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Let H be a real Hilbert space and let F : H → H be a boundedly Lipschitzian and strongly
monotone operator. We design three hybrid steepest descent algorithms for solving variational
inequality VI(C, F) of finding a point x∗ ∈ C such that 〈Fx∗, x − x∗〉 ≥ 0, for all x ∈ C, where C
is the set of fixed points of a strict pseudocontraction, or the set of common fixed points of finite
strict pseudocontractions. Strong convergence of the algorithms is proved.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, let C be a
nonempty closed convex subset ofH, and let F : C → H be a nonlinear operator.We consider
the problem of finding a point x∗ ∈ C such that

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.1)

This is known as the variational inequality problem (i.e., VI(C, F)), initially introduced and
studied by Stampacchia [1] in 1964. In the recent years, variational inequality problems have
been extended to study a large variety of problems arising in structural analysis, economics,
optimization, operations research, and engineering sciences; see [1–6] and the references
therein.
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Yamada [7] proposed hybrid methods to solve VI(C, F), where C is composed of fixed
points of a nonexpansive mapping; that is, C is of the form

C ≡ Fix(T) := {x ∈ H : Tx = x}, (1.2)

where T : H → H is a nonexpansive mapping (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H),
F : H → H is Lipschitzian and strongly monotone.

He and Xu [8] proved that VI(C, F) has a unique solution and iterative algorithms
can be devised to approximate this solution if F is a boundedly Lipschitzian and strongly
monotone operator and C is a closed convex subset of H. In the case where C is the set
of fixed points of a nonexpansive mapping, they invented a hybrid iterative algorithm to
approximate the unique solution of VI(C, F) and this extended the Yamada’s results.

The main purpose of this paper is to continue our research in [8]. We assume that F
is a boundedly Lipschitzian and strongly monotone operator as in [8], but C is the set of
fixed points of a strict pseudo-contraction T : H → H, or the set of common fixed points
of finite strict pseudo-contractions Ti : H → H (i = 1, . . . ,N). For the two cases of C,
we will design the hybrid iterative algorithms for solving VI(C, F) and prove their strong
convergence, respectively. Relative definitions are stated as below.

Let C be a nonempty closed and convex subset of a real Hilbert space H, F : C → H
and T : C → C, then

(1) F is called Lipschitzian on C, if there there exists a positive constant L such that

∥
∥Fx − Fy

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C; (1.3)

(2) F is called boundedly Lipschitzian on C, if for each nonempty bounded subset B of
C, there exists a positive constant κB depending only on the set B such that

∥
∥Fx − Fy

∥
∥ ≤ κB

∥
∥x − y

∥
∥, ∀x, y ∈ B; (1.4)

(3) F is said to be η-strongly monotone on C, if there exists a positive constant η > 0
such that

〈Fx − Fy, x − y〉 ≥ η
∥
∥x − y

∥
∥
2
, ∀x, y ∈ C; (1.5)

(4) T is said to be a κ-strict pseudo-contraction if there exists a constant κ ∈ [0, 1) such
that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.6)

Obviously, the nonexpansive mapping class is a proper subclass of the strict pseudo-
contraction class and the Lipschitzian operator class is a proper subclass of the boundedly
Lipschitzian operator class, respectively.

We will use the following notations:
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(i) ⇀ for weak convergence and → for strong convergence,

(ii) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn},
(iii) S(u, r) = {x : x ∈ H, ‖x − u‖ ≤ r} denotes a closed ball with center u and radius r.

2. Preliminaries

We need some facts and tools which are listed as lemmas below.

Lemma 2.1. LetH be a real Hilbert space. The following expressions hold:

(i) ‖tx+(1− t)y‖2 = t‖x‖2+(1− t)‖y‖2− t(1− t)‖x−y‖2, for all x, y ∈ H, for all t ∈ [0, 1].

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, for all x, y ∈ H.

Lemma 2.2 (see [9]). Assume that {an} is a sequence of nonnegtive real numbers satisfying the
property

an+1 ≤
(

1 − γn
)

an + γnσn, n = 0, 1, 2 . . . . (2.1)

If {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 satisfy the following conditions:

(i) limn→∞γn = 0,

(ii)
∑∞

n=1 γn = ∞,

(iii) lim supn→∞σn ≤ 0, or
∑∞

n=1 |γnσn| < ∞,

then limn→∞an = 0.

Lemma 2.3 (see [10]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C is a nonexpansive mapping. If a one has sequence {xn} in C such that xn ⇀ z and
(I − T)xn → 0, then z = Tz.

Lemma 2.4 (see [11]). Let C be a nonempty closed convex subset of a real Hilbert space H, if T :
C → C is a κ-strict pseudo-contraction, then the mapping I − T is demiclosed at 0. That is, if {xn} is
a sequence in C such that xn ⇀ x̃ and (I − T)xn → 0, then (I − T)x̃ = 0.

Lemma 2.5 (see [8]). Assume that C is a nonempty closed convex subset of a real Hilbert space H,
F : C → H, if F is boundedly Lipschitzian and η-strongly monotone, then variational inequality
(1.1) has a unique solution.

Lemma 2.6. Assume that T : H → H is a κ-strict pseudo-contraction, and the constant α satisfies
κ ≤ α < 1. Let

Tα = αI + (1 − α)T, (2.2)

then Tα is nonexpansive and Fix(Tα) = Fix(T).
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Proof. Using Lemma 2.1(i) and the conception of κ-strict pseudo-contraction, we get

∥
∥Tαx − Tαy

∥
∥
2 =

∥
∥α(x − y) + (1 − α)(Tx − Ty)

∥
∥
2

= α
∥
∥x − y

∥
∥
2 + (1 − α)

∥
∥Tx − Ty

∥
∥
2 − α(1 − α)

∥
∥(I − T)x − (I − T)y

∥
∥
2

≤ α
∥
∥x − y

∥
∥
2 + (1 − α)

[∥
∥x − y

∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2
]

− α(1 − α)
∥
∥(I − T)x − (I − T)y

∥
∥
2

=
∥
∥x − y

∥
∥
2 − (α − κ)(1 − α)

∥
∥(I − T)x − (I − T)y

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
, ∀x, y ∈ H,

(2.3)

so Tα is nonexpansive. Fix(Tα) = Fix(T) is obvious.

Lemma 2.7. Assume that H is a real Hilbert space, T : H → H is a κ-strict pseudo-contraction
such that Fix(T)/= ∅, and F : H → H is a boundedly Lipschitzian and η-strongly monotone operator.
Take x0 ∈ Fix(T) arbitrarily and set Ĉ = S(x0, 2‖Fx0‖/η). Denote by L̂ the Lipschitz constant of F
on Ĉ and let

Tα,λ =
(

I − μλF
)

Tα, (2.4)

where the constants μ and λ are such that 0 < μ < η/L̂2 and 0 < λ < 1, respectively, and Tα is defined
as in Lemma 2.6 above. Then Tα,λ restricted to Ĉ is a contraction.

Proof. If x ∈ Ĉ, that is, ‖x − x0‖ ≤ 2‖Fx0‖/η, by Lemma 2.6, we have

‖Tαx − x0‖ = ‖Tαx − Tαx0‖ ≤ ‖x − x0‖ ≤ 2‖Fx0‖
η

. (2.5)

It suggests that Tαx ∈ Ĉ. Since F is Lipschitzian and η-strongly monotone on Ĉ, using
Lemma 2.6, we obtain

∥
∥
∥Tα,λx − Tα,λy

∥
∥
∥

2
=
∥
∥
(

I − μλF
)

Tαx − (

I − μλF
)

Tαy
∥
∥
2

=
∥
∥
(

Tαx − Tαy
) − μλ

(

FTαx − FTαy
)∥
∥
2

=
∥
∥Tαx − Tαy

∥
∥
2 + μ2λ2

∥
∥FTαx − FTαy

∥
∥
2

− 2μλ
〈

Tαx − Tαy, FTαx − FTαy
〉
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≤ ∥
∥Tαx − Tαy

∥
∥
2 + μ2λ2L̂2∥∥Tαx − Tαy

∥
∥
2

− 2μλη
∥
∥Tαx − Tαy

∥
∥
2

=
(

1 + μ2λ2L̂2 − 2μλη
)∥
∥Tαx − Tαy

∥
∥
2

≤ (1 − τλ)2
∥
∥x − y

∥
∥
2
, ∀x, y ∈ Ĉ.

(2.6)

Therefore, Tα,λ restricted to that Ĉ is a contraction with coefficient 1−τλ, where τ = 1/2μ(2η−
μL̂2).

Lemma 2.8 (see [11]). Assume C is a closed convex subset of a Hilbert spaceH.

(i) Given an integerN ≥ 1, assume that for each 1 ≤ i ≤ N, Ti : C → C is a κi-strict pseudo-
contraction for some 0 ≤ κi < 1. Assume {γi}Ni=1 is a positive sequence such that

∑N
i=1 γi = 1.

Then T =
∑N

i=1 γiTi is a κ-strict pseudo-contraction, with κ = max{κi : 1 ≤ i ≤ N}.

(ii) Let {Ti}Ni=1, {γi}Ni=1, and T be given as in (i) above. Suppose that
⋂N

i=1 Fix(Ti)/= ∅, then

Fix(T) =
N⋂

i=1

Fix(Ti). (2.7)

Lemma 2.9. Assume that Ti : H → H is a κi-strict pseudo-contraction for some 0 ≤ κi < 1 (1 ≤
i ≤ N), let Tαi = αiI + (1 − αi)Ti, κi < αi < 1 (1 ≤ i ≤ N), if

⋂N
i=1 Fix(Ti)/= ∅, then

Fix(Tα1Tα2 · · · TαN ) =
N⋂

i=1

Fix(Tαi). (2.8)

Proof. We prove it by induction. For N = 2, set Tα1 = α1I + (1 − α1)T1, Tα2 = α2I + (1 − α2)T2,
κi < αi < 1, i = 1, 2. Obviously

Fix(Tα1)
⋂

Fix(Tα2) ⊂ Fix(Tα1Tα2). (2.9)

Now we prove

Fix(Tα1Tα2) ⊂ Fix(Tα1)
⋂

Fix(Tα2). (2.10)
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for all q ∈ Fix(Tα1Tα2), Tα1Tα2q = q, if Tα2q = q, then Tα1q = q, the conclusion holds. In
fact, we can claim that Tα2q = q. From Lemma 2.6, we know that Tα2 is nonexpansive and
Fix(Tα1)

⋂
Fix(Tα2) = Fix(T1)

⋂
Fix(T2)/= ∅. Take p ∈ Fix(Tα1)

⋂
Fix(Tα2), then

∥
∥p − q

∥
∥
2 =

∥
∥p − Tα1Tα2q

∥
∥
2 =

∥
∥p − [α1(Tα2q) + (1 − α1)T1Tα2q]

∥
∥
2

=
∥
∥α1(p − Tα2q) + (1 − α1)(p − T1Tα2q)

∥
∥
2

= α1
∥
∥p − Tα2q

∥
∥
2 + (1 − α1)

∥
∥p − T1Tα2q

∥
∥
2

− α1(1 − α1)
∥
∥Tα2q − T1Tα2q

∥
∥
2

≤ α1
∥
∥p − Tα2q

∥
∥
2 + (1 − α1)

[∥
∥p − Tα2q

∥
∥
2 + κ1

∥
∥Tα2q − T1Tα2q

∥
∥
2
]

− α1(1 − α1)
∥
∥Tα2q − T1Tα2q

∥
∥
2

≤ ∥
∥p − Tα2q

∥
∥
2 − (α1 − κ1)(1 − α1)

∥
∥Tα2q − T1Tα2q

∥
∥
2

≤ ∥
∥p − q

∥
∥
2 − (α1 − κ1)(1 − α1)

∥
∥Tα2q − T1Tα2q

∥
∥
2
.

(2.11)

Since κ1 < α1 < 1, we get

∥
∥Tα2q − T1Tα2q

∥
∥
2 ≤ 0, (2.12)

Namely, Tα2q = T1Tα2q, that is,

Tα2q ∈ Fix(T1) = Fix(Tα1), Tα2q = Tα1Tα2q = q. (2.13)

Suppose that the conclusion holds forN = k, we prove that

Fix(Tα1Tα2 · · · Tαk+1) =
k+1⋂

i=1

Fix(Tαi). (2.14)

It suffices to verify

Fix(Tα1Tα2 · · · Tαk+1) ⊂
k+1⋂

i=1

Fix(Tαi) (2.15)
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for all q ∈ Fix(Tα1Tα2 · · · Tαk+1), Tα1Tα2 · · · Tαk+1q = q. Using Lemma 2.6 again, take p ∈
⋂k+1

i=1 Fix(Tαi),

∥
∥p − q

∥
∥
2 =

∥
∥p − Tα1Tα2 · · · Tαk+1q

∥
∥
2

=
∥
∥p − [α1(Tα2 · · · Tαk+1q) + (1 − α1)(T1Tα2 · · · Tαk+1q)]

∥
∥
2

=
∥
∥α1(p − Tα2 · · · Tαk+1q) + (1 − α1)(p − T1Tα2 · · · Tαk+1q)

∥
∥
2

= α1
∥
∥p − Tα2 · · · Tαk+1q

∥
∥
2 + (1 − α1)

∥
∥p − T1Tα2 · · · Tαk+1q

∥
∥
2

− α1(1 − α1)
∥
∥Tα2 · · · Tαk+1q − T1Tα2 · · · Tαk+1q

∥
∥
2

≤ α1
∥
∥p − Tα2 · · · Tαk+1q

∥
∥
2

+ (1 − α1)
[∥
∥p − Tα2 · · · Tαk+1q

∥
∥
2 + κ1

∥
∥Tα2 · · · Tαk+1q − T1Tα2 · · · Tαk+1q

∥
∥
2
]

− α1(1 − α1)
∥
∥Tα2 · · · Tαk+1q − T1Tα2 · · · Tαk+1q

∥
∥
2

≤ ∥
∥p − q

∥
∥
2 − (α1 − κ1)(1 − α1)

∥
∥Tα2 · · · Tαk+1q − T1Tα2 · · · Tαk+1q

∥
∥
2
.

(2.16)

Since κ1 < α1 < 1, we have

∥
∥Tα2 · · · Tαk+1q − T1Tα2 · · · Tαk+1q

∥
∥
2 ≤ 0, (2.17)

this implies that

Tα2 · · · Tαk+1q ∈ Fix(T1) = Fix(Tα1), (2.18)

Namely,

Tα2 · · · Tαk+1q = Tα1Tα2 · · · Tαk+1q = q. (2.19)

From (2.19) and inductive assumption, we get

q ∈ Fix(Tα2 · · · Tαk+1) =
k+1⋂

i=2

Fix(Tαi), (2.20)

therefore

Tαiq = q, i = 2, 3, . . . , k + 1. (2.21)

Substituting it into (2.19), we obtain Tα1q = q. Thus we assert that

q ∈
k+1⋂

i=1

Fix(Tαi). (2.22)
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3. Further Extension of Hybrid Iterative Algorithm

Yamada got the following result.

Theorem 3.1 (see [7]). Assume that H is a real Hilbert space, T : H → H is nonexpansive
such that Fix(T)/= ∅, and F : H → H is η-strongly monotone and L-Lipschitzian. Fix a constant
μ ∈ (0, 2η/L2). Assume also that the sequence {λn} ⊂ (0, 1) satisfies the following conditions:

(i) λn → 0, n → ∞;

(ii)
∑∞

n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or limn→∞(λn/λn+1) = 1.

Take x0 ∈ Fix(T) arbitrarily and define {xn} by

xn+1 = Tλnxn =
(

I − μλnF
)

Txn, (3.1)

then {xn} converges strongly to the unique solution of VI(Fix(T), F).

He and Xu [8] proved that VI(C, F) has a unique solution if F is a boundedly
Lipschitzian and strongly monotone operator and C is a closed convex subset of H. Using
this result, they were able to relax the global Lipschitz condition on F in Theorem 3.1
to the weaker bounded Lipschitz condition and invented a hybrid iterative algorithm to
approximate the unique solution of VI(C, F). Their result extended the Yamada’s above
theorem.

In this section, we mainly focus on further extension of our hybrid algorithm in [8].
Consider VI(C, F), where C is composed of fixed points of a κ-strict pseudo-contraction T :
H → H such that Fix(T)/= ∅ and F : H → H is still η-strongly monotone and boundedly
Lipschitzian. Fix a point x0 ∈ Fix(T) arbitrarily, set Ĉ = S(x0, 2‖Fx0‖/η). Denote by L̂ the
Lipschitz constant of F on Ĉ. Fix the constant μ satisfying 0 < μ < η/L̂2. Assume also that the
sequences {αn} and {λn} satisfy κ ≤ αn ≤ α < 1 for a constant α ∈ (0, 1) and 0 < λn < 1 (n ≥ 0),
respectively. Let Tαn = αnI + (1 − αn)T and Tαn,λn = (I − μλnF)Tαn , define {xn} by the scheme:

xn+1 = Tαn,λnxn =
(

I − μλnF
)

Tαnxn, (n ≥ 0). (3.2)

We have the following result.

Theorem 3.2. If the sequences {λn} and {αn} satisfy the following conditions:

(i) λn → 0 (n → ∞);

(ii)
∑∞

n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞,
∑∞

n=0 |αn+1 − αn| < ∞, or limn→∞(λn−1/λn) = 1, limn→∞(|αn −
αn−1|/λn) = 0,

then {xn} generated by (3.2) converges strongly to the unique solution x∗ of VI(Fix(T), F).
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Proof. We prove that xn ∈ Ĉ for all n ≥ 0 by induction. It is trivial that x0 ∈ Ĉ. Suppose we
have proved xn ∈ Ĉ, that is,

‖xn − x0‖ ≤ 2‖Fx0‖
η

. (3.3)

Using Lemma 2.7, We then derive from (3.2) and (3.3) that

‖xn+1 − x0‖ =
∥
∥
∥Tαn,λnxn − x0

∥
∥
∥

≤
∥
∥
∥Tαn,λnxn − Tαn,λnx0

∥
∥
∥ +

∥
∥
∥Tαn,λnx0 − x0

∥
∥
∥

≤ (1 − τλn)‖xn − x0‖ + μλn‖Fx0‖

= (1 − τλn)‖xn − x0‖ + τλn
μ

τ
‖Fx0‖

≤ max
{

‖xn − x0‖,
μ

τ
‖Fx0‖

}

≤ max
{
2
η
,
μ

τ

}

‖Fx0‖.

(3.4)

However, since 0 < μ < η/L̂2 and τ = (1/2)μ(2η − μL̂2),we get

μ

τ
=

μ

(1/2)μ
(

2η − μL̂2
) =

2

η +
(

η − μL̂2
) ≤ 2

η
. (3.5)

This together with (3.4) implies that

‖xn+1 − x0‖ ≤ 2‖Fx0‖
η

. (3.6)

It proves that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all n ≥ 0. Thus {xn} is bounded. It is not difficult
to verify that the sequences {Txn} and {FTαnxn} are all bounded.
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By (3.2) and Lemma 2.7, we have

‖xn+1 − xn‖ =
∥
∥
∥Tαn,λnxn − Tαn−1,λn−1xn−1

∥
∥
∥

≤
∥
∥
∥Tαn,λnxn − Tαn,λnxn−1

∥
∥
∥ +

∥
∥
∥Tαn,λnxn−1 − Tαn−1,λnxn−1

∥
∥
∥

+
∥
∥
∥Tαn−1,λnxn−1 − Tαn−1,λn−1xn−1

∥
∥
∥

≤ (1 − τλn)‖xn − xn−1‖ + (1 − τλn)‖Tαnxn−1 − Tαn−1xn−1‖
+ μ|λn − λn−1|‖FTαn−1xn−1‖

≤ (1 − τλn)‖xn − xn−1‖ + (1 − τλn)|αn − αn−1| [‖xn−1‖ + ‖Txn−1‖]
+ μ|λn − λn−1|‖FTαn−1xn−1‖

≤ (1 − τλn)‖xn − xn−1‖ +M[|αn − αn−1| + |λn − λn−1|],

(3.7)

where M = supn[‖FTαnxn‖, ‖xn‖, ‖Txn‖] < ∞. By Lemma 2.2 and conditions (i)–(iii), we
conclude that

‖xn+1 − xn‖ −→ 0 (n −→ ∞). (3.8)

Since λn → 0, it is straitforward from (3.2) that

‖xn+1 − Tαnxn‖ = μλn‖FTαnxn‖ −→ 0 (n −→ ∞). (3.9)

On the other hand

‖xn+1 − Tαnxn‖ = ‖xn+1 − [αnxn + (1 − αn)Txn]‖
= ‖(xn+1 − xn) + (1 − αn)(xn − Txn)‖
≥ (1 − αn)‖xn − Txn‖ − ‖xn+1 − xn‖.

(3.10)

By the condition αn ≤ α < 1 and (3.8)–(3.10), we obtain

‖xn − Txn‖ ≤ 1
1 − αn

[‖xn+1 − Tαnxn‖ + ‖xn+1 − xn‖]

≤ 1
1 − α

[‖xn+1 − Tαnxn‖ + ‖xn+1 − xn‖] −→ 0 (n −→ ∞).

(3.11)

By Lemma 2.4 and (3.11), we obtain

ωw(xn) ⊂ Fix(T). (3.12)
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Lemma 2.5 asserts that VI(Fix(T), F) has a unique solution x∗ ∈ Fix(T). Now we prove that
‖xn − x∗‖ → 0 (n → ∞). By Lemma 2.1(ii), (3.2), and Lemma 2.7, we have

‖xn+1 − x∗‖2 =
∥
∥
∥Tαn,λnxn − x∗

∥
∥
∥

2

=
∥
∥
∥(Tαn,λnxn − Tαn,λnx∗) + (Tαn,λnx∗ − x∗)

∥
∥
∥

2

≤
∥
∥
∥Tαn,λnxn − Tαn,λnx∗

∥
∥
∥

2
+ 2〈Tαn,λnx∗ − x∗, xn+1 − x∗〉

≤ (1 − τλn)‖xn − x∗‖2 + 2μλn〈−Fx∗, xn+1 − x∗〉.

(3.13)

Let us show that

lim sup
n→∞

〈−Fx∗, xn − x∗〉 ≤ 0. (3.14)

In fact, there exists a subsequence {xnj} ⊂ {xn} such that

lim sup
n→∞

〈−Fx∗, xn − x∗〉 = lim
j→∞

〈−Fx∗, xnj − x∗〉. (3.15)

Without loss of generality, we may further assume that xnj ⇀ x̃ ∈ Fix(T). Since x∗ is the
unique solution of VI(Fix(T), F), we obtain

lim sup
n→∞

〈−Fx∗, xn − x∗〉 = lim
j→∞

〈−Fx∗, xnj − x∗〉 = −〈Fx∗, x̃ − x∗〉 ≤ 0. (3.16)

Finally conditions (i)–(iii) and (3.14) allow us to apply Lemma 2.2 to the relation (3.13) to
conclude that limn→∞‖xn − x∗‖ = 0.

4. Parallel Algorithm and Cyclic Algorithm

In this section, we discuss the parallel algorithm and the cyclic algorithm, respectively, for
solving the variational inequality over the set of the common fixed points of finite strict
pseudo-contractions.

Let H be a real Hilbert space and F : H → H a η-strongly monotone and boundedly
Lipschitzian operator. Let N be a positive integer and Ti : H → H a κi-strict pseudo-
contraction for some κi ∈ (0, 1) (i = 1, . . . ,N) such that

⋂N
i=1 Fix(Ti)/= ∅. We consider the

problem of finding x∗ ∈ ⋂N
i=1 Fix(Ti) such that

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈
N⋂

i=1

Fix(Ti). (4.1)

Since
⋂N

i=1 Fix(Ti) is a nonempty closed convex subset of H, VI(4.1) has a unique solution.
Throughout this section, x0 ∈ ⋂N

i=1 Fix(Ti) is an arbitrary fixed point, Ĉ = S(x0, 2‖Fx0‖/η),
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L̂ is the Lipschitz constant of F on Ĉ, the fixed constant μ satisfies 0 < μ < η/L̂2, and the
sequence {λn} belongs to (0, 1).

Firstly we consider the parallel algorithm. Take a positive sequence {γi}Ni=1 such that
∑N

i=1 γi = 1 and let

T =
N∑

i=1

γiTi. (4.2)

By using Lemma 2.8, we assert that T is a κ-strict pseudo-contraction with κ = max{κi : i =
1, . . . ,N} and Fix(T) =

⋂N
i=1 Fix(Ti) holds. Thus VI(4.1) is equivalent to VI(Fix(T), F) and we

can use scheme (3.2) to solve VI(4.1). In fact, taking T =
∑N

i=1 γiTi in the scheme (3.2), we get
the so-called parallel algorithm

xn+1 = Tαn,λnxn =
(

I − μλnF
)

Tαnxn (n ≥ 0). (4.3)

Using Lemma 2.8 and Thorem 3.2, the following conclusion can be deduced directly.

Theorem 4.1. Suppose that {αn} and {λn} satisfy the same conditions as in Theorem 3.2. Then the
sequence {xn} generated by the parallel algorithm (4.3) converges strongly to the unique solution x∗

of VI (4.1).

For each i = 1, . . . ,N, let

Tαi = αiI + (1 − αi)Ti, (4.4)

where the constant αi such that κi < αi < 1. Then we turn to defining the cyclic algorithm as
follows:

x1 = Tα1x0 − μλ0F(Tα1x0),

x2 = Tα2x1 − μλ1F(Tα2x1),

. . .

xN = TαNxN−1 − μλN−1F(TαNxN−1),

xN+1 = Tα1xN − μλNF(Tα1xN),

· · · .

(4.5)

Indeed, the algorithm above can be rewritten as

xn+1 = Tα[n+1]xn − μλnF
(

Tα[n+1]xn

)

, (4.6)

where Tα[n] = α[n]I +(1−α[n])T[n], T[n] = Tn mod N , namely, T[n] is one of T1, T2, . . . , TN circularly.
For convenience, we denote (4.6) as

xn+1 = Tα[n+1],λnxn. (4.7)



Fixed Point Theory and Applications 13

We get the following result

Theorem 4.2. If {λn} ⊂ (0, 1) satisfies the following conditions:

(i) λn → 0, n → ∞;

(ii)
∑∞

n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+N − λn| < ∞, or limn→∞(λn/λn+N) = 1,

then the sequence {xn} generated by (4.6) converges strongly to the unique solution x∗ of V I(4.1).

Proof. We break the proof process into six steps.
(1) xn ∈ Ĉ. We prove it by induction. Definitely x0 ∈ Ĉ. Suppose xn ∈ Ĉ, that is,

‖xn − x0‖ ≤ 2‖Fx0‖
η

. (4.8)

We have from x0 ∈
⋂N

i=1 Fix(Ti), (4.8), and Lemma 2.7 that

‖xn+1 − x0‖ =
∥
∥
∥Tα[n+1],λnxn − x0

∥
∥
∥

≤
∥
∥
∥Tα[n+1],λnxn − Tα[n+1],λnx0

∥
∥
∥ +

∥
∥
∥Tα[n+1],λnx0 − x0

∥
∥
∥

≤ (1 − τλn)‖xn − x0‖ + μλn‖Fx0‖

= (1 − τλn)‖xn − x0‖ + τλn
μ

τ
‖Fx0‖

≤ max
{

‖xn − x0‖,
μ

τ
‖Fx0‖

}

≤ max
{
2
η
,
μ

τ

}

‖Fx0‖,

(4.9)

where τ = (1/2)μ(2η − μL̂2). Observing 0 < μ < η/L̂2, we get

μ

τ
=

μ

1/2μ
(

2η − μL̂2
) =

2

η +
(

η − μL̂2
) ≤ 2

η
. (4.10)

This together with (4.9) implies that

‖xn+1 − x0‖ ≤ 2‖Fx0‖
η

. (4.11)

It suggests that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all n ≥ 0. We can also prove that the sequences
{xn}, {Tα[n]xn},{FTα[n]xn} are all bounded.
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(2) ‖xn+N − xn‖ → 0 (n → ∞). By (4.6) and Lemma 2.7, we have

‖xn+N − xn‖ =
∥
∥
∥Tα[n+N],λn+N−1xn+N−1 − Tα[n],λn−1xn−1

∥
∥
∥

≤
∥
∥
∥Tα[n+N],λn+N−1xn+N−1 − Tα[n+N],λn+N−1xn−1

∥
∥
∥

+
∥
∥
∥Tα[n+N],λn+N−1xn−1 − Tα[n],λn−1xn−1

∥
∥
∥

≤ (1 − τλn+N−1)‖xn+N−1 − xn−1‖
+ μ|λn+N−1 − λn−1|

∥
∥FTα[n]xn−1

∥
∥

≤ (1 − τλn+N−1)‖xn+N−1 − xn−1‖ +M|λn+N−1 − λn−1|,

(4.12)

where M = supn‖FTα[n]xn−1‖ < ∞. Since {λn} satisfies (i)–(iii), using Lemma 2.2, we get

‖xn+N − xn‖ −→ 0 (n −→ ∞). (4.13)

(3) ‖xn − Tα[n+N]Tα[n+N−1] · · · Tα[n+1]xn‖ → 0 (n → ∞). By (4.3) and λn → 0, we have

∥
∥xn+1 − Tα[n+1]xn

∥
∥ = μλn

∥
∥FTα[n+1]xn

∥
∥ −→ 0 (n −→ ∞). (4.14)

Recursively,

xn+N − Tα[n+N]xn+N−1 −→ 0 (n −→ ∞),

xn+N−1 − Tα[n+N−1]xn+N−2 −→ 0 (n −→ ∞).
(4.15)

By Lemma 2.6, Tα[n+N] is nonexpansive, we obtain

Tα[n+N]xn+N−1 − Tα[n+N]Tα[n+N−1]xn+N−2 −→ 0 (n −→ ∞),

Tα[n+N]Tα[n+N−1]xn+N−2 − Tα[n+N]Tα[n+N−1]Tα[n+N−2]xn+N−3 −→ 0 (n −→ ∞),

· · ·
Tα[n+N] · · · Tα[n+2]xn+1 − Tα[n+N] · · · Tα[n+1]xn −→ 0 (n −→ ∞).

(4.16)

Adding all the expressions above, we get

∥
∥xn+N − Tα[n+N]Tα[n+N−1] · · · Tα[n+1]xn

∥
∥ −→ 0 (n −→ ∞). (4.17)

Using this together with the conclusion of step (2), we obtain

∥
∥xn − Tα[n+N]Tα[n+N−1] · · · Tα[n+1]xn

∥
∥ −→ 0 (n −→ ∞). (4.18)
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(4) ωw(xn) ⊂ ⋂N
i=1 Fix(Ti). Assume that {xnj} ⊂ {xn} such that xnj ⇀ x̂, we prove

x̂ ∈ ⋂N
i=1 Fix(Ti). By the conclusion of step (3), we get

∥
∥
∥xnj − Tα[nj+N]Tα[nj+N−1] · · · Tα[nj+1]

xnj

∥
∥
∥ −→ 0,

(

j −→ ∞)

. (4.19)

Observe that, for each nj , Tα[nj+N]Tα[nj+N−1] · · · Tα[nj+1]
is some permutation of the mappings

Tα1 , Tα2 , . . . , TαN , since Tα1 , Tα2 , . . . , TαN are finite, all the full permutation are N!, there must
be some permutation that appears infinite times. Without loss of generality, suppose that this
permutation is Tα1Tα2 · · · TαN , we can take a subsequence {xnjk} ⊂ {xnj} such that

∥
∥
∥xnjk − Tα1Tα2 · · · TαNxnjk

∥
∥
∥ −→ 0 (k −→ ∞). (4.20)

It is easy to prove that Tα1Tα2 · · · TαN is nonexpansive. By Lemma 2.3, we get

x̂ = Tα1Tα2 · · · TαN x̂. (4.21)

Using Lemmas 2.6 and 2.9, we obtain

x̂ ∈ Fix(Tα1Tα2 · · · TαN ) =
N⋂

i=1

Fix(Tαi) =
N⋂

i=1

Fix(Ti). (4.22)

(5) lim supn→∞〈−Fx∗, xn − x∗〉 ≤ 0. In fact, there exists a subsequence {xnj} ⊂ {xn}
such that

lim sup
n→∞

〈−Fx∗, xn − x∗〉 = lim
j→∞

〈−Fx∗, xnj − x∗〉. (4.23)

Without loss of generality, we may further assume that xnj ⇀ x̃ ∈ ⋂N
i=1 Fix(Ti). Since x

∗ is the
solution of VI(4.1), we obtain

lim sup
n→∞

〈−Fx∗, xn − x∗〉 = lim
j→∞

〈−Fx∗, xnj − x∗〉 = −〈Fx∗, x̃ − x∗〉 ≤ 0. (4.24)

(6) xn → x∗. By (4.6), Lemmas 2.1(ii), and 2.7, we obtain

‖xn+1 − x∗‖2 =
∥
∥
∥Tα[n+1],λnxn − x∗

∥
∥
∥

2

=
∥
∥
∥(Tα[n+1],λnxn − Tα[n+1],λnx∗) + (Tα[n+1],λnx∗ − x∗)

∥
∥
∥

2

≤
∥
∥
∥Tα[n+1],λnxn − Tα[n+1],λnx∗

∥
∥
∥

2
+ 2〈Tα[n+1],λnx∗ − x∗, xn+1 − x∗〉

≤ (1 − τλn)‖xn − x∗‖2 + 2μλn〈−Fx∗, xn+1 − x∗〉.

(4.25)
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From the conclusion of step (5) and Lemma 2.2, we get

xn → x∗ (n → ∞). (4.26)
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