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We consider the following hierarchical equilibrium problem and variational inequality problem
(abbreviated as HEVP): find a point x∗ ∈ EP(F, B) such that 〈Ax∗, x − x∗〉 ≥ 0, for all x ∈
EP(F, B), where A, B are two monotone operators and EP(F, B) is the solution of the equilibrium
problem of finding z ∈ C such that F(z, y) + 〈Bz, y − z〉 ≥ 0, for all y ∈ C. We note that the
problem (HEVP) includes some problems, for example, mathematical program and hierarchical
minimization problems as special cases. For solving (HEVP), we propose a double-net algorithm
which generates a net {xs,t}. We prove that the net {xs,t} hierarchically converges to the solution of
(HEVP); that is, for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a solution
xt ∈ EP(F, B) of the equilibrium problem, and as t → 0, the net {xt} converges in norm to the
unique solution x∗ of (HEVP).

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let
C be a nonempty closed convex subset of H. Recall that a mapping A of C into H is called
monotone if

〈Au −Av, u − v〉 ≥ 0, (1.1)

for all u, v ∈ C andA : C → H is called α-inverse strongly monotone mapping if there exists
a positive real number α such that

〈Au −Av, u − v〉 ≥ α‖Au −Av‖2, (1.2)
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for all u, v ∈ C. It is obvious that any α-inverse strongly monotone mapping A is monotone
and 1/α-Lipschitz continuous.

Recently, the following problem has attracted much attention: find hierarchically a
fixed point of a nonexpansive mapping T with respect to a nonexpansive mapping P , namely,

Find x̃ ∈ Fix(T) such that 〈x̃ − Px̃, x̃ − x〉 ≤ 0, ∀x ∈ Fix(T). (1.3)

Some algorithms for solving the hierarchical fixed point problem (1.3) have been introduced
by many authors. For related works, please see, for instance, [1–9] and the references therein.

Remark 1.1. It is not hard to check that solving (1.3) is equivalent to the fixed point problem

Find x̃ ∈ C such that x̃ = projFix(T) · Px̃, (1.4)

where projFix(T) stands for the metric projection on the closed convex set Fix(T). By using the
definition of the normal cone to Fix(T), that is,

NFix(T) : x �−→
⎧

⎨

⎩

{

u ∈ H | 〈u, y − x〉 ≤ 0, ∀y ∈ Fix(T)
}

if x ∈ Fix(T),

∅, otherwise,
(1.5)

we easily prove that (1.3) is equivalent to the variational inequality

0 ∈ (I − P)x̃ +NFix(T)x̃. (1.6)

At this point, we wish to point out the link with some monotone variational
inequalities and convex programming problems as follows.

Example 1.2. Setting P = I − γA, where A is η-Lipschitzian and k-strongly monotone with
γ ∈ (0, 2k/η2], then (1.3) reduces to

Find x̃ ∈ Fix(T) such that 〈Ax̃, x − x̃〉 ≥ 0, ∀x ∈ Fix(T), (1.7)

a variational inequality studied by Yamada and Ogura [10].

Example 1.3. Let A be a maximal monotone operator. Taking T = JAλ := (I + λA)−1 and P =
I − γ∇ψ, where ψ is a convex function such that ∇ψ is η-Lipschitzian (which is equivalent to
the fact that ∇ψ is η−1 cocoercive)with γ ∈ (0, 2/η], and Fix(JA

λ
) = A−1(0). Then (1.3) reduces
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to the following mathematical program with generalized equation constraint:

min
0∈A(x)

ψ(x), (1.8)

a problem considered by Luo et al. [11].

Example 1.4. TakingA = ∂ϕ, where ∂ϕ is the subdifferential of a lower semicontinuous convex
function, then (1.8) reduces to the following hierarchical minimization problem considered
in Cabot [12] and Solodov [13]:

min
x∈arg min ϕ

ψ(x). (1.9)

Let B : C → H be a nonlinear mapping, and let F be a bifunction of C × C into R.
Consider the following equilibrium problem of finding z ∈ C such that

F
(

z, y
)

+
〈

Bz, y − z〉 ≥ 0, ∀y ∈ C. (1.10)

If B = 0, then (1.10) reduces to

F
(

z, y
) ≥ 0, ∀y ∈ C. (1.11)

The solution set of equilibrium problems (1.10) and (1.11) are denoted by EP(F, B) and EP(F),
respectively. The equilibrium problem (1.10) is very general in the sense that it includes, as
special cases, optimization problems, variational inequalities, fixed point problems, minimax
problems, Nash equilibrium problem in noncooperative games, and others. We remind the
readers to refer to [14–30] and the references therein.

Motivated and inspired by the above works, in this paper, we consider the following
hierarchical equilibrium problem and variational inequality problem: find a point x∗ ∈
EP(F, B) such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ EP(F, B), (1.12)

where A,B are two monotone operators. The solution set of (1.12) is denoted by Ω.

Remark 1.5. It is clear that the hierarchical variational inequality problem and equilibrium
problem (1.12) includes the variational inequality problem studied by Yamada and Ogura
[10], mathematical program studied by Luo et al. [11], hierarchical minimization problem
considered by Cabot [12] and Solodov [13], as special cases.

For solving (1.12), we propose a double-net algorithm which generates a net {xs,t}.
We prove that the net {xs,t} hierarchically converges to the solution of (1.12); that is, for each
fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a solution xt ∈ EP(F, B) of the
equilibrium problem, and as t → 0, the net {xt} converges in norm to the unique solution
x∗ ∈ Ω of (1.12).
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2. Preliminaries

Let H be a real Hilbert space. Throughout this paper, let us assume that a bifunction F :
H ×H → R satisfies the following conditions:

(F1) F(x, x) = 0 for all x ∈ H;

(F2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ H;

(F3) for each x, y, z ∈ H, lim supt↘0F(tz + (1 − t)x, y) ≤ F(x, y);
(F4) for each x ∈ H, y �→ F(x, y) is convex and lower semicontinuous.

On the equilibrium problems, we have the following important lemma. You can find it in
[31].

Lemma 2.1. Let H be a real Hilbert space, and let F be a bifunction of H × H into R satisfying
conditions (F1)–(F4). Let r > 0, and x ∈ H. Then, there exists z ∈ H such that

F
(

z, y
)

+
1
r

〈

y − z, z − x〉 ≥ 0, ∀y ∈ H. (2.1)

Further, if Tr(x) = {z ∈ H | F(z, y) + (1/r)〈y − z, z − x〉 ≥ 0, for all y ∈ H}, then the following
hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive; that is, for any x, y ∈ H,

∥

∥Trx − Try
∥

∥

2 ≤ 〈

Trx − Try, x − y〉, (2.2)

(3) Fix(Tr) = EP(F);

(4) EP(F) is closed and convex.

Below we gather some basic facts that are needed in the argument of the subsequent
sections.

Lemma 2.2 (see [32]). Let H be a real Hilbert space. Let the mapping A : H → H be α-inverse
strongly monotone, and let λ > 0 be a constant. Then, one has

∥

∥(I − λA)x − (I − λA)y
∥

∥

2 ≤ ∥

∥x − y∥∥2 + λ(λ − 2α)
∥

∥Ax −Ay∥∥2
, ∀x, y ∈ H. (2.3)

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.3 (demiclosedness principle for nonexpansive mappings, see [33]). Let C be a
nonempty closed convex subset of a real Hilbert space H and let T : C → C be a nonexpansive
mapping with Fix(T)/= ∅. If {xn} is a sequence in C weakly converging to x, and if {(I − T)xn}
converges strongly to y, then (I − T)x = y; in particular, if y = 0, then x ∈ Fix(T).
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Lemma 2.4. Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient
ρ ∈ [0, 1). Let the mapping A : H → H be α-inverse strongly monotone. Let λ ∈ (0, 2α), and
t ∈ (0, 1). Then the variational inequality

x∗ ∈ EP(F, B),
〈

tf(z) + (1 − t)(I − λA)z − z, x∗ − z〉 ≥ 0, ∀z ∈ EP(F, B) (2.4)

is equivalent to the dual variational inequality

x∗ ∈ EP(F, B),
〈

tf(x∗) + (1 − t)(I − λA)x∗ − x∗, x∗ − z〉 ≥ 0, ∀z ∈ EP(F, B). (2.5)

Proof. Assume that x∗ ∈ EP(F, B) solves (2.4). For all z ∈ EP(F, B), set

x = x∗ + s(z − x∗) ∈ EP(F, B), 0 < s < 1. (2.6)

We note that

〈

tf(x) + (1 − t)(I − λA)x − x, x∗ − x〉 ≥ 0. (2.7)

Hence, we have

〈

tf(x∗ + s(z − x∗)) + (1 − t)(I − λA)(x∗ + s(z − x∗)) − x∗ − s(z − x∗), s(x∗ − z)〉 ≥ 0, (2.8)

which implies that

〈

tf(x∗ + s(z − x∗)) + (1 − t)(I − λA)(x∗ + s(z − x∗)) − x∗ − s(z − x∗), x∗ − z〉 ≥ 0. (2.9)

Letting s → 0, we have

〈

tf(x∗) + (1 − t)(I − λA)x∗ − x∗, x∗ − z〉 ≥ 0, (2.10)

which is exactly (2.5).
Assume that x∗ solves (2.5). Hence,

〈

tf(x∗) + (1 − t)(I − λA)x∗ − x∗, x∗ − z〉 ≥ 0. (2.11)

Noting that I − f and A are monotone, we have

〈(

I − f)z − (

I − f)x∗, z − x∗〉 ≥ 0,

〈Az −Ax∗, z − x∗〉 ≥ 0.
(2.12)

It follows that

t
〈(

I − f)z − (

I − f)x∗, z − x∗〉 + (1 − t)λ〈Az −Ax∗, z − x∗〉 ≥ 0, (2.13)
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which implies that

〈

tf(z) + (1 − t)(I − λA)z − z, x∗ − z〉 ≥ 〈

tf(x∗) + (1 − t)(I − λA)x∗ − x∗, x∗ − z〉 ≥ 0. (2.14)

This implies that x∗ solves (2.4). The proof is completed.

3. Main Results

In this section, we first introduce our double-net algorithm.
Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient

ρ ∈ [0, 1). Let the mappings A,B : H → H be α-inverse strongly monotone and β-inverse
strongly monotone, respectively. Let F be a bifunction fromH ×H → R , and let λ ∈ (0, 2α)
and r ∈ (0, 2β) be two constants. For s, t ∈ (0, 1), we define the following mapping:

x �−→Ws,tx := s
[

tf(x) + (1 − t)(x − λAx)] + (1 − s)Tr(x − rBx), (3.1)

where Tr(x) is defined by Lemma 2.1. We note that the mapping Ws,t is a contraction. As a
matter of fact, we have

∥

∥Ws,tx −Ws,ty
∥

∥ =
∥

∥s
[

tf(x) + (1 − t)(x − λAx)] + (1 − s)Tr(x − rBx)
−s[tf(y) + (1 − t)(y − λAy)] − (1 − s)Tr

(

y − rBy)∥∥

≤ st∥∥f(x) − f(y)∥∥ + s(1 − t)∥∥(x − λAx) − (

y − λAy)∥∥

+ (1 − s)‖Tr(x − rBx) − Tr
(

y − rBy)‖
≤ stρ∥∥x − y∥∥ + s(1 − t)∥∥x − y∥∥ + (1 − s)∥∥x − y∥∥

=
[

1 − (

1 − ρ)st]∥∥x − y∥∥,

(3.2)

which implies that the mappingWs,t is contractive. Hence, by Banach’s contraction principle,
Ws,t has a unique fixed point which is denoted xs,t ∈ H; that is, xs,t is the unique solution in
H of the fixed point equation

xs,t = s
[

tf(xs,t) + (1 − t)(xs,t − λAxs,t)
]

+ (1 − s)Tr(xs,t − rBxs,t), s, t ∈ (0, 1). (3.3)

Below is our main result of this paper which displays the behavior of the net {xs,t} as s → 0
and t → 0 successively.

Theorem 3.1. Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient
ρ ∈ [0, 1). Let the mappings A,B : H → H be α-inverse strongly monotone and β-inverse strongly
monotone, respectively. Let λ ∈ (0, 2α) and r ∈ (0, 2β) be two constants. Let F be a bifunction from
H ×H → R satisfying (F1)–(F4). Suppose the solution set Ω of (1.12) is nonempty. Let, for each
(s, t) ∈ (0, 1)2, xs,t be defined implicitly by (3.3). Then, the net {xs,t} hierarchically converges to the
unique solution x∗ of the hierarchical equilibrium problem and variational inequality problem (1.12).
That is to say, for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a solution
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xt ∈ EP(F, B) of the equilibrium problem (1.10). Moreover, as t → 0, the net {xt} converges in norm
to the unique solution x∗ ∈ Ω. Furthermore, x∗ also solves the following variational inequality:

x∗ ∈ Ω,
〈(

I − f)x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω. (3.4)

We divide our detailed proofs into several conclusions as follows. Throughout, we
assume all assumptions of Theorem 3.1 are satisfied.

Conclusion 1. For each fixed t ∈ (0, 1), the net {xs,t} is bounded.

Proof. Take any z ∈ EP(F, B). It is clear that z = Tr(z − rBz). Set us,t = Tr(xs,t − rBxs,t) for all
s, t ∈ (0, 1). Since Tr , I − λA and I − rB are nonexpansive (by Lemmas 2.1 and 2.2), we have
from (3.3) that

‖xs,t − z‖ =
∥

∥s
[

tf(xs,t) + (1 − t)(I − λA)xs,t
]

+ (1 − s)Tr(xs,t − rBxs,t) − z
∥

∥

≤ s∥∥tf(xs,t) + (1 − t)(I − λA)xs,t − z
∥

∥ + (1 − s)‖Tr(xs,t − rBxs,t) − Tr(z − rBz)‖
≤ s[t∥∥f(xs,t) − f(z)

∥

∥ + t
∥

∥f(z) − z∥∥

+(1 − t)‖(I − λA)xs,t − (I − λA)z‖ + (1 − t)‖(I − λA)z − z‖] + (1 − s)‖xs,t − z‖
≤ s[tρ‖xs,t − z‖ + t

∥

∥f(z) − z∥∥ + (1 − t)‖xs,t − z‖ + (1 − t)λ‖Az‖] + (1 − s)‖xs,t − z‖
=
[

1 − (

1 − ρ)st]‖xs,t − z‖ + st
∥

∥f(z) − z∥∥ + s(1 − t)λ‖Az‖.
(3.5)

This implies that

‖xs,t − z‖ ≤ 1
(

1 − ρ)t
(

t
∥

∥f(z) − z∥∥ + (1 − t)λ‖Az‖)

≤ 1
(

1 − ρ)t max
{∥

∥f(z) − z∥∥, λ‖Az‖}.
(3.6)

It follows that for each fixed t ∈ (0, 1), {xs,t} is bounded, so are the nets {f(xs,t)}, {(I−λA)xs,t}
and {us,t}. Note that we use Mt as a positive constant which bounds all bounded terms
appearing in the following.

Conclusion 2. xs,t → xt ∈ EP(F, B) as s → 0.

Proof. From Lemma 2.2, we have

‖xs,t − λAxs,t − (z − λAz)‖2 ≤ ‖xs,t − z‖2 + λ(λ − 2α)‖Axs,t −Az‖2,

‖us,t − z‖2 = ‖Tr(xs,t − rBxs,t) − Tr(z − rBz)‖2

≤ ‖xs,t − rBxs,t − (z − rBz)‖2

≤ ‖xs,t − z‖2 + r
(

r − 2β
)‖Bxs,t − Bz‖2.

(3.7)
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By (3.3), we have

‖xs,t − z‖2 = st
〈

f(xs,t) − f(z), xs,t − z
〉

+ st
〈

f(z) − z, xs,t − z
〉

+ s(1 − t)〈(I − λA)xs,t − (I − λA)z, xs,t − z〉
+ s(1 − t)〈(I − λA)z − z, xs,t − z〉
+ (1 − s)〈Tr(xs,t − rBxs,t) − Tr(z − rBz), xs,t − z〉

≤ st∥∥f(xs,t) − f(z)
∥

∥‖xs,t − z‖ + st
〈

f(z) − z, xs,t − z
〉

+ s(1 − t)‖(I − λA)xs,t − (I − λA)z‖‖xs,t − z‖ − s(1 − t)λ〈Az, xs,t − z〉
+ (1 − s)‖Tr(xs,t − rBxs,t) − Tr(z − rBz)‖‖xs,t − z‖

≤ stρ‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉 − s(1 − t)λ〈Az, xs,t − z〉

+ s(1 − t)‖(I − λA)xs,t − (I − λA)z‖‖xs,t − z‖
+ (1 − s)‖(I − rB)xs,t − (I − rB)z‖‖xs,t − z‖

≤ stρ‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉 − s(1 − t)λ〈Az, xs,t − z〉

+
s(1 − t)

2

(

‖(I − λA)xs,t − (I − λA)z‖2 + ‖xs,t − z‖2
)

+
1 − s
2

(

‖(I − rB)xs,t − (I − rB)z‖2 + ‖xs,t − z‖2
)

.

(3.8)

This together with (3.7) implies that

‖xs,t − z‖2 ≤ stρ‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉 − s(1 − t)λ〈Az, xs,t − z〉

+
s(1 − t)

2

(

‖xs,t − z‖2 + λ(λ − 2α)‖Axs,t −Az‖2 + ‖xs,t − z‖2
)

+
1 − s
2

(

‖xs,t − z‖2 + r
(

r − 2β
)‖Bxs,t − Bz‖2 + ‖xs,t − z‖2

)

=
[

1 − (

1 − ρ)st]‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉 − s(1 − t)λ〈Az, xs,t − z〉

+
s(1 − t)

2
λ(λ − 2α)‖Axs,t −Az‖2 + 1 − s

2
r
(

r − 2β
)‖Bxs,t − Bz‖2.

(3.9)

It follows that

(1 − s)r(2β − r)‖Bxs,t − Bz‖2

≤ −2(1 − ρ)st‖xs,t − z‖2 + 2st
∥

∥f(z) − z∥∥‖xs,t − z‖

− 2s(1 − t)λ‖Az‖‖xs,t − z‖ + s(1 − t)λ(λ − 2α)‖Axs,t −Az‖2

−→ 0 as s −→ 0 for each fixed t ∈ (0, 1).

(3.10)
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Therefore

lim
s→ 0

‖Bxs,t − Bz‖ = 0. (3.11)

Using Lemma 2.1, we obtain

‖us,t − z‖2 = ‖Tr(xs,t − rBxs,t) − Tr(z − rBz)‖2

≤ 〈(xs,t − rBxs,t) − (z − rBz), us,t − z〉

=
1
2

(

‖(xs,t − rBxs,t) − (z − rBz)‖2 + ‖us,t − z‖2

−‖(xs,t − z) − r(Bxs,t − Bz) − (us,t − z)‖2
)

≤ 1
2

(

‖xs,t − z‖2 + ‖us,t − z‖2 − ‖(xs,t − us,t) − r(Bxs,t − Bz)‖2
)

=
1
2

(

‖xs,t − z‖2 + ‖us,t − z‖2 − ‖xs,t − us,t‖2

+2r〈xs,t − us,t, Bxs,t − Bz〉 − r2‖Bxs,t − Bz‖2
)

,

(3.12)

which implies that

‖us,t − z‖2 ≤ ‖xs,t − z‖2 − ‖xs,t − us,t‖2 + 2r〈xs,t − us,t, Bxs,t − Bz〉 − r2‖Bxs,t − Bz‖2

≤ ‖xs,t − z‖2 − ‖xs,t − us,t‖2 + 2r‖xs,t − us,t‖‖Bxs,t − Bz‖.
(3.13)

From (3.3), we have

‖xs,t − z‖ =
∥

∥(1 − s)(us,t − z) + s
[

tf(xs,t) + (1 − t)(xs,t − λAxs,t) − z
]∥

∥

≤ ‖us,t − z‖ + sMt.
(3.14)

Hence,

‖xs,t − z‖2 ≤ ‖us,t − z‖2 + sMt

≤ ‖xs,t − z‖2 − ‖xs,t − us,t‖2 +Mt‖Bxs,t − Bz‖ + sMt.
(3.15)

It follows that

‖xs,t − us,t‖2 ≤Mt‖Bxs,t − Bz‖ + sMt −→ 0 as s −→ 0 for each fixed t ∈ (0, 1). (3.16)
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Next, we show that, for each fixed t ∈ (0, 1), the net {xs,t} is relatively norm-compact as
s → 0. It follows from (3.8) that

‖xs,t − z‖2 = st
〈

f(xs,t) − f(z), xs,t − z
〉

+ st
〈

f(z) − z, xs,t − z
〉

+ s(1 − t)〈(I − λA)xs,t − (I − λA)z, xs,t − z〉
+ s(1 − t)〈(I − λA)z − z, xs,t − z〉
+ (1 − s)〈Tr(xs,t − rBxs,t) − Tr(z − rBz), xs,t − z〉

≤ stρ‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉

+ s(1 − t)‖xs,t − z‖2

+ s(1 − t)〈(I − λA)z − z, xs,t − z〉 + (1 − s)‖xs,t − z‖2

=
[

1 − (

1 − ρ)st]‖xs,t − z‖2 + st
〈

f(z) − z, xs,t − z
〉 − s(1 − t)λ〈Az, xs,t − z〉.

(3.17)

It turns out that

‖xs,t − z‖2 ≤ 1
(

1 − ρ)t
〈

tf(z) + (1 − t)(I − λA)z − z, xs,t − z
〉

, z ∈ EP(F, B). (3.18)

Assume that {sn} ⊂ (0, 1) is such that sn → 0 as n → ∞. By (3.18), we conclude immediately
that

‖xsn,t − z‖2 ≤
1

(

1 − ρ)t
〈

tf(z) + (1 − t)(I − λA)z − z, xsn,t − z
〉

, z ∈ EP(F, B). (3.19)

Since {xsn,t} is bounded, without loss of generality, we may assume that as sn → 0, {xsn,t}
converges weakly to a point xt. Note that {usn,t} also converges weakly to a point xt.

Now we show that xt ∈ EP. Since usn,t = Tr(xsn,t − rBxsn,t), for any y ∈ H, we have

F
(

usn,t, y
)

+
1
r

〈

y − usn,t, usn,t − (xsn,t − rBxsn,t)
〉 ≥ 0. (3.20)

From the monotonicity of F, we have

1
r

〈

y − usn,t, usn,t − (xsn,t − rBxsn,t)
〉 ≥ F(y, usn,t

)

, ∀y ∈ H. (3.21)

Hence,

〈

y − usni ,t,
usni ,t − xsni ,t

r
+ Bxsni ,t

〉

≥ F
(

y, usni ,t
)

, ∀y ∈ H. (3.22)
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Put zk = ky + (1 − k)xt for all k ∈ (0, 1] and y ∈ H. From (3.22), we have

〈

zk − usni ,t, Bzk
〉

≥
〈

zk − usni ,t, Bzk
〉

−
〈

zk − usni ,t,
usni ,t − xsni ,t

r
+ Bxsni ,t

〉

+ F
(

zk, usni ,t
)

=
〈

zk − usni ,t, Bzk − Busni ,t
〉

+
〈

zk − usni ,t, Busni ,t − Bxsni ,t
〉

−
〈

zk − usni ,t,
usni ,t − xsni ,t

r

〉

+ F
(

zk, usni ,t
)

.

(3.23)

Note that ‖Busni ,t − Bxsni ,t‖ ≤ (1/β)‖usni ,t − xsni ,t‖ → 0. Further, from monotonicity of B, we
have 〈zk − usni ,t, Bzk − Busni ,t〉 ≥ 0. Letting i → ∞ in (3.23), we have

〈zk − xt, Bzk〉 ≥ F(zk, xt). (3.24)

From (F1), (F4), and (3.24), we also have

0 = F(zk, zk) ≤ kF
(

zk, y
)

+ (1 − k)F(zk, xt)
≤ kF(zk, y

)

+ (1 − k)〈zk − xt, Bzk〉
= kF

(

zk, y
)

+ (1 − k)k〈y − xt, Bzk
〉

,

(3.25)

and hence

0 ≤ F(zk, y
)

+ (1 − k)〈Bzk, y − xt
〉

. (3.26)

Letting k → 0 in (3.26), we have, for each y ∈ H,

0 ≤ F(xt, y
)

+
〈

y − xt, Bxt
〉

. (3.27)

This implies that xt ∈ EP(F, B).
We can then substitute xt for z in (3.19) to get

‖xsn,t − xt‖2 ≤
1

(

1 − ρ)t
〈

tf(xt) + (1 − t)(I − λA)xt − xt, xsn,t − xt
〉

. (3.28)

Consequently, the weak convergence of {xsn,t} to xt actually implies that xsn,t → xt strongly.
This has proved the relative norm-compactness of the net {xs,t} as s → 0.

Now we return to (3.19) and take the limit, as n → ∞, to get

‖xt − z‖2 ≤ 1
(

1 − ρ)t
〈

tf(z) + (1 − t)(I − λA)z − z, xt − z
〉

, ∀z ∈ EP(F, B). (3.29)
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In particular, xt solves the following variational inequality:

xt ∈ EP(F, B),
〈

tf(z) + (1 − t)(I − λA)z − z, xt − z
〉 ≥ 0, ∀z ∈ EP(F, B), (3.30)

or the equivalent dual variational inequality (see Lemma 2.4)

xt ∈ EP(F, B),
〈

tf(xt) + (1 − t)(I − λA)xt − xt, xt − z
〉 ≥ 0, ∀z ∈ EP(F, B). (3.31)

Notice that (3.31) is equivalent to the fact that xt = PEP(F,B)(tf + (1 − t)(I − λA))xt. That is,
xt is the unique element in EP(F, B) of the contraction PEP(F,B)(tf + (1 − t)(I − λA)). Clearly,
this is sufficient to conclude that the entire net {xs,t} converges in norm to xt ∈ EP(F, B) as
s → 0.

Conclusion 3. The net {xt} is bounded.

Proof. In (3.31), we take any y ∈ Ω to deduce

〈

tf(xt) + (1 − t)(I − λA)xt − xt, xt − y
〉 ≥ 0. (3.32)

By virtue of the monotonicity of A and the fact that y ∈ Ω, we have

〈

(I − λA)xt − xt, xt − y
〉 ≤ 〈

(I − λA)y − y, xt − y
〉 ≤ 0. (3.33)

It follows from (3.32) and (3.33) that

〈

f(xt) − xt, xt − y
〉 ≥ 0, ∀y ∈ Ω. (3.34)

Hence,

∥

∥xt − y
∥

∥

2 ≤ 〈

xt − y, xt − y
〉

+
〈

f(xt) − xt, xt − y
〉

=
〈

f(xt) − f
(

y
)

, xt − y
〉

+
〈

f
(

y
) − y, xt − y

〉

≤ ρ∥∥xt − y
∥

∥

2 +
〈

f
(

y
) − y, xt − y

〉

.

(3.35)

Therefore,

∥

∥xt − y
∥

∥

2 ≤ 1
1 − ρ

〈

f
(

y
) − y, xt − y

〉

, ∀y ∈ Ω. (3.36)

In particular,

∥

∥xt − y
∥

∥ ≤ 1
1 − ρ

∥

∥f
(

y
) − y∥∥, ∀t ∈ (0, 1), (3.37)

which implies that (xt) is bounded.
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Conclusion 4. The net xt → x∗ ∈ Ω which solves the variational inequality VI (3.4).

Proof. First, we note that the solution of the variational inequality VI (3.4) is unique.
We next prove that ωw(xt) ⊂ Ω; namely, if (tn) is a null sequence in (0, 1) such that

xtn → x′ weakly as n → ∞, then x′ ∈ Ω. To see this, we use (3.31) to get

〈λAxt, z − xt〉 ≥ t

1 − t
〈(

I − f)xt, xt − z
〉

, z ∈ EP(F, B). (3.38)

However, since A is monotone,

〈Az, z − xt〉 ≥ 〈Axt, z − xt〉. (3.39)

Combining the last two relations yields

〈λAz, z − xt〉 ≥ t

1 − t
〈(

I − f)xt, xt − z
〉

, z ∈ EP(F, B). (3.40)

Letting t = tn → 0 as n → ∞ in (3.40), we get

〈

Az, z − x′〉 ≥ 0, z ∈ EP(F, B), (3.41)

which is equivalent to its dual variational inequality

〈

Ax′, z − x′〉 ≥ 0, z ∈ EP(F, B). (3.42)

Namely, x′ is a solution of VI (1.12); hence, x′ ∈ Ω.
We further prove that x′ = x∗, the unique solution of VI (3.4). As a matter of fact, we

have by (3.36)

∥

∥xtn − x′∥
∥

2 ≤ 1
1 − ρ

〈

f
(

x′) − x′, xtn − x′〉, x′ ∈ Ω. (3.43)

Therefore, the weak convergence to x′ of {xtn} implies that xtn → x′ in norm. Now we can let
t = tn → 0 in (3.36) to get

〈

f
(

x′) − x′, y − x′〉 ≤ 0, ∀y ∈ Ω. (3.44)

It turns out that x′ ∈ Ω solves VI (3.4). By uniqueness, we have x′ = x∗. This is sufficient to
guarantee that xt → x∗ in norm, as t → 0. The proof is complete.

Proof. By Conclusions 1–4, the proof of Theorem 3.1 is completed.
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Take B = 0. Then (1.12) reduces to the following: find a point x∗ ∈ EP(F) such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ EP(F). (3.45)

The solution of (3.45) is denoted by Ω1.

Corollary 3.2. Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient
ρ ∈ [0, 1). Let the mapping A : H → H be α-inverse strongly monotone. Let λ ∈ (0, 2α) be a
constant. Let F be a bifunction from H ×H → R satisfying (F1)–(F4). Suppose the solution set Ω1

is nonempty. Let, for each (s, t) ∈ (0, 1)2, xs,t be defined implicitly by

xs,t = s
[

tf(xs,t) + (1 − t)(xs,t − λAxs,t)
]

+ (1 − s)Tr(xs,t), s, t ∈ (0, 1). (3.46)

Then, the net {xs,t} hierarchically converges to the unique solution x∗ of the hierarchical equilibrium
problem and variational inequality problem (3.45). That is to say, for each fixed t ∈ (0, 1), the net
{xs,t} converges in norm, as s → 0, to a solution xt ∈ EP(F) of the equilibrium problem (1.11).
Moreover, as t → 0, the net {xt} converges in norm to the unique solution x∗ ∈ Ω1. Furthermore, x∗

solves the following variational inequality:

x∗ ∈ Ω1,
〈(

I − f)x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω1. (3.47)

Taking A = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient
ρ ∈ [0, 1). Let the mapping B : H → H be β-inverse strongly monotone. Let r ∈ (0, 2β) be a
constant. Let F be a bifunction fromH ×H → R satisfying (F1)–(F4). Suppose that the solution set
EP(F, B) of (1.10) is nonempty. Let, for each (s, t) ∈ (0, 1)2, xs,t be defined implicitly by

xs,t = s
[

tf(xs,t) + (1 − t)xs,t
]

+ (1 − s)Tr(xs,t − rBxs,t), s, t ∈ (0, 1). (3.48)

Then, the net {xs,t} hierarchically converges to the unique solution x∗ of the equilibrium problem
(1.10). That is to say, for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a solution
xt ∈ EP(F, B) of the equilibrium problem (1.10). Moreover, as t → 0, the net {xt} converges in norm
to the unique solution x∗ ∈ EP(F, B). Furthermore, x∗ solves the following variational inequality:

x∗ ∈ EP(F, B),
〈(

I − f)x∗, x − x∗〉 ≥ 0, ∀x ∈ EP(F, B). (3.49)

Taking A = B = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.4. Let H be a real Hilbert space. Let f : H → H be a ρ-contraction with coefficient
ρ ∈ [0, 1). Let F be a bifunction from H ×H → R satisfying (F1)–(F4). Suppose the solution set
EP(F) of (1.11) is nonempty. Let, for each (s, t) ∈ (0, 1)2, xs,t be defined implicitly by

xs,t = s
[

tf(xs,t) + (1 − t)xs,t
]

+ (1 − s)Tr(xs,t), s, t ∈ (0, 1). (3.50)
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Then, the net {xs,t} hierarchically converges to the unique solution x∗ of the equilibrium problem
(1.11). That is to say, for each fixed t ∈ (0, 1), the net {xs,t} converges in norm, as s → 0, to a
solution xt ∈ EP(F) of the equilibrium problem (1.11). Moreover, as t → 0, the net {xt} converges in
norm to the unique solution x∗ ∈ EP(F). Furthermore, x∗ solves the following variational inequality:

x∗ ∈ EP(F),
〈(

I − f)x∗, x − x∗〉 ≥ 0, ∀x ∈ EP(F). (3.51)
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[4] A. Moudafi and P.-E. Maingé, “Towards viscosity approximations of hierarchical fixed-point
problems,” Fixed Point Theory and Applications, vol. 2006, Article ID 95453, 10 pages, 2006.

[5] Y. Yao and Y.-C. Liou, “Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical
fixed point problems,” Inverse Problems, vol. 24, no. 1, Article ID 015015, 8 pages, 2008.

[6] F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “On a two-step algorithm for hierarchical fixed
point problems and variational inequalities,” Journal of Inequalities and Applications, vol. 2009, Article
ID 208692, 13 pages, 2009.

[7] F. Cianciaruso, V. Colao, L. Muglia, and H.-K. Xu, “On an implicit hierarchical fixed point approach
to variational inequalities,” Bulletin of the Australian Mathematical Society, vol. 80, no. 1, pp. 117–124,
2009.

[8] X. Lu, H.-K. Xu, and X. Yin, “Hybrid methods for a class of monotone variational inequalities,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 3-4, pp. 1032–1041, 2009.

[9] Y. Yao, R. Chen, and H.-K. Xu, “Schemes for finding minimum-norm solutions of variational
inequalities,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 7-8, pp. 3447–3456, 2010.

[10] I. Yamada and N. Ogura, “Hybrid steepest descent method for variational inequality problem over
the fixed point set of certain quasi-nonexpansive mappings,” Numerical Functional Analysis and
Optimization, vol. 25, no. 7-8, pp. 619–655, 2004.

[11] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge
University Press, Cambridge, UK, 1996.

[12] A. Cabot, “Proximal point algorithm controlled by a slowly vanishing term: applications to
hierarchical minimization,” SIAM Journal on Optimization, vol. 15, no. 2, pp. 555–572, 2005.

[13] M. Solodov, “An explicit descent method for bilevel convex optimization,” Journal of Convex Analysis,
vol. 14, no. 2, pp. 227–237, 2007.

[14] L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An iterative scheme for equilibrium
problems and fixed point problems of strict pseudo-contraction mappings,” Journal of Computational
and Applied Mathematics, vol. 223, no. 2, pp. 967–974, 2009.

[15] L.-C. Ceng and J.-C. Yao, “A hybrid iterative scheme for mixed equilibrium problems and fixed point
problems,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 186–201, 2008.



16 Fixed Point Theory and Applications

[16] Y. Yao, M. A. Noor, and Y.-C. Liou, “On iterative methods for equilibrium problems,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 497–509, 2009.

[17] J.-W. Peng and J.-C. Yao, “A new hybrid-extragradient method for generalized mixed equilibrium
problems, fixed point problems and variational inequality problems,” Taiwanese Journal of Mathemat-
ics, vol. 12, no. 6, pp. 1401–1432, 2008.

[18] J.-W. Peng and J.-C. Yao, “Some new iterative algorithms for generalizedmixed equilibrium problems
with strict pseudo-contractions and monotone mappings,” Taiwanese Journal of Mathematics, vol. 13,
no. 5, pp. 1537–1582, 2009.
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