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We are concerned with the persistence of frequency of invariant tori for analytic integrable
Hamiltonian system with quasiperiodic perturbation. It is proved that if the unperturbed system
satisfies the Rüssmann’s nondegeneracy condition and has nonzero Brouwer’s topological degree
at someDiophantine frequency; the perturbed system satisfies the colinked nonresonant condition,
then the invariant torus with this frequency persists under quasiperiodic perturbation.

1. Introduction and Main Results

It is well known that the classical KAM theorem concludes that most of invariant tori
of integrable Hamiltonian system can survive small perturbation under Kolmogorov’s
nondegeneracy condition [1–4]. What is more, the frequency of the persisting invariant tori
remains the same. Later important generalizations of the classical KAM theorem were made
to the Rüssmann’s nondegeneracy condition [5–9]. However, in the case of Rüssmann’s
nondegeneracy condition, we can only get the existence of a family of invariant tori while
there is no information on the persistence of frequency of any torus. Recently, Chow
et al. [10] and Sevryuk [11] consider perturbations of moderately degenerate integrable
Hamiltonian system and prove that the first d frequencies (d < n, n denotes the freedom of
Hamiltonian system) of unperturbed invariant n-tori can persist. Xu and You [12] prove that
if some frequency satisfies certain nonresonant condition and topological degree condition,
the perturbed system still has an invariant torus with this frequency under Rüssmann’s
nondegeneracy condition. In this paper, we consider the case of quasiperiodic perturbation
under Rüssmann’s nondegeneracy condition.
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Consider the following Hamiltonian:

H = h
(
y
)
+ p
(
x, y, ω̃t

)
, (1.1)

where y ∈ D ⊂ R
n, x ∈ T

n, ω̃ ∈ R
m, h and p are real analytic on a complex neighborhood of

D ×T
n ×T

m,D is a closed bounded domain, Tn,Tm denote n-torus andm-torus, respectively,
and p(x, y, ω̃t) is a perturbation and quasiperiodic in φ = ω̃t. Here, a function f(t) is called
a quasiperiodic function with the vector of basic frequencies ω̃ = (ω̃1, ω̃2, . . . , ω̃m) if there is
function f(t) = F(φ1, φ2, . . . , φm), where F is 2π periodic in all of its arguments φj = ω̃j t for
j = 1, 2, . . . , m.

After introducing two conjugate variables φ mod 2π and η, the Hamiltonian (1.1) can
be written in the form of an autonomous Hamiltonian with n + m degrees of freedom as
follows:

H = h
(
y
)
+
〈
ω̃, η

〉
+ p
(
x, y, φ

)
. (1.2)

Thus, the perturbed motion of Hamiltonian (1.1) is described by the following equations:

ẋ = Hy = hy

(
y
)
+ py

(
x, y, φ

)
,

ẏ = −Hx = −px
(
x, y, φ

)
,

φ̇ = Hη = ω̃,

η̇ = −Hφ = −pφ
(
x, y, φ

)
.

(1.3)

Suppose that the frequency mapping ω(y) = ∂h(y)/∂y satisfies Rüssmann’s nondegeneracy
condition

a1ω1
(
y
)
+ a2ω2

(
y
)
+ · · · + anωn

(
y
)
/≡ 0 on D, (1.4)

for all (a1, a2, . . . , an) ∈ R
n \ {0}. The condition (1.4) is first given in [6] by Rüssmann, and it

is the sharpest one for KAM theorems.
When p = 0, the unperturbed system (1.3) has invariant tori T0 = T

n × T
m × {0} × {0}

with frequency ω = (ω(y), ω̃), carrying a quasiperiodic flow x(t) = ω(y)t+ x0, φ(t) = ω̃t+φ0.
When p /= 0, given a frequency ω = (ω0, ω̃) satisfying certain Diophantine condition,

we are concerned with the existence of invariant torus with ω as its frequency for
Hamiltonian system (1.3). The following theorem will give a positive answer.

Theorem 1.1. Consider the real analytic Hamiltonian system (1.3). Let ω(y) = hy(y) and ω0 =
ω(y0), y0 ∈ D. Suppose that ω = (ω0, ω̃) satisfies the Diophantine condition as follows:

∣∣∣
〈
k,ω0

〉
+
〈
k̃, ω̃

〉∣∣∣ ≥ α

|k|τ , ∀0/= k =
(
k, k̃

)
∈ Zn+m, (1.5)
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and the Brouwer’s topological degree of the frequency mapping ω(y) at ω0 on D is not zero, that is,

deg
(
ω
(
y
)
, D,ω0

)
/= 0, (1.6)

then there exists a sufficiently small ε > 0, such that if

∥
∥p
∥
∥ = sup

D×Tn×Tm

∣
∣p
(
x, y, φ

)∣∣ ≤ ε, (1.7)

the system (1.3) has an invariant torus with ω = (ω0, ω̃) as its frequency.

Remark 1.2. In [13] the authors only obtained the existence of invariant tori for Hamiltonian
systems (1.3), while the frequency of the persisting invariant tori may have some drifts.

As in [4], instead of proving Theorem 1.1 directly, we are going to deduce it
from another KAM theorem, which is concerned with perturbations of a family of
linear Hamiltonians. This is accomplished by introducing a parameter and changing the
Hamiltonian system (1.3) to a parameterized system. For ξ ∈ D, let y = ξ + z, then

H = e(ξ) + 〈ω(ξ), z〉 + 〈ω̃, η
〉
+ p
(
x, ξ + z, φ

)
+O

(∣∣∣z2
∣∣∣
)
, (1.8)

where e(ξ) = h(ξ), ω(ξ) = hy(ξ), ξ ∈ D is regarded as parameters. Since e(ξ) is an energy
constant, which is usually omitted, and the term O(|z2|) can be taken as a new perturbation,
we consider the Hamiltonian

H
(
x, z, φ, η; ξ

)
= 〈ω(ξ), z〉 + 〈ω̃, η

〉
+ P
(
x, z, φ; ξ

)

= N + P,
(1.9)

where N = 〈ω(ξ), z〉 + 〈ω̃, η〉 is a normal form, P = P(x, z, φ; ξ) is a small perturbation.
Let

D(s, r) =
{(

x, φ, z, η
) | |Imx| ≤ s,

∣∣Imφ
∣∣ ≤ s, |z| ≤ r,

∣∣η
∣∣ ≤ r

}

⊂ C
n/2πZ

n × C
m/2πZ

m × C
n × C

m,

Λ = {ξ ∈ D | dist(ξ, ∂D) ≥ σ},
(1.10)

where σ ≥ r > 0 is a small constant. LetΛσ be the complex neighborhood ofΛwith the radius
σ, that is,

Λσ = {ξ ∈ C
n | dist(ξ,Λ) ≤ σ}. (1.11)
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Now, theHamiltonianH(x, φ, z, η; ξ) is real analytic onD(s, r)×Λσ. The corresponding
Hamiltonian system becomes

ẋ = Hz = ω(ξ) + Pz

(
x, z, φ; ξ

)
,

ż = −Hx = −Px

(
x, z, φ; ξ

)
,

φ̇ = Hη = ω̃,

η̇ = −Hφ = −Pφ

(
x, z, φ; ξ

)
.

(1.12)

Thus, the persistence of invariant tori for nearly integrable Hamiltonian system (1.3) is
reduced to the persistence of invariant tori for the family of Hamiltonian system (1.12)
depending on the parameter ξ.

We expand

P
(
x, z, φ; ξ

)
=

∑

(k,k̃)∈Zn×Zm

Pk(z; ξ)ei(〈k,x〉+〈k̃,φ〉), (1.13)

then we define

‖P‖D(s,r)×Λσ
= sup

D(s,r)×Λσ

∣∣∣∣∣∣

∑

(k,k̃)∈Zn×Zm

Pk(z; ξ)ei(〈k,x〉+〈k̃,φ〉)

∣∣∣∣∣∣
. (1.14)

Theorem 1.3. Suppose that H(x, z, φ, η; ξ) = 〈ω(ξ), z〉 + 〈ω̃, η〉 + P(x, z, φ; ξ) is real analytic on
D(s, r) ×Λσ. Let ω0 = ω(ξ0), ξ0 ∈ Λ. Suppose that ω0 satisfies (1.5) and deg(ω(ξ),Λ, ω0)/= 0, then
there exists a sufficiently small ε > 0, such that if ‖P‖D(s,r)×Λσ

≤ ε, there exists ξ∗ ∈ Λ, such that the
Hamiltonian system (1.12) at ξ = ξ∗ has an invariant torus with (ω0, ω̃) as its frequency.

2. Proof of the Main Results

In order to prove Theorem 1.3, we introduce an external parameter λ and consider the
following Hamiltonian system:

ẋ = Hz = ω(ξ) + λ + Pz

(
x, z, φ; ξ

)
,

ż = −Hx = −Px

(
x, z, φ; ξ

)
,

φ̇ = Hη = ω̃,

η̇ = −Hφ = −Pφ

(
x, z, φ; ξ

)
,

(2.1)

where H(x, z, φ, η; ξ, λ) = 〈ω(ξ) + λ, z〉 + 〈ω̃, η〉 + P(x, z, φ; ξ). When λ = 0, the Hamiltonian
system (2.1) comes back to the system (1.12). The idea of introducing outer parameters was
used in [8, 11, 12]. We first give a KAM theorem for Hamiltonian system with parameters
(ξ, λ).
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Let d = maxξ,γ∈Λσ |ω(ξ) −ω(γ)| and define

B(ω(ξ), d) = {λ ∈ C
n | dist(λ,ω(ξ)) < d}. (2.2)

Let O = (
⋃

ξ∈Λσ
B(ω(ξ), d)) ∩ R

n.We have ω(Λ) = {ω(ξ) | ξ ∈ Λ} ⊂ O, and define

Oα =
{
Ω ∈ O |

∣
∣
∣
〈
k,Ω

〉
+
〈
k̃, ω̃

〉∣∣
∣ ≥ α

|k|τ , ∀0/= k =
(
k, k̃

)
∈ Z

n+m
}
. (2.3)

LetK > 0 and h = α/2Kτ+1. Denote Oα,h the complex neighborhood of Oα with radius h, then
for any Ω ∈ Oα,h, we have

∣
∣
∣
〈
k,Ω

〉
+
〈
k̃, ω̃

〉∣∣
∣ ≥ α

2|k|τ , ∀0/= |k| ≤ K. (2.4)

Let Π = Λσ × B(0, 2d + 1). The Hamiltonian H(x, z, φ, η; ξ, λ) is real analytic on D(s, r) ×Π.

Theorem 2.1. Consider the parameterized Hamiltonian system (2.1), which is real analytic on
D(s, r) × Π. Then there exists a sufficiently small ε > 0, such that if ‖P‖D(s,r)×Π ≤ ε, there exists
a Cantor-like family of analytic curves

Γ∗Ω = {(ξ, λ(ξ)) | ξ ∈ Λ, Ω ∈ Oα} ⊂ Π, (2.5)

which are determined implicitly by the equation

λ +ω(ξ) + F∗(ξ, λ) = Ω, (2.6)

where F∗(ξ, λ) is C∞-smooth in (ξ, λ) on Π and satisfies

|F∗(ξ, λ)| ≤ 2ε
r
,

∣∣F∗ξ(ξ, λ)
∣∣ + |F∗λ(ξ, λ)| ≤ 1

2
, (2.7)

and a parameterized family of symplectic mappings

Ψ∗(·, ·; ξ, λ) : D
(s
2
,
r

2

)
−→ D(s, r), (ξ, λ) ∈ Γ∗ =

⋃

Ω∈Oα

Γ∗Ω, (2.8)

where Ψ∗ is C∞-smooth in (ξ, λ) on Γ∗ in the sense of Whitney and analytic in (x, φ, z) on
D(s/2, r/2), such that for each (ξ, η) ∈ Γ∗, one has

H ◦Ψ∗ = 〈Ω, z〉 + 〈ω̃, η
〉
+ P∗

(
x, z, φ; ξ, λ

)
, (2.9)

where P∗(x, z, φ; ξ, λ) = O(|z|2) near z = 0. Thus, the perturbed system (2.1) possesses invariant tori
with (Ω, ω̃) as its frequency.
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Remark 2.2. The derivatives in the estimates of (2.7) should be understood in the sense of
Whitney [14]. In fact, we can extend F∗(ξ, λ) to a neighborhood of Γ∗Ω as a consequence in
[15].

Remark 2.3. In fact, we can prove that Ψ∗ is Gevrey smooth with respect to the parameters
(ξ, λ) in the sense of Whitney as in [16–18].

Proof of Theorem 1.3. Now, we use the results of Theorem 2.1 to prove Theorem 1.3. In fact,
Let Ω = ω0, then we have an analytic curve Γ∗

ω0
: λ = λ(ξ), ξ ∈ Λ, which is determined by the

equation λ +ω(ξ) + F∗(ξ, λ) = ω0. By implicit function theorem, we have

λ(ξ) = ω0 −ω(ξ) + λ∗(ξ), ξ ∈ Λ, (2.10)

where λ∗(ξ) satisfies that

|λ∗(ξ)| ≤ 2ε
r
,

∣∣λ∗ξ(ξ)
∣∣ ≤ 4ε

r
. (2.11)

By the assumption deg(ω(ξ),Λ, ω0)/= 0, if ε is sufficiently small, we have

deg(λ(ξ),Λ, 0) = deg(ω0 −ω(ξ),Λ, 0)/= 0. (2.12)

Therefore, we have some ξ∗ ∈ Λ such that λ(ξ∗) = 0. When λ(ξ∗) = 0, the Hamiltonian system
(2.1) comes back to the system (1.12). Therefore, by Theorem 2.1, at ξ∗ theHamiltonian system
(1.12) has an invariant torus with (ω0, ω̃) as its frequency.

Now, it remains to prove Theorem 2.1. Our method is the standard KAM iteration. The
difficulty is how to deal with parameters in KAM iteration.

KAM Step

The KAM step can be summarized in the following lemma.

Lemma 2.4. Consider real analytic Hamiltonian

H = 〈Ω(ξ, λ), z〉 + 〈ω̃, η
〉
+ P
(
x, z, φ; ξ, λ

)
, (2.13)

which is defined on D(s, r) ×Π, where Ω(ξ, λ) = ω(ξ) + λ + f(ξ, λ). Suppose that

‖P‖D(s,r)×Π ≤ ε. (2.14)

Suppose that the function f(ξ, λ) satisfies that

∣∣fξ(ξ, λ)
∣∣ +
∣∣fλ(ξ, λ)

∣∣ <
1
2
, ∀(ξ, λ) ∈ Π, (2.15)
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and then for all Ω ∈ Oα, the equation

Ω(ξ, λ) = ω(ξ) + λ + f(ξ, λ) = Ω (2.16)

defines implicitly an analytic mapping as follows:

λ : ξ ∈ Λσ −→ λ(ξ) ∈ B(0, 2d + 1), (2.17)

such that ΓΩ = {(ξ, λ(ξ)) | ξ ∈ Λσ} ⊂ Π. Moreover one defines

δ =
α

2LKτ+1
with L = 2 +max

ξ∈Λσ

∣
∣ωξ(ξ)

∣
∣, (2.18)

B(ΓΩ, δ) =
{(

ξ, λ′
) ∈ C

n × C
n, (ξ, λ) ∈ ΓΩ | ∣∣λ′ − λ

∣
∣ ≤ δ

} ⊂ Π. (2.19)

Then there exist Π+ ⊂ Π and D(s+, r+), such that for any (ξ, λ) ∈ Π+ there exists a symplectic
mapping

Φ(·, ·; ξ, λ) : D(s+, r+) −→ D(s, r), (2.20)

such that

H+ = H ◦Φ = 〈Ω+(ξ, λ), z〉 +
〈
ω̃, η

〉
+ P+

(
x, z, φ; ξ, λ

)
, (2.21)

where Ω+(ξ, λ) = ω(ξ) + λ + f(ξ, λ) + f+(ξ, λ).Moreover, the new perturbation satisfies

‖P+‖D(s+,r+)×Π+
≤ c

[
ε2

αrρn+τ+1
+
(
Kne−Kρ + μ2

)
ε

]

, (2.22)

where s+ = s − 5ρ, r+ = μr, and

Π+ =
{
(
ξ, λ′

) ∈ C
n × C

n | ξ ∈ Λσ−(1/2)δ, (ξ, λ) ∈ Γ,
∣∣λ′ − λ

∣∣ ≤ 1
2
δ

}
, (2.23)

with Γ =
⋃

Ω∈Oα
ΓΩ.

The term f+(ξ, λ) which may generate the drift of frequency after one KAM step satisfies that

∣∣f+(ξ, λ)
∣∣ ≤ ε

r
, ∀(ξ, λ) ∈ Π,

∣∣f+ξ(ξ, λ)
∣∣ +
∣∣f+λ(ξ, λ)

∣∣ ≤ 2ε
δr

, ∀(ξ, λ) ∈ Π+.

(2.24)

Thus, if

2ε
δr

≤ 1
4
, (2.25)
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then the equation

Ω+(ξ, λ) = ω(ξ) + λ + f(ξ, λ) + f+(ξ, λ) = Ω (2.26)

determines an analytic mapping

λ+ : ξ ∈ Λσ+ −→ λ+(ξ) ∈ B(0, 2d + 1), (2.27)

with σ+ = σ − (1/2)δ, satisfying

|λ+(ξ) − λ(ξ)| ≤ 2ε
r

≤ δ

4
, (2.28)

Γ+Ω = {(ξ, λ+(ξ)) | ξ ∈ Λσ+} ⊂ Π+. (2.29)

For K+ > 0, define δ+ = α/2LKτ+1
+ . If

δ+ <
δ

4
, (2.30)

then for all Ω ∈ Oα one has B(Γ+Ω, δ+) ⊂ Π+.

Proof of Lemma 2.4. We divide the proof into several parts.

(A) Truncation

Since P is real analytic, consider the Taylor-Fourier series of P as follows:

P =
∑

k∈Zn, k̃∈Zm, q∈Zn

Pkk̃q(ξ, λ)z
qei(〈k,x〉+〈k̃,φ〉). (2.31)

Let the truncation R of P have the following form:

R =
∑

k∈Zn, k̃∈Zm, |k|≤K

(
Pkk̃0 +

〈
Pkk̃1, z

〉)
ei(〈k,x〉+〈k̃,φ〉), (2.32)

where |k| = |k| + |k̃|, K is a positive constant. Then,

‖R‖D(s−ρ,r)×Π ≤ cε, ‖P − R‖D(s−ρ,2μr)×Π ≤ c
(
Kne−Kρε + μ2ε

)
. (2.33)
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(B) Extending the Small Divisor Estimate

By (2.16), the Diophantine condition (2.3) is satisfied for 〈k,Ω(ξ, λ)〉 + 〈k̃, ω̃〉, that is, for all
parameters (ξ, λ) ∈ Γ =

⋃
Ω∈Oα

ΓΩ.Moreover, the definition (2.18) of δ implies that

∣
∣
∣
〈
k,Ω(ξ, λ)

〉
+
〈
k̃, ω̃

〉∣∣
∣ ≥ α

2|k|τ , ∀0/= |k| ≤ K, (2.34)

for all (ξ, λ) ∈ B(Γ, δ). Indeed, for all (ξ′, λ′) ∈ B(Γ, δ), there is some (ξ, λ) ∈ Γ satisfying
|ξ − ξ′| + |λ − λ′| ≤ δ, hence

∣
∣
∣
〈
k,Ω

(
ξ′, λ′

) −Ω(ξ, λ)
〉∣∣
∣ =

∣
∣
∣
〈
k,ω

(
ξ′
) −ω(ξ) + λ′ − λ + f

(
ξ′, λ′

) − f(ξ, λ)
〉∣∣
∣

≤
∣
∣
∣k
∣
∣
∣
[(∣∣ωξ

∣
∣ +
∣
∣fξ
∣
∣)
∣
∣ξ′ − ξ

∣
∣ +
(
1 +

∣
∣fλ
∣
∣)
∣
∣λ′ − λ

∣
∣]

≤
∣∣∣k
∣∣∣
(
2 +

∣∣ωξ

∣∣) α

2LKτ+1
≤ α

2|k|τ ,

(2.35)

for 0 < |k| + |k̃| ≤ K. Together with the estimate (2.3) for 〈k,Ω(ξ, λ)〉 + 〈k̃, ω̃〉, this proves the
claim.

(C) Construction of the Symplectic Mapping

The aim of this section is to find a Hamiltonian F, such that the time 1-map Φ = Xt
F |t=1 carries

H into a new normal form with a smaller perturbation. Formally, we assume that F is of the
following form:

F =
∑

0/= |k|≤K

(
Fkk̃0 +

〈
Fkk̃1, z

〉)
ei(〈k,x〉+〈k̃,φ〉) (2.36)

if

{N,F} = [R] − R, (2.37)

where {·, ·} is the Poisson bracket, [R] =
∫
Tm[
∫
Tn R dx]dφ, then,

H ◦Φ = (N + R) ◦Φ + (P − R) ◦Φ
= N + [R] + {N,F} + R − [R]

+
∫1

0
{(1 − t){N,F} + R, F} ◦Xt

Fdt + (P − R) ◦Φ

= N+ + P+,

(2.38)

whereN+ = N + [R] = 〈Ω+(ξ, λ), z〉+ 〈ω̃, η〉, P+ =
∫1
0{(1− t){N,F}+R, F} ◦Xt

Fdt+ (P −R) ◦Φ.
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Putting (2.32) and (2.36) into (2.37) yields

∑

0/= |k|≤K
i
(〈

k,Ω(ξ, λ)
〉
+
〈
k̃, ω̃

〉)(
Fkk̃0 +

〈
Fkk̃1, z

〉)
ei(〈k,x〉+〈k̃,φ〉)

=
∑

0/= |k|≤K

(
Pkk̃0 +

〈
Pkk̃1, z

〉)
ei(〈k,x〉+〈k̃,φ〉).

(2.39)

Equation (2.39) is solvable because the Diophantine condition (2.34) is satisfied for all
parameters (ξ, λ) ∈ B(Γ, δ), then we have

F =
∑

0/= |k|≤K

(
Pkk̃0 +

〈
Pkk̃1, z

〉)
ei(〈k,x〉+〈k̃,φ〉)

i
(〈

k,Ω(ξ, λ)
〉
+
〈
k̃, ω̃

〉) , ∀(ξ, λ) ∈ B(Γ, δ), (2.40)

which satisfies ‖F‖D(s−2ρ,r)×B(Γ,δ) ≤ cε/αρτ+n.

Moreover, with the estimate of Cauchy, we get ‖Fx‖D(s−3ρ,r) ≤ cε/αρτ+n+1,

‖Fφ‖D(s−3ρ,r) ≤ cε/αρτ+n+1, and ‖Fz‖D(s−2ρ,r/2) ≤ cε/αrρτ+n, hence

1
r
‖Fx‖, 1

r

∥∥Fφ

∥∥,
1
ρ
‖Fz‖ ≤ cε

αrρτ+n+1
, (2.41)

uniformly on D(s − 3ρ, r/2) × B(Γ, δ).

(D) Estimates of the Symplectic Mapping

The coordinate transformation Φ is obtained as the time 1-map of the flow Xt
F of the

Hamiltonian vectorfield XF, with equations

ż = −Fx, η̇ = −Fφ, ẋ = Fz, φ̇ = Fη = 0. (2.42)

Thus, if 0 < μ ≤ 1/8 and ε is sufficiently small, we have for all (ξ, λ) ∈ B(Γ, δ),

Φ(·, ·; ξ, λ) = X1
F :
(
s − 4ρ, 2μr

) −→ (
s − 3ρ, 3μr

)
, (2.43)

|U1 − id| ≤ ‖Fx‖ ≤ cε

αρτ+n+1
, |U2 − id| ≤ ∥∥Fφ

∥∥ ≤ cε

αρτ+n+1
,

|V − id| ≤ ‖Fz‖ ≤ cε

αrρτ+n
,

(2.44)

on D(s − 4ρ, 2μr) × B(Γ, δ) for Φ = (U1(x, φ, z), U2(x, φ, z), V (x, φ)),whereU1, U2 is affine in
z, and V is independent of z.

Let W = diag(r−1In, r−1Im, ρ−1In),where In is the nth unit matrix. Thus, it follows that

‖W(Φ − id)‖D(s−4ρ,2μr)×B(Γ,δ) ≤
cε

αrρτ+n+1
. (2.45)
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By the preceding estimates and the Cauchy’s estimate, we have

∥
∥
∥W(DΦ − Id)W−1

∥
∥
∥
D(s−5ρ,μr)×B(Γ,δ)

≤ cε

αrρτ+n+1
, (2.46)

where DΦ denotes the Jacobian matrix with respect to (z, x, φ).

(E) Estimates of New Error Term

To estimate P+, we first consider the term {R, F}. By Cauchy’s estimate,

‖{R, F}‖D(s−3ρ,r/2) ≤ c(‖Rz‖‖Fx‖ + ‖Rx‖‖Fz‖)

≤ c

(
ε

r
· ε

αρτ+n+1
+
ε

ρ
· ε

αrρτ+n

)
≤ cε2

αrρτ+n+1
.

(2.47)

The same holds for ‖{{N,F}, F}‖D(s−3ρ,r/2). Together with (2.43) and μ ≤ 1/8, we get

∥∥∥∥∥

∫1

0
{(1 − t){N,F} + R, F} ◦Xt

Fdt

∥∥∥∥∥
D(s−5ρ,μr)

≤ ‖{(1 − t){N,F} + R, F}‖D(s−4ρ,2μr) ≤
cε2

αrρτ+n+1
.

(2.48)

The other term in P+ is bounded by

‖(P − R) ◦Φ‖D(s−5ρ,μr) ≤ ‖(P − R)‖D(s−4ρ,2μr)

≤ c
(
Kne−Kρε + μ2ε

)
.

(2.49)

Let s+ = s − 5ρ, r+ = μr. The preceding estimates are uniform in the domain of parameters
B(Γ, δ), so the new perturbation satisfies that

‖P+‖D(s+,r+)×Π+
≤ c

[
ε2

αrρτ+n+1
+
(
Kne−Kρ + μ2

)
ε

]

. (2.50)

Since f+(ξ, λ) = P001, the estimate for f+ holds. Let Π+ be defined as in Lemma 2.4, we have
dist(Π+, ∂Π) ≥ (1/2)δ. Then, for all (ξ, λ) ∈ Π+, the Cauchy’s estimate yields the estimate for
f+ξ(ξ, λ) and f+λ(ξ, λ). Moreover, by (2.25), we have

∣∣∣∣
∂Ω+(ξ, λ)

∂λ

∣∣∣∣ ≥ 1 − ∣∣fλ(ξ, λ)
∣∣ − ∣∣f+λ(ξ, λ)

∣∣ ≥ 1
4 /= 0. (2.51)

Thus, by the implicit function theorem, the equation

Ω+(ξ, λ) = ω(ξ) + λ + f(ξ, λ) + f+(ξ, λ) = Ω (2.52)
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determines an analytic curve

λ+ : ξ ∈ Λσ+ −→ λ+(ξ). (2.53)

Moreover, we have

|λ+(ξ) − λ(ξ)| ≤ ∣∣fλ
∣
∣ · |λ+ − λ| + ∣∣f+(ξ, λ+)

∣
∣

≤ 1
2
|λ+ − λ| + ε

r
,

(2.54)

this proves (2.28). By the estimates (2.28) and (2.30), the conclusion Γ+Ω ⊂ Π+, B(Γ+Ω, δ+) ⊂ Π+

holds. Thus, the proof of Lemma 2.4 is complete.

KAM Iteration

In this section, we have two tasks which ensure that the above iteration can go on infinitely.
The first one is to choose some suitable parameters, the other one is to verify some
assumptions in Lemma 2.4.

For given ρ0 = s/20, r0 = r, s0 = s, ε0 = αr0ρ
τ+n+1
0 E0, and μ0 = E1/2

0 , K0 is determined by
Kn

0e
−K0ρ0 = E0, we define ρj+1 = ρj/2, sj+1 = sj − 5ρj , μj = E1/2

j , rj+1 = μjrj , Ej+1 = cE3/2
j , and

εj+1 = αrj+1ρ
τ+n+1
j+1 Ej+1, Kj+1 is determined by the equation Kn

j+1e
−Kj+1ρj+1 = Ej+1.

Let Π0 = Λ0 × B(0, 2d + 1), D0 = D(s0, r0). By the iteration lemma, we have a sequence
of parameter sets Πj with Πj+1 ⊂ Πj and a sequence of symplectic mappings Φj such that
Φj : Dj+1 ×Πj+1 → Dj ×Πj ,where Dj = D(sj , rj).Moreover, we have

∥∥Wj

(
Φj − id

)∥∥
Dj×Πj

≤ cEj ,

∥∥∥Wj

(
DΦj − Id

)
W−1

j

∥∥∥
Dj×Πj

≤ cEj ,
(2.55)

where Wj = diag(r−1j In, r
−1
j Im, ρ

−1
j In).

Let Ψj = Φ0 ◦Φ1 ◦ · · · ◦Φj−1 with Ψ0 = id, then

Hj = H0 ◦Ψj = Nj + Pj, (2.56)

where Nj = 〈Ωj(ξ, λ), z〉 + 〈ω̃, η〉, and Ωj(ξ, λ) = ω(ξ) + λ + Σj−1
i=0fi(ξ, λ).

Let δj = α/2LKτ+1
j , σj = σj−1 − (1/2)δj−1, where L = 2 + maxξ∈Λσj

|ωξ(ξ)|, σ0 = σ. From
the iteration lemma, we have that for all Ω ∈ Oα, the equation

Ωj(ξ, λ) = ω(ξ) + λ + Σj−1
i=0fi(ξ, λ) = Ω (2.57)
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on Πj defines implicitly an analytic mapping λ = λj(ξ), ξ ∈ Λσj , whose image in Πj forms an

analytic curve ΓjΩ. Let Γ
j =
⋃

Ω∈Oα
ΓjΩ.We define

Πj+1 =
{
(
ξ, λ′

) ∈ C
n × C

n | ξ ∈ Λσj+1 , (ξ, λ) ∈ Γj ,
∣
∣λ′ − λ

∣
∣ ≤ 1

2
δj

}
, (2.58)

which satisfies the property Πj+1 ⊂ Πj ,dist(Πj+1, ∂Πj) ≥ (1/2)δj .
Let fj(ξ, λ) = Ωj+1(ξ, λ) −Ωj(ξ, λ), then we have

∣
∣fj(ξ, λ)

∣
∣ ≤ εj

rj
, ∀(ξ, λ) ∈ Πj ,

∣
∣fjξ(ξ, λ)

∣
∣ +
∣
∣fjλ(ξ, λ)

∣
∣ ≤ 2εj

δjrj
, ∀(ξ, λ) ∈ Πj+1.

(2.59)

Moreover, we have

∣∣λj+1(ξ) − λj(ξ)
∣∣ ≤ 2εj

rj
, ∀(ξ, λ) ∈ Πj+1. (2.60)

The new perturbation Pj satisfies that ‖P‖Dj×Πj
≤ εj = αrjρ

τ+n+1
j Ej .

In the following, we will check the assumptions in Lemma 2.4 to ensure that KAM step
is valid for all j ≥ 0.

Let Gj = 2εj/δjrj . It follows that

Gj+1

Gj
=

xn+τ+1
j+1 e−xj+1

xn+τ+1
j e−xj

, (2.61)

where xj = Kjρj . By Ej+1 = cE3/2
j , if E0 is sufficiently small, Ej are all sufficiently small and so

xj = Kjρj are sufficiently large. Since the function xn+τ+1e−x decreases as x > n + τ + 1,we can
choose a sufficiently small E0 such that Gj+1/Gj ≤ 1/4 and Gj ≤ 1/4, for all j ≥ 0. Moreover,

δj+1

δj
=
(
1
2

)τ+1
(

xj

xj+1

)τ+1

≤ 1
4
. (2.62)

Thus, the assumptions (2.25) and (2.30) hold.

Convergence of the Iteration

Now, we prove convergence of the KAM iteration. Let Π∗ =
⋂

j≥0 Πj and Ψ = limj→∞Ψj . In
the same way as in [4, 13], we have the convergence Ψj to Ψ on D(s/2, r/2) ×Π∗, satisfying
that

‖W0(Ψ − id)‖D(s/2,r/2)×Π∗ ≤ cE0. (2.63)
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Let Fj =
∑j−1

i=0 fi(ξ, λ). Now, we prove the convergence of Fj. Combining with the
estimates for fj(ξ, λ), we have for all (ξ, λ) ∈ Πj ,

∣
∣Fj(ξ, λ)

∣
∣ ≤

j−1∑

i=0

δiGi

2
≤ δ0

2

j−1∑

i=0

Gi ≤ 2
3
δ0G0 ≤ 2ε

r
. (2.64)

Similarly, it follows that for all (ξ, λ) ∈ Πj ,

∣
∣Fjξ(ξ, λ)

∣
∣ +
∣
∣Fjλ(ξ, λ)

∣
∣ ≤

j−1∑

i=0

Gi ≤ 4
3
G0 =

16
3
Lxτ+n+1

0 e−x0 . (2.65)

Then if E0 is sufficiently small and so x0 is sufficiently large, we have

∣∣Fjξ(ξ, λ)
∣∣ +
∣∣Fjλ(ξ, λ)

∣∣ ≤ 1
2
, ∀(ξ, λ) ∈ Πj , (2.66)

the assumption (2.15) holds.
Let F∗ = limj→∞Fj, then for all (ξ, λ) ∈ Π∗,we have

|F∗(ξ, λ)| ≤ 2ε
r
,

∣∣F∗ξ(ξ, λ)
∣∣ + |F∗λ(ξ, λ)| ≤ 1

2
.

(2.67)

This proves (2.7).
Let σ∗ = σ − (1/2)

∑∞
j=0 δj . By (2.62), it follows that σ∗ ≥ σ − (2/3)δ0. If E0 is sufficiently

small such that δ0 ≤ σ, we have σ∗ ≥ (1/3)σ. Thus, Λσ∗ ⊂
⋂

j≥0 Λσj .
Similarly, we can prove the convergence of λj(ξ) on Λσ∗ . In fact, we can choose E0

sufficiently small such that Gj ≤ 1/4, for all j ≥ 0. Then for l ≥ j, it follows that

∣∣λl(ξ) − λj(ξ)
∣∣ ≤

l−1∑

i=j

Giδi ≤ 4
3
Gjδj ≤

δj

2
. (2.68)

Let λ(ξ) = liml→∞λl(ξ), then we have

∣∣λ(ξ) − λj(ξ)
∣∣ ≤ δj

2
. (2.69)

This implies that Γ∗Ω = {(ξ, λ(ξ)) | ξ ∈ Λσ∗} ⊂ Πj . So Γ∗ =
⋃

Ω∈Oα
Γ∗Ω ⊂ Π∗ =

⋂
j≥0 Πj . Moreover,

for (ξ, λ) ∈ Γ∗, we have

ω(ξ) + λ + F∗(ξ, λ) = Ω. (2.70)

Thus, the proof of Theorem 2.1 is complete.
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3. Some Examples

Example 3.1. We consider the following system:

H = ω1y1 +
y4
1

4
+ω2y2 +

y4
2

4
+ ε(sin ω̃1t + sin ω̃2t), (3.1)

where

N = ω1y1 +
y4
1

4
+ω2y2 +

y4
2

4
, P = ε(sin ω̃1t + sin ω̃2t). (3.2)

The frequency mapping

ω
(
y
)
=

∂N

∂y
=
(
ω1 + y3

1 , ω2 + y3
2

)
(3.3)

at y = 0 does not satisfy the Kolmogorov’s nondegeneracy condition. But

Rank

{

ω
(
y
)
,
∂ω
(
y
)

∂y

}

= Rank

⎧
⎨

⎩

ω1 + y3
1 3y2

1 0

ω2 + y3
2 0 3y2

2

⎫
⎬

⎭
= 2. (3.4)

So according to our theorem, if ε is sufficiently small, ω = (ω, ω̃) satisfies the Diophantine
condition and deg(ω(y), D,ω)/= 0, the perturbed system still has an invariant torus with ω =
(ω, ω̃) as its frequency.

Example 3.2. We consider the following quasiperiodic mapping A:

x1 = x +ω + β
(
y
)
+ f
(
x, y

)
,

y1 = y + g
(
x, y

)
,

(3.5)

where f and g are quasiperiodic in x with frequencies μ1, . . . , μm, real analytic in x and y,
the variable y ranges in a neighborhood of the origin of real line R, ω is a positive constant.
Suppose that the mapping A is reversible with respect to the involution R : (x, y) → (−x, y),
that is A ◦ R ◦A = R.

When dβ(y)/dy /= 0, ω satisfies certain Diophantine condition and f, g are sufficiently
small, the existence of invariant curve withω as its frequency has been proved in [19, 20]. The
condition dβ(y)/dy /= 0 is called twist condition. The natural question is when the condition
dβ(y)/dy /= 0 is not satisfied, that is, there is some y∗ such that dβ(y∗)/dy = 0,whether there
exists invariant curve for mapping (3.5), whether its frequency can persist without any drift.
By the method of introducing an external parameter as in our paper, we can prove that the
mapping (3.5) still has an invariant curve with ω as its frequency, when β(y) = y2n+1. For
detailed proofs, we refer to [21].

Remark 3.3. When β(y) = y2n, we can only prove the existence of invariant curve for the
mapping (3.5), but its frequency has some drifts.
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