be a
set-valued mapping. Now we concern the following variational inclusion, which is to find a
point x ∈ H such that

θ ∈ B(x) + R(x), (1.6)

where θ is the zero vector in H. The set of solutions of problem (1.6) is denoted by
I(B,R). If H = Rm, then problem (1.6) becomes the generalized equation introduced by
Robinson [13]. If B = 0, then problem (1.6) becomes the inclusion problem introduced by
Rockafellar [14]. It is known that (1.6) provides a convenient framework for the unified
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study of optimal solutions in many optimization related areas including mathematical
programming, complementarity, variational inequalities, optimal control, mathematical
economics, equilibria, and game theory. Also various types of variational inclusions problems
have been extended and generalized. Recently, Zhang et al. [15] introduced a new iterative
scheme for finding a common element of the set of solutions to the problem (1.6) and the
set of fixed points of nonexpansive mappings in Hilbert spaces. Peng et al. [16] introduced
another iterative scheme by the viscosity approximate method for finding a common element
of the set of solutions of a variational inclusion with set-valued maximal monotone mapping
and inverse strongly monotone mappings, the set of solutions of an equilibrium problem,
and the set of fixed points of a nonexpansive mapping. For some related works, please see
[1, 2, 9–11, 13–34] and the references therein.

Inspired and motivated by the works in the literature, in this paper, we present
an iterative algorithm for finding a common element x∗ of the set of solutions of a
mixed equilibrium problem and the set of a variational inclusion in a real Hilbert space.
Furthermore, we prove that the proposed iterative algorithms strongly converge to x∗ which
solves some variational inequality.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H. Then, for any x ∈ H, there exists a unique nearest point in C,
denoted by PC(x), such that

‖x − PC(x)‖ ≤ ∥∥x − y
∥∥, ∀y ∈ C. (2.1)

Such a PC is called the metric projection of H onto C. We know that PC is nonexpansive.
Further, for x ∈ H and x∗ ∈ C,

x∗ = PC(x) ⇐⇒ 〈
x − x∗, x∗ − y

〉 ≥ 0, ∀y ∈ C. (2.2)

A set-valued mapping T : H → 2H is called monotone if, for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if its graph
G(T) is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if, for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for
every (y, g) ∈ G(T) implies f ∈ Tx.

Let the set-valued mapping R : H → 2H be maximal monotone. We define the
resolvent operator JR,λ associated with R and λ as follows:

JR,λ = (I + λR)−1(x), x ∈ H, (2.3)

where λ is a positive number. It is worth mentioning that the resolvent operator JR,λ is single-
valued, nonexpansive, and 1-inverse strongly monotone and that a solution of problem (1.6)
is a fixed point of the operator JR,λ(I − λB) for all λ > 0, see, for instance, [25].

Throughout this paper, we assume that a bifunction Θ : C × C → R and a convex
function ϕ : C → R satisfy the following conditions:
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(H1) Θ(x, x) = 0 for all x ∈ C;

(H2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(H3) for each y ∈ C, x 
→ Θ(x, y) is weakly upper semicontinuous;

(H4) for each x ∈ C, y 
→ Θ(x, y) is convex and lower semicontinuous;

(H5) for each x ∈ C and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such
that for any z ∈ C \Dx,

Θ
(
z, yx

)
+ ϕ

(
yx

) − ϕ(z) +
1
r

〈
yx − z, z − x

〉
< 0. (2.4)

Lemma 2.1 (see [11]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Θ : C × C → R be a bifunction and let ϕ : C → R be a proper lower semicontinuous and convex
function. For r > 0 and x ∈ C, define a mapping Sr : C → C as follows:

Sr(x) =
{
z ∈ C : Θ

(
z, y

)
+ ϕ

(
y
) − ϕ(z) +

1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.5)

for all x ∈ C. Assume that the conditions (H1)–(H5) hold. Then one has the following results:

(1) for each x ∈ C, Sr(x)/= ∅ and Sr is single-valued;

(2) Sr is firmly nonexpansive, that is, for any x, y ∈ C,

∥∥Srx − Sry
∥∥2 ≤ 〈

Srx − Sry, x − y
〉
; (2.6)

(3) Fix(Sr) = EP;

(4) EP is closed and convex.

Lemma 2.2 (see [24]). Let R : H → 2H be a maximal monotone mapping and let B : H → H be
a Lipschitz-continuous mapping. Then the mapping (R + B) : H → 2H is maximal monotone.

Lemma 2.3 (see [34]). Assume taht {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1 − γn)an + δn where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section, we will prove our main result. First, we give some assumptions on the
operators and the parameters. Subsequently, we introduce our iterative algorithm for finding
a common element of the set of solutions of a mixed equilibrium problem and the set
of a variational inclusion. Finally, we will show that the proposed algorithm has strong
convergence.
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Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : C → R
be a lower semicontinuous and convex function and let Θ : H × C → R be a bifunction
satisfying conditions (H1)–(H5). Let A be a strongly positive bounded linear operator with
coefficient 0 < μ < 1 and let R : H → 2H be a maximal monotone mapping. Let the mappings
F, B : C → C be α-inverse strongly monotone and β-inverse strongly monotone, respectively.
Let r > 0 and λ > 0 be two constants such that r < 2α and λ < 2β.

Now we introduce the following iteration algorithm.

Algorithm 3.1. For given x0 ∈ C arbitrarily, compute the sequences {xn} and {un} as follows:

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
r

〈
y − un, un − (xn − rFxn)

〉 ≥ 0, ∀y ∈ C,

xn+1 = PC[(I − αnA)JR,λ(I − λB)un],
(3.1)

where {αn} is a real sequence in [0, 1].

Now we study the strong convergence of the algorithm (3.1).

Theorem 3.2. Suppose that Ω := EP ∩ I(B,R)/= ∅. Assume the following conditions are satisfied:

(i) limn→∞αn = 0;

(ii)
∑∞

n=0 αn = ∞;

(iii) limn→∞(αn+1/αn) = 1.

Then the sequence {xn} generated by (3.1) converges strongly to x∗ ∈ Ω which solves the following
variational inequality:

〈
Ax, y − x

〉 ≥ 0, ∀y ∈ Ω. (3.2)

Proof. Take x∗ ∈ Ω. It is clear that

Sr(x∗ − rFx∗) = JR,λ(x∗ − λBx∗) = x∗, n ≥ 0. (3.3)

We divide our proofs into the following five steps:

(1) the sequences {xn} and {un} are bounded;
(2) ‖xn+1 − xn‖ → 0;

(3) ‖Fxn − Fx∗‖ → 0 and ‖Bun − Bx∗‖ → 0;

(4) lim supn→∞〈Ax∗, xn − x∗〉 ≥ 0;

(5) xn → x∗.

Proof of (1). Since F is α-inverse strongly monotone and B is β-inverse strongly monotone, we
have

∥∥(I − rF)x − (I − rF)y
∥∥2 ≤ ∥∥x − y

∥∥2 + r(r − 2α)
∥∥Fx − Fy

∥∥2
, (3.4)

∥∥(I − λB)x − (I − λB)y
∥∥2 ≤ ∥∥x − y

∥∥2 + λ
(
λ − 2β

)∥∥Bx − By
∥∥2

. (3.5)



6 Fixed Point Theory and Applications

It is clear that if 0 ≤ r ≤ 2α and 0 ≤ λ ≤ 2β, then (I − rF) and (I − λB) are all nonexpansive. Set
yn = JR,λ(un − λBun), n ≥ 0. It follows that
∥
∥yn − x∗∥∥ = ‖JR,λ(un − λBun) − JR,λ(x∗ − λBx∗)‖ ≤ ‖(un − λBun) − (x∗ − λBx∗)‖ ≤ ‖un − x∗‖.

(3.6)

By Lemma 2.1, we have un = Sr(xn − rFxn) for all n ≥ 0. Then, we have

‖un − x∗‖2 = ‖Sr(xn − rFxn) − Sr(x∗ − rFx∗)‖2

≤ ‖xn − rFxn − (x∗ − rFx∗)‖2

≤ ‖xn − x∗‖2 + r(r − 2α)‖Fxn − Fx∗‖2

≤ ‖xn − x∗‖2.

(3.7)

Hence, we have
∥∥yn − x∗∥∥ ≤ ‖xn − x∗‖. (3.8)

Since A is linear bounded self-adjoint operator on H, then

‖A‖ = sup{|〈Au, u〉| : u ∈ H, ‖u‖ = 1}. (3.9)

Observe that

〈(I − αnA)u, u〉 = 1 − αn〈Au, u〉 ≥ 1 − αn‖A‖ ≥ 0, (3.10)

that is to say I − αnA is positive. It follows that

‖(I − αnA)‖ = sup{〈(I − αnA)u, u〉 : u ∈ H, ‖u‖ = 1}
= sup{1 − αn〈Au, u〉 : u ∈ H, ‖u‖ = 1}
≤ 1 − αnμ.

(3.11)

From (3.1), we deduce that

‖xn+1 − x∗‖ =
∥∥PC

[
(I − αnA)yn

] − x∗∥∥

≤ ∥∥[(I − αnA)
(
yn − x∗)] − αnAx∗∥∥

≤ (
1 − αnμ

)∥∥yn − x∗∥∥ + αn‖Ax∗‖
≤ (

1 − αnμ
)‖xn − x∗‖ + αn‖Ax∗‖

≤ max
{
‖x0 − x∗‖, ‖Ax∗‖

μ

}
.

(3.12)

Therefore, {xn} is bounded. Hence, {un}, {yn}, and {Ayn} are all bounded.
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Proof of (2). From (3.1), we have

‖xn+1 − xn‖ =
∥
∥PC

[
(I − αnA)yn

] − PC

[
(I − αn−1A)yn−1

]∥∥

≤ ∥
∥[(I − αnA)yn

] − [
(I − αn−1A)yn−1

]∥∥

=
∥
∥(I − αnA)

(
yn − yn−1

)
+ (αn−1 − αn)Ayn−1

∥
∥

≤ ∥
∥(I − αnA)

(
yn − yn−1

)∥∥ +
∥
∥(αn−1 − αn)Ayn−1

∥
∥

≤ (
1 − αnμ

)∥∥yn − yn−1
∥
∥ + |αn − αn−1|

∥
∥Ayn−1

∥
∥.

(3.13)

Note that

∥
∥yn − yn−1

∥
∥ = ‖JR,λ(un − λBun) − JR,λ(un−1 − λBun−1)‖
≤ ‖(un − λBun) − (un−1 − λBun−1)‖
≤ ‖un − un−1‖
= ‖Sr(xn − rFxn) − Sr(xn−1 − rFxn−1)‖
≤ ‖(xn − rFxn) − (xn−1 − rFxn−1)‖
≤ ‖xn − xn−1‖.

(3.14)

Substituting (3.14) into (3.13), we get

‖xn+1 − xn‖ ≤ (
1 − αnμ

)‖xn − xn−1‖ + |αn − αn−1|
∥∥Ayn−1

∥∥

=
(
1 − αnμ

)‖xn − xn−1‖ + αnμ

∣∣∣∣1 −
αn−1
αn

∣∣∣∣
1
μ

∥∥Ayn−1
∥∥.

(3.15)

Notice that limn→∞|1 − αn−1/αn| = 0. This together with the last inequality and Lemma 2.3
implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.16)

Proof of (3). From (3.5) and (3.7), we get

∥∥yn − x∗∥∥2 = ‖JR,λ(un − λBun) − JR,λ(x∗ − λBx∗)‖2

≤ ‖(un − λBun) − (x∗ − λBx∗)‖2

≤ ‖un − x∗‖2 + λ
(
λ − 2β

)‖Bun − Bx∗‖2

≤ ‖xn − x∗‖2 + r(r − 2α)‖Fxn − Fx∗‖2 + λ
(
λ − 2β

)‖Bun − Bx∗‖2.

(3.17)
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By (3.1), we obtain

‖xn+1 − x∗‖2 = ∥
∥PC

[
(I − αnA)yn

] − x∗∥∥2

≤ ∥
∥(I − αnA)yn − x∗∥∥2

=
∥
∥yn − x∗ − αnAyn

∥
∥2

=
∥
∥yn − x∗∥∥2 − 2αn

〈
yn − x∗, Ayn

〉
+ α2

n

∥
∥Ayn

∥
∥2

≤ ∥
∥yn − x∗∥∥2 + αn

(
2
∥
∥yn − x∗∥∥∥∥Ayn

∥
∥ +

∥
∥Ayn

∥
∥2

)

≤ ∥∥yn − x∗∥∥2 + αnM,

(3.18)

where M > 0 is some constant satisfying supn{2‖yn − x∗‖‖Ayn‖ + ‖Ayn‖2} ≤ M. From (3.17)
and (3.18), we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + r(r − 2α)‖Fxn − Fx∗‖2

+ λ
(
λ − 2β

)‖Bun − Bx∗‖2 + αnM.

(3.19)

Thus,

r(2α − r)‖Fxn − Fx∗‖2 + λ
(
2β − λ

)‖Bun − Bx∗‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnM

≤ (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn+1 − xn‖ + αnM,

(3.20)

which imply that

lim
n→∞

‖Fxn − Fx∗‖ = 0, lim
n→∞

‖Bun − Bx∗‖ = 0. (3.21)
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Proof of (4). Since Sr is firmly nonexpansive, we have

‖un − x∗‖2 = ‖Sr(xn − rFxn) − Sr(x∗ − rFx∗)‖2

≤ 〈xn − rFxn − (x∗ − rFx∗), un − x∗〉

=
1
2

(
‖xn − rFxn − (x∗ − rFx∗)‖2 + ‖un − x∗‖2

− ‖xn − rFxn − (x∗ − rFx∗) − (un − x∗)‖2
)

≤ 1
2

(
‖xn − x∗‖2 + ‖un − x∗‖2 − ‖xn − un − r(Fxn − Fx∗)‖2

)

=
1
2

(
‖xn − x∗‖2 + ‖un − x∗‖2 − ‖xn − un‖2

+ 2r〈Fxn − Fx∗, xn − un〉 − r2‖Fxn − Fx∗‖2
)
.

(3.22)

Hence, we have

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2 + 2r‖Fxn − Fx∗‖‖xn − un‖. (3.23)

Since JR,λ is 1-inverse strongly monotone, we have

∥∥yn − x∗∥∥2 = ‖JR,λ(un − λBun) − JR,λ(x∗ − λBx∗)‖2

≤ 〈
un − λBun − (x∗ − λBx∗), yn − x∗〉

=
1
2

(
‖un − λBun − (x∗ − λBx∗)‖2 + ∥∥yn − x∗∥∥2

− ∥∥un − λBun − (x∗ − λBx∗) − (yn − x∗)
∥∥2
)

≤ 1
2

(
‖un − x∗‖2 + ∥∥yn − x∗∥∥2 − ∥∥un − yn − λ(Bun − Bx∗)

∥∥2
)

=
1
2

(
‖un − x∗‖2 + ∥∥yn − x∗∥∥2 − ∥∥un − yn

∥∥2

+ 2λ〈Bun − Bx∗, un − yn〉 − λ2‖Bun − Bx∗‖2
)
,

(3.24)

which implies that

∥∥yn − x∗∥∥2 ≤ ‖un − x∗‖2 − ∥∥un − yn

∥∥2 + 2λ‖Bun − Bx∗‖∥∥un − yn

∥∥. (3.25)
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Thus, by (3.23) and (3.25), we obtain

∥
∥yn − x∗∥∥2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2 + 2r‖Fxn − Fx∗‖‖xn − un‖

− ∥
∥un − yn

∥
∥2 + 2λ‖Bun − Bx∗‖∥∥un − yn

∥
∥.

(3.26)

Substitute (3.26) into (3.18) to get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2 + 2r‖Fxn − Fx∗‖‖xn − un‖

− ∥
∥un − yn

∥
∥2 + 2λ‖Bun − Bx∗‖∥∥un − yn

∥
∥ + αnM.

(3.27)

Then we derive

‖xn − un‖2 +
∥∥un − yn

∥∥2

≤ (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn+1 − xn‖ + 2r‖Fxn − Fx∗‖‖xn − un‖
+ 2λ‖Bun − Bx∗‖∥∥un − yn

∥∥ + αnM.

(3.28)

So, we have

lim
n→∞

‖xn − un‖ = 0, lim
n→∞

∥∥un − yn

∥∥ = 0. (3.29)

Proof of (5). We note that PΩ(I −A) is a contraction. As a matter of fact,

∥∥PΩ(I −A)x − PΩ(I −A)y
∥∥ ≤ ∥∥(I −A)x − PΩ(I −A)y

∥∥

≤ ‖I −A‖∥∥x − y
∥∥

≤ (
1 − μ

)∥∥x − y
∥∥

(3.30)

for all x, y ∈ H. Hence PΩ(I − A) has a unique fixed point, say x∗ ∈ Ω. That is, x∗ = PΩ(I −
A)(x∗). This implies that 〈Ax∗, y − x∗〉 ≥ 0 for all y ∈ Ω. Next, we prove that

lim sup
n→∞

〈Ax∗, xn − x∗〉 ≥ 0. (3.31)

First, we note that there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Ax∗, xn − x∗〉 = lim
j→∞

〈
Ax∗, xnj − x∗

〉
. (3.32)

Since {xnj} is bounded, there exists a subsequence {xnji} of {xnj} which converges weakly to
w. Without loss of generality, we can assume that xnj ⇀ w.
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We next show that w ∈ EP. By un = Sr(xn − rFxn), we know that

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
r

〈
y − un, un − (xn − rFxn)

〉 ≥ 0, ∀y ∈ C. (3.33)

It follows from (H2) that

ϕ
(
y
) − ϕ(un) +

1
r

〈
y − un, un − (xn − rFxn)

〉 ≥ Θ
(
y, un

)
, ∀y ∈ C. (3.34)

Hence,

ϕ
(
y
) − ϕ(uni) +

〈
y − uni ,

uni − (xni − rFxni)
r

〉
≥ Θ

(
y, uni

)
, ∀y ∈ C. (3.35)

For t ∈ (0, 1] and y ∈ H, let yt = ty + (1 − t)w. From (3.35) we have

〈yt − uni , Fyt〉 ≥ 〈yt − uni , Fyt〉 − ϕ
(
yt

)
+ ϕ(uni)

−
〈
yt − uni ,

uni − (xni − rFxni)
r

〉
+ Θ

(
yt, uni

)

=
〈
yt − uni , Fyt − Funi

〉
+
〈
yt − uni , Funi − Fxni

〉 − ϕ
(
yt

)

+ ϕ(uni) −
〈
yt − uni ,

uni − xni

r

〉
+ Θ

(
yt, uni

)
.

(3.36)

Since ‖uni − xni‖ → 0, we have ‖Funi − Fxni‖ → 0. Further, from the inverse strongly
monotonicity of F, we have 〈yt − uni , Fyt − Funi〉 ≥ 0. So, from (H4) and the weakly lower
semicontinuity of ϕ, (uni − xni)/r → 0 and uni → w weakly, we have

〈
yt −w,Fyt

〉 ≥ −ϕ(yt

)
+ ϕ(w) + Θ

(
yt,w

)
. (3.37)

From (H1), (H4), and (3.37), we also have

0 = Θ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tΘ
(
yt, y

)
+ (1 − t)Θ

(
yt,w

)
+ tϕ

(
y
)
+ (1 − t)ϕ(w) − ϕ

(
yt

)

= t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
+ (1 − t)

[
Θ
(
yt,w

)
+ ϕ(w) − ϕ

(
yt

)]

≤ t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
+ (1 − t)

〈
yt −w,Fyt

〉

= t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
+ (1 − t)t

〈
y −w,Fyt

〉
,

(3.38)

and hence

0 ≤ Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)
+ (1 − t)

〈
y −w,Fyt

〉
. (3.39)
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Letting t → 0, we have, for each y ∈ C,

Θ
(
w,y

)
+ ϕ

(
y
) − ϕ(w) +

〈
y −w,Fw

〉 ≥ 0. (3.40)

This implies that w ∈ EP.
Next, we show that w ∈ I(B,R). In fact, since B is β-inverse strongly monotone, B is

Lipschitz continuous monotone mapping. It follows from Lemma 2.2 that R + B is maximal
monotone. Let (v, g) ∈ G(R + B), that is, g − Bv ∈ R(v). Again since yni = JR,λ(uni − λBun−i),
we have uni − λuni ∈ (I + λR)(yni), that is, (1/λ)(uni − yni − λBuni) ∈ R(yni). By virtue of the
maximal monotonicity of R + B, we have

〈
v − yni , g − Bv − 1

λ

(
uni − yni − λBuni

)
〉

≥ 0, (3.41)

and so

〈v − yni , g〉 ≥
〈
v − yni , Bv +

1
λ

(
uni − yni − λBuni

)
〉

=
〈
v − yni , Bv − Byni + Byni − Buni +

1
λ

(
uni − yni

)
〉

≥ 〈
v − yni , Byni − Buni

〉
+
〈
v − yni ,

1
λ

(
uni − yni

)
〉
.

(3.42)

It follows from ‖un − yn‖ → 0, ‖Bun − Byn‖ → 0 and yni ⇀ w that

lim
ni →∞

〈
v − yni , g

〉
=
〈
v −w, g

〉 ≥ 0. (3.43)

It follows from the maximal monotonicity of B + R that θ ∈ (R + B)(w), that is, w ∈ I(B,R).
Therefore, w ∈ Ω. It follows that

lim sup
n→∞

〈Ax∗, xn − x∗〉 = lim
j→∞

〈
Ax∗, xnj − x∗

〉

= 〈Ax∗, w − x∗〉
≥ 0.

(3.44)

Proof of (6). First, we note that xn+1 = PC[(I − αnA)yn]; then for all x ∈ C, we have 〈xn+1 − (I −
αnA)yn, xn+1 − x〉 ≤ 0.
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From (3.1), we have

‖xn+1 − x∗‖2 = 〈xn+1 − x∗, xn+1 − x∗〉
=
〈
xn+1 − (I − αnA)yn + (I − αnA)yn − x∗, xn+1 − x∗〉

=
〈
xn+1 − (I − αnA)yn, xn+1 − x∗〉

+ 〈(I − αnA)yn − x∗, xn+1 − x∗〉
≤ 〈

(I − αnA)
(
yn − x∗) − αnAx∗, xn+1 − x∗〉

=
〈
(I − αnA)

(
yn − x∗), xn+1 − x∗〉

+ 2αn〈−Ax∗, xn+1 − x∗〉
≤ ∥
∥(I − αnA)

(
yn − x∗)∥∥‖xn+1 − x∗‖

+ 2αn〈−Ax∗, xn+1 − x∗〉

≤
(
1 − αnμ

)

2

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

+ 2αn〈−Ax∗, xn+1 − x∗〉,

(3.45)

that is,

‖xn+1 − x∗‖2 ≤ (
1 − αnμ

)‖xn − x∗‖2 + 2αn

1 + αnμ
〈−Ax∗, xn+1 − x∗〉

= (1 − δn)‖xn − x∗‖2 + δnσn,

(3.46)

where δn = αnμ and σn = (2/(1 + αnμ)μ)〈−Ax∗, xn+1 − x∗〉. It is easy to see that
∑∞

n=1 δn = ∞
and lim supn→∞σn ≤ 0. Hence, by Lemma 2.3, we conclude that the sequence {xn} converges
strongly to x∗. This completes the proof.
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