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The existence of approximate fixed points and approximate endpoints of the multivalued almost
I-contractions is established. We also develop quantitative estimates of the sets of approximate
fixed points and approximate endpoints for multivalued almost I-contractions. The proved results
unify and improve recent results of Amini-Harandi (2010), M. Berinde and V. Berinde (2007), Ćirić
(2009), M. Păcurar and R. V. Păcurar (2007) and many others.

1. Introduction and Preliminaries

In fixed point theory, one of the main directions of investigation concerns the study of the
fixed point property in topological spaces. Recall that a topological space X is said to have
the fixed point property if every continuous mapping f : X → X has a fixed point. The
major contribution to this subject has been provided by Tychonoff. Every compact convex
subset of a locally convex space has the fixed point property. Another important branch of
fixed point theory is the study of the approximate fixed point property. Recently, the interest
in approximate fixed point results arise in the study of some problems in economics and game
theory, including, for example, the Nash equilibrium approximation in games; see [1–3] and
references therein.

We establish some existence results concerning approximate fixed points, endpoints,
and approximate endpoints of multivalued contractions. We also develop quantitative
estimates of the sets of approximate fixed points and approximate endpoints for set-valued
almost I-contractions. The results presented in this paper extend and improve the recent
results of [4–10] and many others.
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Now, we give some notions and definitions.
Let (X, d) be ametric space and letP(X) and Cl(X) denote the families of all nonempty

subsets and nonempty closed subsets of X, respectively. Let X and Y be two Hausdorff
topological spaces and T : X → P(Y ) a multivalued mapping with nonempty values. Then
T is said to be

(1) upper semicontinuous (u.s.c.) if, for each closed set B ⊂ Y , T−1(B) = {x ∈ X : T(x) ∩
B /= ∅} is closed in X;

(2) lower semicontinuous (l.s.c.) if, for each open set B ⊂ Y , T−1(B) = {x ∈ X : T(x) ∩
B /= ∅} is open in X;

(3) continuous if it is both u.s.c. and l.s.c.;

(4) closed if its graph Gr(T) = {(x, y) ∈ X × Y : y ∈ T(x)} is closed;
(5) compact if cl T(X) is a compact subset of Y .

For any subsets A,B, of a metric space X, we consider the following notions:

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}: the distance between the sets A and B;

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}: the diameter of the sets A and B;

δ(A) = sup{d(x, y) : x, y ∈ A}: the diameter of the set A;

H(A,B) = max{supa∈A d(a, B), supb∈B d(b,A)}: the Hausdorff metric on Cl(X)
induced by the metric d.

Let T : X → P(X) be a multivalued mapping. An element x ∈ X such that x ∈ T(x)
is called a fixed point of T . We denote by F(T) the set of all fixed points of T , that is, F(T) =
{x ∈ X : x ∈ T(x)}.

A mapping T : X → P(X) is called

(mc) a multivalued contraction (or multivalued k-contraction) if there exists a number 0 <
k < 1 such that

H
(
Tx, Ty

) ≤ kd(x, y), ∀x, y ∈ X, (1.1)

(mac) a multivalued almost contraction [6] or a multivalued (θ, L)-almost contraction if there
exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H
(
Tx, Ty

) ≤ θd(x, y) + Ld(y, Tx), ∀x, y ∈ X, (1.2)

(gmac) a generalized multivalued almost contraction [6] if there exists a function α : [0,∞) →
[0, 1) satisfying lim supr→ t+ α(r) < 1 for every t ∈ [0,∞) such that

H
(
Tx, Ty

) ≤ α(d(x, y))d(x, y) + Ld(y, Tx), ∀x, y ∈ X. (1.3)

It is important to note that any mapping satisfying Banach, Kannan, Chatterjea,
Zamfirescu, or Ćirić (with the constant k in ]0, 1/2[) type conditions is a single-valued almost
contraction; see [5, 6, 8, 11].
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2. Approximate Fixed Points of Multivalued Contractions

Definition 2.1. A multivalued mapping T : X → P(X) is said to have the approximate fixed
point property [2] provided

inf
x∈X

d(x, Tx) = 0 (2.1)

or, equivalently, for any ε > 0, there exists z ∈ X such that

d(z, Tz) ≤ ε (2.2)

or, equivalently, for any ε > 0, there exists xε ∈ X such that

T(xε) ∩ B(xε, ε)/= ∅, (2.3)

where B(x, r) denotes a closed ball of radius r centered at x.
We first prove that every generalized multivalued almost contraction has the

approximate fixed point property.

Lemma 2.2. Every generalized multivalued almost contraction has the approximate fixed point
property.

Proof. Let (X, d) be an arbitrary metric space and T : X → Cl(X) a generalized multivalued
almost contraction. Let xn ∈ X and yn ∈ T(xn) be such that

lim
n→∞

d
(
xn, yn

)
= inf

x∈X
d(x, Tx). (2.4)

By passing to the subsequences, if necessary, wemay assume that the sequence {α(d(xn, yn))}
is convergent. Then we have

inf
x∈X

d(x, Tx) ≤ inf

{

d
(
y, Ty

)
: y ∈

⋃

x∈X
Tx

}

= inf
x∈X

inf
y∈Tx

d
(
y, Ty

) ≤ inf
x∈X

inf
y∈Tx

H
(
Tx, Ty

)

≤ inf
x∈X

inf
y∈Tx

[
α
(
d
(
x, y

))
d
(
x, y

)
+ L · d(y, Tx)] = inf

x∈X
inf
y∈Tx

[
α
(
d
(
x, y

))
d
(
x, y

)]

≤ inf
n∈N

[
α
(
d
(
xn, yn

))
d
(
xn, yn

)] ≤ lim
n→∞

α
(
d
(
xn, yn

))
lim
n→∞

d
(
xn, yn

)

≤ lim sup
r→ (infx∈Xd(x,Tx))

+
α(r) inf

x∈X
d(x, Tx).

(2.5)

Since lim supr→ (infx∈Xd(x,Tx))
+ α(r) < 1, we get infx∈X d(x, Tx) = 0. This completes the

proof.

Corollary 2.3 (see [5, Theorem 2.5], [10, Theorem 2.1]). Let (X, d) be a metric space and T :
X → X a single-valued almost contraction. Then T has the approximate fixed point property.
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The authors in [5, 10] obtained the following quantitative estimate of the diameter of
the set, Fε(T) = {x ∈ X : d(x, Tx) ≤ ε}, of approximate fixed points of single-valued almost
contraction T .

Theorem 2.4 (see [5, Theorem 3.5], [10, Theorem 2.2]). Let (X, d) be a metric space. If T : X →
X is a single-valued almost contraction with θ + L < 1, then

δ(Fε(T)) ≤ (2 + L)ε
1 − (θ + L)

, ∀ε > 0. (2.6)

The following simple example shows that the conclusion of Theorem 2.4 is not valid
for set-valued almost contractions.

Example 2.5. Let T : [0, 1] → Cl([0, 1]) be defined by T(x) = [0, 1] for all x ∈ [0, 1]. Then 0 =
H(T(x), T(y)) ≤ (1/2)d(x, y) and so T is multivalued almost contraction with θ+L = 1/2 < 1.
Further, Fε(T) = [0, 1] and so δ(Fε(T)) = 1. This shows that conclusion of Theorem 2.4 is not
true whenever T is multivalued almost contraction.

Theorem 2.6. Let (X, d) be a metric space. If T : X → Cl(X) is a generalized multivalued
almost contraction, then T has a fixed point provided either (X, d) is compact and the function
f(x) = d(x, Tx) is lower semicontinuous or T is closed and compact.

Proof. By Lemma 2.2, we have infx∈X f(x) = infx∈X d(x, Tx) = 0. The lower semicontinuity of
the function f(x) = d(x, Tx) and the compactness of X imply that the infimum is attained.
Thus there exists an x0 ∈ X such that f(x0) = d(x0, Tx0) = 0 and so x0 ∈ Tx0.

Suppose that T is closed and compact. According to Lemma 2.2, T has the approximate
fixed point property. Therefore, for any ε > 0, there exist xε ∈ X and yε ∈ X such that

yε ∈ T(xε) ∩ B(xε, ε). (2.7)

Now, since Y := cl(T(X)) is compact, we may assume that {yε} converges to a point z ∈ Y
as ε → 0. Consequently, {xε} also converges to z as ε → 0. Since T is closed, then z ∈ T(z).
This completes the proof.

Let I : X → X be a single-valued mapping and T : X → Cl(X) a multivalued
mapping. Then T is called a multivalued almost I-contraction [6, 8] if there exist constants θ ∈
(0, 1) and L ≥ 0 such that

H
(
Tx, Ty

) ≤ θd(Ix, Iy) + Ld(Iy, Tx), ∀x, y ∈ X. (2.8)

We say that T is a generalized multivalued almost I-contraction if there exists a function α :
[0,∞) → [0, 1) satisfying lim supr→ t+ α(r) < 1 for every t ∈ [0,∞) such that

H
(
Tx, Ty

) ≤ α(d(Ix, Iy))d(Ix, Iy) + Ld(Iy, Tx), ∀x, y ∈ X. (2.9)
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The mappings I and T are said to have an approximate coincidence point property provided

inf
x∈X

d(Ix, Tx) = 0 (2.10)

or, equivalently, for any ε > 0, there exists z ∈ X such that

d(Iz, Tz) ≤ ε. (2.11)

A point x ∈ X is called a coincidence (common fixed) point of I and T if Ix ∈ Tx (x = Ix ∈
Tx).

Theorem 2.7. Every generalized multivalued almost I-contraction in a metric space (X, d) has the
approximate coincidence point property provided each Tx is I-invariant. Further, if (X, d) is compact
and the function f(x) = d(Ix, Tx) is lower semicontinuous, then I and T have a coincidence point.

Proof. Let T : X → Cl(X) be a generalized multivalued almost I-contraction and let xn ∈ X
and yn ∈ T(xn) be such that

lim
n→∞

d
(
Ixn, yn

)
= inf

x∈X
d(Ix, Tx). (2.12)

By passing to the subsequences, if necessary, we may assume that the sequence
{α(d(Ixn, yn))} is convergent. Then we have

inf
x∈X

d(Ix, Tx) ≤ inf

{

d
(
Iy, Ty

)
: y ∈

⋃

x∈X
Tx

}

= inf
x∈X

inf
y∈Tx

d
(
Iy, Ty

) ≤ inf
x∈X

inf
y∈Tx

H
(
Tx, Ty

)

≤ inf
x∈X

inf
y∈Tx

[
α
(
d
(
Ix, Iy

))
d
(
Ix, Iy

)
+ Ld

(
Iy, Tx

)]

= inf
x∈X

inf
y∈Tx

[
α
(
d
(
Ix, Iy

))
d
(
Ix, Iy

)] ≤ inf
n∈N

[
α
(
d
(
Ixn, yn

))
d
(
Ixn, yn

)]

≤ lim
n→∞

α
(
d
(
Ixn, yn

))
lim
n→∞

d
(
Ixn, yn

) ≤ lim sup
r→ (infx∈Xd(Ix,Tx))

+
α(r) inf

x∈X
d(Ix, Tx)

(2.13)

since each Tx is I-invariant, that is, for each y ∈ Tx, we have Iy ∈ Tx. Since

lim sup
r→ (infx∈Xd(Ix,Tx))

+
α(r) < 1, (2.14)

we get infx∈X d(Ix, Tx) = 0.
Further, the lower semi-continuity of the function f(x) = d(Ix, Tx) and the

compactness of X imply that the infimum is attained. Thus there exists z ∈ X such that
f(z) = d(Iz, Tz) = 0 and so Iz ∈ Tz as required. This completes the proof.
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Corollary 2.8. Every multivalued almost I-contraction in a metric space (X, d) has the approximate
coincidence point property provided each Tx is I-invariant. Further, if (X, d) is compact and the
function f(x) = d(Ix, Tx) is lower semicontinuous, then I and T have a coincidence point.

Recently, Ćirić [7] has introduced multivalued contractions and obtained some
interesting results which are proper generalizations of the recent results of Klim and
Wardowski [9], Feng and Liu [12], and many others. In the results to follow, we obtain
approximate fixed point property for these multivalued contractions.

Theorem 2.9. Let (X, d) be a metric space and T a multivalued mapping fromX intoCl(X). Suppose
that there exist a function ϕ : [0,∞) → [0, 1) such that

lim sup
r→ t

ϕ(r) < 1, ∀t ∈ [0,∞), (2.15)

and xn ∈ X and yn ∈ Txn satisfying the following two conditions:

lim
n→∞

d
(
xn, yn

)
= inf

x∈X
d(x, Tx),

f
(
yn

) ≤ ϕ(f(xn)
)
d
(
xn, yn

)
,

(2.16)

where f(x) = d(x, Tx). Then T has the approximate fixed point property. Further, T has a fixed point
provided either (X, d) is compact and the function f(x) is lower semicontinuous or T is closed and
compact.

Proof. Let xn ∈ X and yn ∈ Txn be the sequences that satisfy (2.16). By passing to
subsequences, if necessary, we may assume that both of the sequences f(xn) and ϕ(f(xn))
are convergent (note that f(xn) is bounded since f(xn) ≤ d(xn, yn)). Then we have

inf
x∈X

f(x) = inf
x∈X

d(x, Tx) ≤ inf
x∈X

inf
y∈Tx

d
(
y, Ty

) ≤ inf
n∈N

inf
y∈Txn

d
(
y, Ty

)

≤ inf
n∈N

d
(
yn, Tyn

) ≤ inf
n∈N

ϕ
(
f(xn)

)
d
(
xn, yn

) ≤ lim
n→∞

ϕ
(
f(xn)

)
lim
n→∞

d
(
xn, yn

)

≤ lim sup
r→(limn→∞f(xn))

ϕ(r) inf
x∈X

f(x).

(2.17)

Since lim supr→ (limn→∞f(xn)) ϕ(r) < 1, we get infx∈X f(x) = infx∈X d(x, Tx) = 0.
Further, the lower semi-continuity of the function f(x) = d(x, Tx) and the

compactness of X imply that the infimum is attained. Thus there exists z0 ∈ X such that
f(z0) = d(z0, Tz0) = 0 and so z0 ∈ Tz0.

The second assertion follows as in the proof of Theorem 2.6. This completes the
proof.

Theorem 2.10. Let (X, d) be a metric space and T a multivalued mapping from X into Cl(X).
Suppose that there exist a function ϕ : [0,∞) → [0, 1) such that

lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ [0,∞), (2.18)
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and xn ∈ X and yn ∈ Txn satisfying the following two conditions:

lim
n→∞

d
(
xn, yn

)
= inf

x∈X
d(x, Tx),

f
(
yn

) ≤ ϕ(d(xn, yn
))
d
(
xn, yn

)
,

(2.19)

where f(x) = d(x, Tx). Then T has the approximate fixed point property. Further, T has a fixed point
provided either (X, d) is compact and the function f(x) is lower semicontinuous or T is closed and
compact.

Proof. Let xn ∈ X and yn ∈ Txn satisfy (2.19). By passing to subsequences, if necessary, we
may assume that the sequence ϕ(d(xn, yn) is convergent. Then we have

inf
x∈X

f(x) = inf
x∈X

d(x, Tx) ≤ inf
x∈X

inf
y∈Tx

d
(
y, Ty

) ≤ inf
n∈N

inf
y∈Txn

d
(
y, Ty

)

≤ inf
n∈N

d
(
yn, Tyn

) ≤ inf
n∈N

ϕ
(
d
(
xn, yn

))
d
(
xn, yn

)

≤ lim
n→∞

ϕ
(
d
(
xn, yn

))
lim
n→∞

d
(
xn, yn

) ≤ lim sup
r→(infx∈Xf(x))+

ϕ(r) inf
x∈X

f(x).

(2.20)

Since lim supr→ (infx∈Xf(x))
+ ϕ(r) < 1, we get infx∈X f(x) = 0.

Further, the lower semi-continuity of the function f(x) = d(x, Tx) and the
compactness of X imply that the infimum is attained. Thus there exists z0 ∈ X such that
f(z0) = d(z0, Tz0) = 0 and so z0 ∈ Tz0.

The second assertion follows as in the proof of Theorem 2.6. This completes the
proof.

3. Endpoints of Multivalued Nonlinear Contractions

Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a endpoint (or
stationary point) [13] of T if Tx = {x}. We say that a multivalued mapping T : X → 2X has
the approximate endpoint property [4] if

inf
x∈X

sup
y∈Tx

d
(
x, y

)
= 0. (3.1)

Let I : X → X be a single-valued mapping and T : X → Cl(X) a multivalued contraction.
We say that the mappings I and T have an approximate endpoint property provided

inf
x∈X

sup
y∈Tx

d
(
Ix, y

)
= 0. (3.2)

A point x ∈ X is called an endpoint of I and T if Tx = {Ix}.
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For each ε > 0, set

Eε(I, T) =

{

x ∈ X : sup
y∈Tx

d
(
Ix, y

) ≤ ε
}

. (3.3)

Lemma 3.1. Let (X, d) be a metric space. Let I : X → X be a single-valued mapping such that
rd(x, y) ≤ d(Ix, Iy) for all x, y ∈ X, where r > 0 is a constant. If T : X → Cl(X) is a multivalued
almost I-contraction with θ + L < 1, then

δ(Eε(I, T)) ≤ (2 + L)ε
r(1 − (θ + L))

, ∀ε > 0. (3.4)

Proof. For any x, y ∈ Eε(I, T), we have

d
(
Ix, Iy

)
= H

({Ix}, {Iy})

≤ H({Ix}, Tx) +H(
Tx, Ty

)
+H

({
Iy

}
, Ty

)

≤ 2ε + θd
(
Ix, Iy

)
+ Ld

(
Iy, Tx

)

≤ 2ε + θd
(
Ix, Iy

)
+ Ld

(
Iy, Ix

)
+ Ld(Ix, Tx)

≤ ε(2 + L) + (θ + L)d
(
Ix, Iy

)

(3.5)

and so

d
(
Ix, Iy

) ≤ (2 + L)ε
1 − (θ + L)

. (3.6)

Since rd(x, y) ≤ d(Ix, Iy), from (3.6), we have

δ(Eε(I, T)) ≤ (2 + L)ε
r(1 − (θ + L))

, ∀ε > 0. (3.7)

The following simple example shows that under the assumptions of Lemma 3.1,
Eε(I, T) may be empty.

Example 3.2. Let T : [0, 1] → Cl([0, 1]) be a multivalued mapping defined by T(x) = [0, 1]
for each x ∈ [0, 1] and I the identity mapping. Then 0 = H(T(x), T(y)) ≤ (1/2)d(x, y) and so
T is a multivalued almost I-contraction with θ + L = 1/2 < 1. However, Eε(I, T) = ∅ for each
0 < ε < 1/2.

Lemma 3.3. Let (X, d) be a metric space. Let I : X → X be a continuous single-valued mapping
and T : X → Cl(X) a lower semicontinuous multivalued mapping. Then, for each ε > 0, Eε(I, T) is
closed.

Proof. Let xn ∈ Eε(I, T) be such that with xn → x as n → ∞. Let z ∈ Tx. Since T is lower
semicontinuous, then there exists zn ∈ Txn such that zn → z. Since xn ∈ Eε(I, T), then
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supy∈Txn d(Ixn, y) ≤ ε and so d(Ixn, zn) ≤ ε. Since I is continuous, d(x, z) ≤ ε. Therefore,
supy∈Tx d(Ix, y) ≤ ε, that is, x ∈ Eε(I, T). This completes the proof.

Theorem 3.4. Let (X, d) be a complete metric space. Let I : X → X be a continuous single-valued
mapping such that rd(x, y) ≤ d(Ix, Iy), where r > 0 is a constant. Let T : X → Cl(X) be a lower
semicontinuous multivalued almost I-contraction. Then I and T have a unique endpoint if and only if
I and T have the approximate endpoint property.

Proof. It is clear that, if I and T have an endpoint, then I and T have the approximate endpoint
property. Conversely, suppose that I and T have the approximate endpoint property. Then

Cn =

{

x ∈ X : sup
y∈Tx

d
(
Ix, y

) ≤ 1
n

}

/= ∅, ∀n ∈ N. (3.8)

Also it is clear that, for each n ∈ N, Cn ⊇ Cn+1. By Lemma 3.3, Cn is closed for each n ∈ N.
Since I and T have the approximate endpoint property, then Cn /= ∅ for each n ∈ N. Now, we
show that limn→∞ δ(Cn) = 0. To show this, let x, y ∈ Cn. Then, from Lemma 3.1,

δ(Cn) = δ(E1/n(I, T)) ≤ (2 + L)(1/n)
r(1 − (θ + L))

(3.9)

and so limn→∞ δ(Cn) = 0. It follows from the Cantor intersection theorem that

⋂

n∈N

Cn = {x0}. (3.10)

Thus x0 is the unique endpoint of I and T .

If I is the identity mapping on X, then the above result reduces to the following.

Corollary 3.5. Let (X, d) be a metric space. If T : X → Cl(X) is a multivalued almost contraction
with θ + L < 1, then

δ(Eε(T)) ≤ (2 + L)ε
1 − (θ + L)

, ∀ε > 0, (3.11)

where Eε(T) = {x ∈ X : supy∈Tx d(x, y) ≤ ε}.

Corollary 3.6. Let (X, d) be a complete metric space. Let T : X → Cl(X) be a lower semicontinuous
multivalued almost contraction with θ + L < 1. Then T has a unique endpoint if and only if T has the
approximate endpoint property.

Corollary 3.7 (see [4, Corollary 2.2]). Let (X, d) be a complete metric space. Let T : X → Cl(X)
be a multivalued k-contraction. Then T has a unique endpoint if and only if T has the approximate
endpoint property.
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Theorem 3.8. Let (X, d) be a complete metric space and T a multivalued mapping fromX intoCl(X).
Suppose that there exist a function ϕ : [0,∞) → [0, 1) such that

lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ [0,∞), (3.12)

and xn ∈ X and yn ∈ Txn satisfying the two following conditions:

lim
n→∞

d
(
xn, yn

)
= inf

x∈X
F(x),

F
(
yn

) ≤ ϕ(d(xn, yn
))
d
(
xn, yn

)
,

(3.13)

where F(x) = supy∈T(x) d(x, y). Then T has the approximate endpoint property. Further, T has an
endpoint provided (X, d) is compact and the function F(x) is lower semicontinuous.

Proof. We first prove that T has the approximate endpoint property. Let xn ∈ X and yn ∈ Txn
that satisfy (3.13). By passing to subsequences, if necessary, wemay assume that the sequence
{ϕ(d(xn, yn))} is convergent. Then we have

inf
x∈X

F(x) ≤ inf
n∈N

inf
y∈Txn

F
(
y
) ≤ inf

n∈N

F
(
yn

) ≤ inf
n∈N

ϕ
(
d
(
xn, yn

))
d
(
xn, yn

)

≤ lim
n→∞

ϕ
(
d
(
xn, yn

))
lim
n→∞

d
(
xn, yn

) ≤ lim sup
r→ (infx∈XF(x))

+
ϕ(r) inf

x∈X
F(x).

(3.14)

Since lim supr→ (infx∈XF(x))
+ ϕ(r) < 1, we get

inf
x∈X

F(x) = 0. (3.15)

Thus T has the approximate endpoint property. The lower semi-continuity of the function
F(x) and the compactness of X imply that the infimum is attained. Thus there exists z0 ∈ X
such that F(z0) = 0. Therefore, T(z0) = {z0}. This completes the proof.

The following theorem extends and improves Theorem 2.1 in [4].

Theorem 3.9. Let (X, d) be a complete metric space. Let I : X → X be a continuous single-valued
mapping such that rd(x, y) ≤ d(Ix, Iy), where r > 0 is a constant. Let T : X → Cl(X) be a
multivalued mapping satisfying

H
(
Tx, Ty

) ≤ ψ(d(Ix, Iy)), ∀x, y ∈ X, (3.16)

where ψ : [0,∞) → [0,∞) is a function such that lim supr→ t ψ(r) ≤ ψ(t) and ψ(t) < t for each
t > 0. Then I and T have a unique endpoint if and only if I and T have the approximate endpoint
property.
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Proof. It is clear that, if I and T have an endpoint, then I and T have the approximate endpoint
property. Conversely, suppose that I and T have the approximate endpoint property. Then

Cn =

{

x ∈ X : H({Ix}, Tx) = sup
y∈Tx

d
(
Ix, y

) ≤ 1
n

}

/= ∅, ∀n ∈ N. (3.17)

Also it is clear that, for each n ∈ N, Cn ⊇ Cn+1. Since the mapping x → supy∈Tx d(Ix, y)
is continuous (note that I and T are continuous), we have that Cn is closed. Now we show
that limn→∞ δ(Cn) = 0. On the contrary, assume that limn→∞ δ(Cn) > 0. Since δ(I(Cn)) ≥
rδ(Cn), then limn→∞ δ(I(Cn)) = r0 > 0 (note that the sequences {δ(I(Cn))} and {δ(Cn)} are
nonincreasing and bounded below and then they have the limits). Let xk,n yk,n ∈ Cn be such
that limk→∞ d(Ixk,n, Iyk,n) = δ(I(Cn)). Given x, y ∈ Cn, from (3.16) and triangle inequality,
we have

d
(
Ix, Iy

)
= H

({Ix}, {Iy}) ≤ H({Ix}, Tx) +H(
Tx, Ty

)
+H

({
Iy

}
, Ty

) ≤ 2
n
+ ψ

(
d
(
Ix, Iy

))
.

(3.18)

Therefore, we have

d
(
Ix, Iy

) − ψ(d(Ix, Iy)) ≤ 2
n
, ∀x, y ∈ Cn. (3.19)

From (3.19), we have 0 ≤ d(Ixk,n, Iyk,n) − ψ(d(Ixk,n, Iyk,n)) ≤ 2/n for each k ∈ N and so we
get

2
n
≥ lim inf

k→∞
[
d
(
Ixk,n, Iyk,n

) − ψ(d(Ixk,n, Iyk,n
))]

≥ lim inf
k→∞

d
(
Ixk,n, Iyk,n

)
+ lim inf

k→∞
[−ψ(d(Ixk,n, Iyk,n

))]

= δ(I(Cn)) − lim sup
k→∞

ψ
(
d
(
Ixk,n, Iyk,n

)) ≥ δ(I(Cn)) − ψ(δ(I(Cn))).

(3.20)

Hence we have

0 ≤ δ(I(Cn)) − ψ(δ(I(Cn))) ≤ 2
n
, ∀n ∈ N. (3.21)

From (3.21), we obtain

lim
n→∞

(
δ(I(Cn)) − ψ(δ(I(Cn)))

)
= 0. (3.22)

Since limn→∞ δ(I(Cn)) = r0, from (3.22), we get limn→∞ ψ(δ(I(Cn))) = r0. Thus

r0 = lim
n→∞

ψ(δ(I(Cn))) ≤ lim sup
r→ r0

ψ(r) ≤ ψ(r0) < r0, (3.23)
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which is a contradiction and so r0 = 0. It follows from the Cantor intersection theorem that

⋂

n∈N

Cn = {x0}. (3.24)

Thus H({Ix0}, T(x0)) = supy∈Tx0 d(Ix0, y) = 0 and hence T(x0) = {Ix0}. To prove the
uniqueness of the endpoints of I and T , let x be an arbitrary endpoint of I and T . Then
H({Ix}, Tx)=0 and so x ∈ ⋂

n∈N
Cn = {x0}. Thus x = x0. This completes the proof.

From Theorem 3.9, we obtain the following improved version of the main result of [4].

Corollary 3.10. Let (X, d) be a complete metric space. Let T : X → Cl(X) be a multivalued mapping
satisfying

H
(
Tx, Ty

) ≤ ψ(d(x, y)), ∀x, y ∈ X, (3.25)

where ψ : [0,∞) → [0,∞) is a function such that lim supr→ t ψ(r) ≤ ψ(t) and ψ(t) < t for each
t > 0. Then T has a unique endpoint if and only if T has the approximate endpoint property.

Example 3.11. Let X = [0, 1] with the usual metric d(x, y) = |x − y|. Let T : X → Cl(X) be a
multivaluedmapping defined by Tx = [x/2, 1] and ψ : [0,∞) → [0,∞) be a function defined
by

ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t

2
if 0 ≤ t ≤ 1,

t2

1 + t
if t ≥ 1.

(3.26)

Then

H
(
Tx, Ty

)
=

1
2
∣∣x − y∣∣ = ψ(∣∣x − y∣∣) = ψ

(
d
(
x, y

))
. (3.27)

Then T and ψ satisfy the conditions of Corollary 3.10, but the conditions of Theorem 2.1 in
[4] are not satisfied (note that lim tt→∞(t − ψ(t)) = 1).
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