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We use chain methods to prove fixed point results for maximalizing mappings in posets. Concrete
examples are also presented.

1. Introduction

According to Bourbaki’s fixed point theorem (cf. [1, 2]) a mappingG from a partially ordered
set X = (X,≤) into itself has a fixed point if G is extensive, that is, x ≤ G(x) for all x ∈ X, and
if every nonempty chain of X has the supremum in X. In [3, Theorem 3] the existence of
a fixed point is proved for a mapping G : X → X which is ascending, that is, G(x) ≤ y
implies G(x) ≤ G(y). It is easy to verify that every extensive mapping is ascending. In [4] the
existence of a fixed point of G is proved if a ≤ G(a) for some a ∈ X, and if G is semi-increasing
upward, that is, G(x) ≤ G(y)whenever x ≤ y and G(x) ≤ y. This property holds, for instance,
if G is ascending or increasing, that is, G(x) ≤ G(y) whenever x ≤ y.

In this paper we prove further generalizations to Bourbaki’s fixed point theorem by
assuming that a mapping G : X → X is maximalizing, that is, G(x) is a maximal element
of {x,G(x)} for all x ∈ X. Concrete examples of maximalizing mappings G which have or
do not have fixed points are presented. Chain methods introduced in [5, 6] are used in the
proofs. These methods are also compared with three other chain methods.

2. Preliminaries

A nonempty set X, equipped with a reflexive, antisymmetric, and transitive relation ≤ in
X × X, is called a partially ordered set (poset). An element b of a poset X is called an upper
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bound of a subset A of X if x ≤ b for each x ∈ A. If b ∈ A, we say that b is the greatest element
of A, and denote b = maxA. A lower bound of A and the least element, minA, of A are
defined similarly, replacing x ≤ b above by b ≤ x. If the set of all upper bounds of A has the
least element, we call it the supremum of A and denote it by supA. We say that y is a maximal
element of A if y ∈ A, and if z ∈ A and y ≤ z imply that y = z. The infimum of A, infA, and a
minimal element ofA are defined similarly. A subsetW ofX is called a chain if x ≤ y or y ≤ x
for all x, y ∈ W . We say that W is well ordered if nonempty subsets of W have least elements.
Every well-ordered set is a chain.

Let X be a nonempty poset. A basis to our considerations is the following chain
method (cf. [6, Lemma 2]).

Lemma 2.1. Given G : X → X and a ∈ X, there exists a unique well-ordered chain C in X, called a
w-o chain of aG-iterations, satisfying

x ∈ C iff x = sup
{
a,G

[
C<x]}, where C<x =

{
y ∈ C : y < x

}
. (2.1)

If x∗ = sup{a,G[C]} exists in X, then x∗ = max C, and G(x∗) ≤ x∗.

The following result helps to analyze the w-o chain of aG-iterations.

Lemma 2.2. Let A and B be nonempty subsets of X. If supA and supB exist, then the equation

sup(A ∪ B) = sup
{
supA, supB

}
(2.2)

is valid whenever either of its sides is defined.

Proof. The sets A ∪ B and {supA, supB} have same upper bounds, which implies the
assertion.

A subset W of a chain C is called an initial segment of C if x ∈ W , y ∈ C, and y < x
imply y ∈ W . If W is well ordered, then every element x of W which is not the possible
maximum of W has a successor: Sx = min{y ∈ W : x < y}, in W . The next result gives a
characterization of elements of the w-o chain of aG-iterations.

Lemma 2.3. Given G : X → X and a ∈ X, let C be the w-o chain of aG-iterations. Then the
elements of C have the following properties.

(a) minC = a.

(b) An element x of C has a successor in C if and only if sup{x,G(x)} exists and x <
sup{x,G(x)}, and then Sx = sup{x,G(x)}.

(c) If W is an initial segment of C and y = supW exists, then y ∈ C.

(d) If a < y ∈ C and y is not a successor, then y = supC<y.

(e) If y = supC exists, then y = max C.
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Proof. (a) minC = sup{a,G[C<minC]} = sup{a,G[∅]} = sup{a, ∅} = a.
(b) Assume first that x ∈ C, and that Sx exists in C. Applying (2.1), Lemma 2.2, and

the definition of Sx we obtain

Sx = sup
{
a,G

[
C<Sx

]}
= sup

{
a,G

[
C<x] ∪ {G(x)}} = sup{x,G(x)}. (2.3)

Moreover, x < Sx, by definition, whence x < sup{x,G(x)}.
Assume next that x ∈ C, that y = sup{x,G(x)} exists, and that x < sup{x,G(x)}. The

previous proof implies the following
(i) There is no element w ∈ C which satisfies x < w < sup{x,G(x)}.

Then {z ∈ C : z ≤ x} = C<y, so that

x < sup{x,G(x)} = sup
{
sup

{
a,G

[
C<x]}, G(x)

}

= sup
{{a} ∪G

[
C<x] ∪ {G(x)}}

= sup{a,G[{z ∈ C : z ≤ x}]}
= sup

{
a,G

[
C<y]}.

(2.4)

Thus y = sup{x,G(x)} ∈ C by (2.1). This result and (i) imply that y = sup{x,G(x)} =
min{z ∈ C : x < z} = Sx.

(c) Assume that W is an initial segment of C, and that y = supW exists. If there is
x ∈ W such that Sx/∈W , then x = max W = y, so that y ∈ C. Assume next that every element
x of W has the successor Sx in W . Since Sx = sup{x,G(x)} by (b), then G(x) ≤ Sx < y. This
holds for all x ∈ W . Since a = minC = minW < y, then y is an upper bound of {a}∪G[W]. If
z is an upper bound of {a} ∪G[W], then x = sup{a,G[C<x]} = sup{a,G[W<x]} ≤ z for every
x ∈ W . Thus z is an upper bound ofW , whence y = supW ≤ z. But then y = sup{a,G[W]} =
sup{a,G[C<y]}, so that y ∈ C by (2.1).

(d) Assume that a < y ∈ C, and that y is not a successor of any element of C.
Obviously, y is an upper bound of C<y. Let z be an upper bound of C<y. If x ∈ C<y,
then also Sx ∈ C<y since y is not a successor. Because Sx = sup{x,G(x)} by (b), then
G(x) ≤ Sx ∈ C<y. This holds for every x ∈ C<y. Since also a ∈ C<y, then z is an upper
bound of {a} ∪G[C<y]. Thus y = sup{a,G[C<y]} ≤ z. This holds for every upper bound z of
C<y, whence y = supC<y.

(e) If y = supC exists, then y ∈ C by (c)when W = C, whence y = max C.

In the case when a ≤ G(a)we obtain the following result (cf. [7, Proposition 1]).

Lemma 2.4. Given G : X → X and a ∈ X, there exists a unique well-ordered chain C(a) in X,
calleda w-o chain of G-iterations of a, satisfying

a = minC, x ∈ C \ {a} iff x = supG
[
C<x]. (2.5)

If a ≤ G(a), and if x∗ = supG[C(a)] exists, then a ≤ x∗ = max C(a), and G(x∗) ≤ x∗.
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Lemma 2.4 is in fact a special case of Lemma 2.1, since the assumption a ≤ G(a) implies
that C(a) equals to the w-o chain of aG-iterations. As for the use of C(a) in fixed point theory
and in the theory of discontinuous differential and integral equations, see, for example, [8, 9]
and the references therein.

3. Main Results

Let X = (X,≤) be a nonempty poset. As an application of Lemma 2.1 we will prove our first
existence result.

Theorem 3.1. A mapping G : X → X has a fixed point if G is maximalizing, that is, G(x) is a
maximal element of {x,G(x)} for all x ∈ X, and if x∗ = sup{a,G[C]} exists in X for some a ∈ X
where C is the w-o chain of aG-iterations.

Proof. If C is the w-o chain of aG-iterations, and if x∗ = sup{a,G[C]} exists in X, then x∗ =
max C and G(x∗) ≤ x∗ by Lemma 2.1. Since G is maximalizing, then G(x∗) = x∗, that is, x∗ is
a fixed point of G.

The next result is a consequence of Theorem 3.1. and Lemma 2.3(e).

Proposition 3.2. Assume that G : X → X is maximalizing. Given a ∈ X, let C be the w-o chain of
aG-iterations. If z = supC exists, it is a fixed point of G if and only if x∗ = sup{z,G(z)} exists.

Proof. Assume that z = supC exists. It follows from Lemma 2.3(e) that z = max C. If z is a
fixed point of G, that is, z = G(z), then x∗ = sup{z,G(z)} = z, and x∗ = G(x∗).

Assume conversely that x∗ = sup{z,G(z)} exist. Applying (2.1) and Lemma 2.2 we
obtain

x∗ = sup{z,G(z)} = sup
{
sup

{
a,G

[
C<z]}, sup{G(z)}}

= sup
{{a} ∪G

[
C<z] ∪ {G(z)}} = sup{a,G[C]}.

(3.1)

Thus, by Theorem 3.1, x∗ = max C = z is a fixed point of G.

As a consequence of Proposition 3.2 we obtain the following result.

Corollary 3.3. If nonempty chains of X have supremums, if G : X → X is maximalizing, and if
sup{x,G(x)} exists for all x ∈ X, then for each a ∈ X the maximum of the w-o chain of aG-iterations
exists and is a fixed point of G.

Proof. Let C be the w-o chain of aG-iterations. The given hypotheses imply that both z =
supC and x∗ = sup{z,G(z)} exist. Thus the hypotheses of Proposition 3.2 are valid.

The results of Lemma 2.3 are valid also when C is replaced by the w-o chain C(a) of
G-iterations of a. As a consequence of these results and Lemma 2.4 we obtain the following
generalizations to Bourbaki’s fixed point theorem.
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Theorem 3.4. Assume that G : X → X is maximalizing, and that a ≤ G(a) for some a ∈ X, and let
C(a) be the w-o chain of G-iterations of a.

(a) If x∗ = supG[C(a)] exists, then x∗ = maxC(a), and x∗ is a fixed point of G.

(b) If z = supC(a) exists, it is a fixed point of G if and only if x∗ = sup{z,G(z)} exists.
(c) If nonempty chains of X have supremums, and if sup{x,G(x)} exists for all x ∈ X, then

x∗ = maxC(a) exists, and x∗ is a fixed point of G.

The previous results have obvious duals, which imply the following results.

Theorem 3.5. A mapping G : X → X has a fixed point if G is minimalizing, that is, G(x) is
a minimal element of {x,G(x)} for all x ∈ X, and if inf{a,G[W]} exists in X for some a ∈ X
whenever W is a nonempty chain in X.

Theorem 3.6. A minimalizing mapping G : X → X has a fixed point if inf G[W] exists whenever
W is a nonempty chain in X, and if G(a) ≤ a for some a ∈ X.

Proposition 3.7. A minimalizing mapping G : X → X has a fixed point if every nonempty chain X
has the infimum in X, and if inf{x,G(x)} exists for all x ∈ X.

Remark 3.8. The hypothesis that G : X → X is maximalizing can be weakened in Theorems
3.1 and 3.4 and in Proposition 3.2 to the form: G | {x∗} is maximalizing, that is, G(x∗) is a
maximal element of {x∗, G(x∗)}.

4. Examples and Remarks

Wewill first present an example of a maximalizing mapping whose fixed point is obtained as
the maximum of the w-o chain of aG-iterations.

Example 4.1. Let X be a closed disc X = {(u, v) ∈ R
2 : u2 + v2 ≤ 2}, ordered coordinate-wise.

Let [u] denote the greatest integer ≤ u when u ∈ R. Define a function G : X → R
2 by

G(u, v) =
(
min{1, 1 − [u] + [v]}, 1

2

(
[u] + v2

))
, (u, v) ∈ X. (4.1)

It is easy to verify that G[X] ⊂ X, and that G is maximalizing. To find a fixed point of
G, choose a = (1, 0). It follows from Lemma 2.3(b) that the first elements of the w-o chain of
aG-iterations are successive approximations

x0 = a, xn+1 = Sxn = sup{xn,G(xn)}, n = 0, 1, . . . , (4.2)

as long as Sxn is defined. Denoting xn = (un, vn), these successive approximations can be
rewritten in the form

u0 = 1, un+1 = max{un,min{1, 1 − [un] + [vn]}},

v0 = 0, vn+1 = max
{
vn,

1
2

(
[un] + v2

n

)}
, n = 0, 1, . . . ,

(4.3)
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as long as un ≤ un+1 and vn ≤ vn+1, and at least one of these inequalities is strict. Elementary
calculations show that un = 1, for every n ∈ N0. Thus (4.3) can be rewritten as

un = 1, v0 = 0, vn+1 = max
{
vn,

1
2

(
1 + v2

n

)}
, n = 0, 1, . . . . (4.4)

Since the function g(v) = (1/2)(1+ v2) is increasing R+, then vn < g(vn) for every n = 0, 1, . . ..
Thus (4.4) can be reduced to the form

un = 1, v0 = 0, vn+1 = g(vn) =
1
2

(
1 + v2

n

)
, n = 0, 1, . . . . (4.5)

The sequence (g(vn))
∞
n=0 is strictly increasing, whence also (vn)

∞
n=0 is strictly increasing by

(4.5). Thus the set W = {(1, g(vn))}n∈N0
is an initial segment of C. Moreover, v0 = 0 < 1,

and if 0 ≤ vn < 1, then 0 < g(vn) < 1. Since (g(vn))
∞
n=0 is bounded above by 1, then v∗ =

limng(vn) exists, and 0 < v∗ ≤ 1. Thus (1, v∗) = supW , and it belongs to X, whence (1, v∗) ∈
C by Lemma 2.3(c). To determine v∗, notice that vn+1 → v∗ by (4.5). Thus v∗ = g(v∗), or
equivalently, v2

∗ − 2v∗ + 1 = 0, so that v∗ = 1. Since supW = (1, v∗) = (1, 1), then (1, 1) ∈ C
by Lemma 2.3(c). Because (1, 1) is a maximal element of X, then (1, 1) = maxC. Moreover,
G(1, 1) = (1, 1), so that (1, 1) is a fixed point of G.

The first m + 1 elements of the w-o chain C of aG-iterations can be estimated by the
following Maple program (floor(·) = [·]):

x := min(1,1-floor(u) + floor(v)): y := (floor(u) + v2)/2: (u,v) := (1, 0) : c[0] := (u,v):
for n to m do (u,v) := (max(x,u), evalf(max(y,v)); c[n] := (u,v) end do;
For instance, c[100000] = (1, 0.99998).
The verification of the following properties are left to the reader.

(i) If c = (u, v) ∈ X, u < 1, and v < 1, then the elements of w-o chain C of aG-iterations,
after two first terms if u < 1, are of the form (1, wn), n = 0, 1, . . ., where (wn)

∞
n=0 is

increasing and converges to 1. Thus (1, 1) is the maximum of C and a fixed point of
G.

(ii) If a = (u, 1), u < 1, or a = (1,−1), then C = {a, (1, 1)}.
(iii) If a = (1, 0), then G2ka = (1, zk) and G2k+1a = (0, yk), k ∈ N0, where the sequences

(zk) and (yk) are bounded and increasing. The limit z of (zk) is the smaller real
root of z4 − 8z + 4 = 0; z ≈ 0.50834742498666121699, and the limit y of (yk) is y =
(1/2)z2 ≈ 0.12920855224528457650. Moreover G(1, y) = (0, z) and G(0, z) = (1, y),
whence no subsequence of the iteration (Gna) converges to a fixed point of G.

(iv) For any choice of a = (u, v) ∈ P \ {(1, 1)} the iterations Gna and Gn+1a are not order
related when n ≥ 2. The sequence (Gnc) does not converge, and no subsequence of
it converges to a fixed point of G.

(v) Denote Y = {(u, v) ∈ R
2
+ : u2 + v2 ≤ 2, v > 0} ∪ {(1, 0)}. The function G, defined

by (4.1), satisfies G[Y ] ⊂ Y and is maximalizing. The maximum of the w-o chain of
aG-iterations with a = (1, 0) is x∗ = (1, 1), and x∗ is a fixed point ofG. If x ∈ Y \{x∗},
then x and G(x) are not comparable.

The following example shows that G need not to have a fixed point if either of the
hypothesis of Theorem 3.1 is not valid.
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Example 4.2. Denote a = (1, y) and b = (0, z), where y and z are as in Example 4.1. Choose
X = {a, b}, and let G : X → X be defined by (4.1). G is maximalizing, but G has no fixed
points, since G(a) = b and G(b) = a. The last hypothesis of Theorem 3.1 is not satisfied.

Denoting c = (1, z), then the set X = {a, b, c} is a complete join lattice, that is, every
nonempty subset of X has the supremum in X. Let G : X → X satisfy G(a) = b and G(b) =
G(c) = a. G has no fixed points, but G is not maximalizing, since G(c) < c.

Example 4.3. The components u = 1, v = 1 of the fixed point of G in Example 4.1 form also a
solution of the system

u = min{1, 1 − [u] + [v]}, v =
[u] + v2

2
. (4.6)

Moreover a Maple program introduced in Example 4.1 serves a method to estimate this
solution. When m = 100000, the estimate is u = 1, v = 0.99998.

Remark 4.4. The standard “solve” and “fsolve” commands of Maple 12 do not give a solution
or its approximation for the system of Example 4.3.

In Example 4.1 the mapping G is nonincreasing, nonextensive, nonascending, not
semiincreasing upward, and noncontinuous.

Chain C(a) is compared in [10]with three other chains which generalize the sequence
of ordinary iterations (Gn(a))∞n=0, and which are used to prove fixed point results for G.
These chains are the generalized orbitO(a) defined in [10] (being identical with the setW(a)
defined in [11]), the smallest admissible set I(a) containing a (cf. [12–14]), and the smallest
complete G-chain B(a) containing a (cf. [10, 15]). If G is extensive, and if nonempty chains
of X have supremums, then C(a) = O(a) = I(a), and B(a) is their cofinal subchain (cf. [10,
Corollary 7]). The common maximum x∗ of these four chains is a fixed point of G. This result
implies Bourbaki’s Fixed Point Theorem.

On the other hand, if the hypotheses of Theorem 3.4 hold and x ∈ C(a)\{a, x∗}, then x
and G(x) are not necessarily comparable. The successor of such an x in C(a) is sup{x,G(x)}
by [14, Proposition 5]. In such a case the chains O(a), I(a) and B(a) attain neither x nor any
fixed point of G. For instance when a = (0, 0) in Example 4.1, then C(a) = {(0, 0)} ∪ C, where
C is the w-o chain of (1, 0)G-iterations. Since (Gn(0, 0))∞n=0 = {(0, 0)} ∪ (Gn(1, 0))∞n=0, then B(a)
does not exist, O(a) = I(a) = {(0, 0), (1, 0)} (see [10]). Thus only C(a) attains a fixed point
of G as its maximum. As shown in Example 4.1, the consecutive elements of the iteration
sequence (Gn(1, 0))∞n=0 are unordered, and their limits are not fixed points of G. Hence, in
these examples also finite combinations of chainsW(ai) used in [16, Theorem 4.2] to prove a
fixed point result are insufficient to attain a fixed point of G.

Neither the above-mentioned four chains nor their duals are available to find fixed
points of G if a and G(a) are unordered. For instance, they cannot be applied to prove
Theorems 3.1 and 3.5 or Propositions 3.2 and 3.7.
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