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We characterize (i) matrices which are nonexpansive with respect to some matrix norms, and (ii)
matrices whose average iterates approach zero or are bounded. Then we apply these results to
iterative solutions of a system of linear equations.

Throughout this paper, R will denote the set of real numbers, C the set of complex numbers,
and Mn the complex vector space of complex n × n matrices. A function ‖ · ‖ : Mn → R is a
matrix norm if for all A,B ∈ Mn, it satisfies the following five axioms:

(1) ‖A‖ ≥ 0;

(2) ‖A‖ = 0 if and only if A = 0;

(3) ‖cA‖ = |c|‖A‖ for all complex scalars c;

(4) ‖A + B‖ ≤ ‖A‖ + ‖B‖;
(5) ‖AB‖ ≤ ‖A‖ ‖B‖.

Let | · | be a norm on C
n. Define ‖ · ‖ on Mn by

‖A‖ = max
|x|=1

|Ax|. (1)

This norm on Mn is a matrix norm, called the matrix norm induced by | · |. A matrix norm on
Mn is called an induced matrix norm if it is induced by some norm on C

n. If ‖ · ‖1 is a matrix
norm on Mn, there exists an induced matrix norm ‖ · ‖2 on Mn such that ‖A‖2 ≤ ‖A‖1 for all
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A ∈ Mn (cf. [1, page 297]). Indeed one can take ‖ · ‖2 to be the matrix norm induced by the
norm | · | on C

n defined by

|x| = ‖C(x)‖1, (2)

where C(x) is the matrix in Mn whose columns are all equal to x. For A ∈ Mn, ρ(A) denotes
the spectral radius of A.

Let | · | be a norm in C
n. A matrix A ∈ Mn is a contraction relative to | · | if it is a

contraction as a transformation from C
n into C

n; that is, there exists 0 ≤ λ < 1 such that

∣
∣Ax −Ay

∣
∣ ≤ λ

∣
∣x − y

∣
∣, x, y ∈ C

n. (3)

Evidently this means that for the matrix norm ‖ · ‖ induced by | · |, ‖A‖ < 1. The following
theorem is well known (cf. [1, Sections 5.6.9–5.6.12]).

Theorem 1. For a matrix A ∈ Mn, the following are equivalent:

(a) A is a contraction relative to a norm in C
n;

(b) ‖A‖ < 1 for some induced matrix norm ‖ · ‖;

(c) ‖A‖ < 1 for some matrix norm ‖ · ‖;

(d) limk→∞Ak = 0;

(e) ρ(A) < 1.

That (b) follows from (c) is a consequence of the previous remark about an induced matrix
norm being less than a matrix norm. Since all norms on Mn are equivalent, the limit in (d)
can be relative to any norm on Mn, so that (d) is equivalent to all the entries of Ak converge
to zero as k → ∞, which in turn is equivalent to limk→∞Akx = 0 for all x ∈ C

n.
In this paper, we first characterize matrices inMn that are nonexpansive relative to some

norm | · | on C
n, that is,

∣
∣Ax −Ay

∣
∣ ≤ ∣∣x − y

∣
∣, x, y ∈ C

n. (4)

Then we characterize those A ∈ Mn such that

Ak =
1
k

(

I +A +A2 + · · · +Ak−1
)

(5)

converges to zero as k → ∞, and those that {Ak : k = 0, 1, 2, . . .} is bounded.
Finally we apply our theory to approximation of solution of Ax = b using iterative

methods (fixed point iteration methods).
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Theorem 2. For a matrix A ∈ Mn, the following are equivalent:

(a) A is nonexpansive relative to some norm on C
n;

(b) ‖A‖ ≤ 1 for some induced matrix norm ‖ · ‖;
(c) ‖A‖ ≤ 1 for some matrix norm ‖ · ‖;
(d) {Ak : k = 0, 1, 2, . . .} is bounded;
(e) ρ(A) ≤ 1, and for any eigenvalue λ of A with |λ| = 1, the geometric multiplicity is equal to

the algebraic multiplicity.

Proof. As in the previous theorem, (a), (b), and (c) are equivalent. Assume that (b) holds. Let
the norm ‖ · ‖ be induced by a vector norm | · | of C

n. Then

∣
∣
∣Ak(x)

∣
∣
∣ ≤
∥
∥
∥Ak

∥
∥
∥ |x| ≤ ‖A‖k|x| ≤ |x|, k = 0, 1, 2, . . . , (6)

proving thatAk(x) is bounded in norm | · | for every x ∈ C
n. Taking x = ei, we see that the set

of all columns ofAk, k = 0, 1, 2, . . . , is bounded. This proves thatAk, k = 0, 1, 2, . . . , is bounded
in maximum column sum matrix norm ([1, page 294]), and hence in any norm in Mn. Note
that the last part of the proof also follows from the Uniform Boundedness Principle (see, e.g.,
[2, Corollary 21, page 66])

Now we prove that (d) implies (e). Suppose that A has an eigenvalue λ with λ > 1.
Let x be an eigenvector corresponding to λ. Then

∥
∥
∥Akx

∥
∥
∥ = |λ|k‖x‖ −→ ∞ (7)

as k → ∞, where ‖ · ‖ is any vector norm of C
n. This contradicts (d). Hence |λ| ≤ 1. Now

suppose that λ is an eigenvalue with |λ| = 1 and the Jordan block corresponding to λ is not
diagonal. Then there exist nonzero vectors v1, v2 such that Av1 = λv1, A(v2) = v1 + λv2. Let
u = v1 + v2. Then

Aku = λk−1(λ + k)v1 + λkv2, (8)

and ‖Ak(u)‖ ≥ k‖v1‖ − ‖v1‖ − ‖v2‖. It follows that Aku, k = 0, 1, 2, . . . , is unbounded,
contradicting (d). Hence (d) implies (e).

Lastly we prove that (e) implies (c). Assume that (e) holds. A is similar to its Jordan
canonical form J whose nonzero off-diagonal entries can be made arbitrarily small by
similarity ([1, page 128]). Since the Jordan block for each eigenvalue with modulus 1 is
diagonal, we see that there is an invertible matrix S such that the l1-sum of each row of
SAS−1 is less than or equal to 1, that is, ‖SAS−1‖∞ ≤ 1, where ‖ · ‖∞ is the maximum row sum
matrix norm ([1, page 295]). Define a matrix norm ‖ · ‖ by ‖M‖ = ‖SMS−1‖∞. Then we have
‖A‖ ≤ 1.

Let λ be an eigenvalue of a matrix A ∈ Mn. The index of λ, denoted by index(λ) is the
smallest value of k for which rank(A − λI)k = rank(A − λI)k+1 ([1, pages 148 and 131]). Thus
condition (e) above can be restated as ρ(A) ≤ 1, and for any eigenvalue λ of A with |λ| = 1,
index(λ) = 1.
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Let A ∈ Mn. Consider

Ak =
1
k

(

I +A + · · · +Ak−1
)

. (9)

We call Ak the k-average of A. As with Ak, we have Akx → 0 for every x if and only if
Ak → 0 in Mn, and that Akx is bounded for every x if and only if Ak is bounded in Mn. We
have the following theorem.

Theorem 3. Let A ∈ Mn. Then

(a) Ak, k = 1, 2, . . . , converges to 0 if and only if ‖A‖ ≤ 1 for some matrix norm ‖ · ‖ and that
1 is not an eigenvalue of A,

(b) Ak, k = 1, 2, . . . , is bounded if and only if ρ(A) ≤ 1, index(λ) ≤ 2 for every eigenvalue λ
with |λ| = 1 and that index(1) = 1 if 1 is an eigenvalue of A.

Proof. First we prove the sufficiency part of (a). Let x be a vector in C
n. Let

yk =
1
k

(

I +A + · · · +Ak−1
)

(x). (10)

By Theorem 2 for any eigenvalues λ of A either |λ| < 1 or |λ| = 1 and index(λ) = 1.
If A is written in its Jordan canonical form A = SJS−1, then the k-average of A is

SJ ′S−1, where J ′ is the k-average of J . J ′ is in turn composed of the k-average of each of its
Jordan blocks. For a Jordan block of J of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 1
λ 1

· ·
· 1

λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

|λ| must be less than 1. Its k-average has constant diagonal and upper diagonals. Let Dj be
the constat value of its jth upper diagonal (D0 being the diagonal) and let Sj = kDj . Then
(C(m,n) = 0 for n > m)

S0 =
1 − λk

1 − λ
,

Sj = C
(

j, j
)

+ C
(

j + 1, j
)

λ + · · · + C
(

k − 1, j
)

λk−1−j , j = 1, 2, . . . , n − 1.

(12)

Using the relation C(m + 1, j) − C(m, j) = C(m, j − 1), we obtain

Sj − λSj = Sj−1 − λk−jC
(

k, j
)

. (13)

Thus, we have S0 → 1/(1 − λ) as k → ∞. By induction, using (13) above and the fact that
λk−jC(k, j) → 0 as k → ∞, we obtain Sj → 1/(1 − λ)j+1 as k → ∞. Therefore Dj = Sj/k =
O(1/k) as k → ∞.
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If the Jordan block is diagonal of constant value λ, then λ/= 1, |λ| ≤ 1 and the k-average
of the block is diagonal of constant value (1 − λk)/k(1 − λ) = O(1/k).

We conclude that ‖Ak‖ = O(1/k) and hence ‖yk‖ ≤ ‖Ak‖‖x‖ = O(1/k) as k → ∞.
Now we prove the necessity part of (a). If 1 is an eigenvalue of A and x is a

corresponding eigenvector, then Akx = x /= 0 for every k and of course Bkx fails to converge
to 0. If λ is an eigenvalue of A with |λ| > 1 and x is a corresponding eigenvector, then

‖Akx‖ =

∣
∣
∣
∣
∣

λk − 1
k(λ − 1)

∣
∣
∣
∣
∣
‖x‖ ≥ |λ|k − 1

k|λ − 1| ‖x‖. (14)

which approaches to ∞ as k → ∞. If λ is an eigenvalue of A with |λ| = 1, λ /= 1, and
index(λ) ≥ 2, then there exist nonzero vectors v1, v2 such that A(v1) = λv1, A(v2) = v1 + λv2.
Then by using the identity

1 + 2λ + 3λ2 + · · · + (k − 1)λk−2 =
1 − λk−1

(1 − λ)2
− (k − 1)

λk−1

1 − λ
(15)

we get

Ak(v2) =

(

1 − λk−1

k(1 − λ)2
−
(

1 − 1
k

)
λk−1

1 − λ

)

v1 +
1 − λk

k(1 − λ)
v2. (16)

It follows that limk→∞Ak(v2) does not exist. This completes the proof of part (a).
Suppose that A satisfies the conditions in (b) and that A = SJS−1 is the Jordan

canonical form of A. Let λ be an eigenvalue of A and let v be a column vector of S
corresponding to λ. If |λ| < 1, then the restriction B of A to the subspace spanned by
v,Av,A2v, . . . is a contraction, and we have ‖Akv‖ = ‖Bkv‖ ≤ ‖v‖. If |λ| = 1, and λ/= 1,
then by conditions in (b) either Av = λv, or there exist v1, v2 with v = v2 such that
A(v1) = λv1, A(v2) = v1 + λv2. In the former case, we have ‖Ak‖ ≤ ‖v‖ and in the latter case,
we see from (16) that Ak(v) = Ak(v2) is bounded. Finally if λ = 1 then since index(1) = 1, we
have Av = v and hence Akv = v. In all cases, we proved that Akv, k = 0, 1, 2, . . . , is bounded.
Since column vectors of S form a basis for C

n, the sufficiency part of (b) follows.
Now we prove the necessity part of (b). If A has an eigenvalue λ with |λ| > 1 and

eigenvector v, then as shown above Ak(v) → ∞ as k → ∞. If A has 1 as an eigenvalue and
index(1) ≥ 2, then there exist nonzero vectors v1, v2 such that Av1 = v1 and Av2 = v1 + v2.
ThenAk(v2) = ((k−1)/2)+v2 which is unbounded. If λ is an eigenvalue ofAwith |λ| = 1, λ /= 1
and index(λ) ≥ 3, then there exist nonzero vectors v1, v2 and v3 such that Av1 = λv1, A(v2) =
v1 +λv2 andA(v3) = v2 +λv3. By expandingAj(v3), j = 0, 1, 2, . . . , k − 1 and using the identity

k−1∑

j=2

C
(

j, 2
)

λj−2 =
1

(1 − λ)2

(

1 − λk−2

1 − λ
+
1
2
(k − 2)λk−2((k − 1)λ − (k + 1))

)

, (17)
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we obtain

Ak(v3) =
1

(1 − λ)2

(

1 − λk−2

k(1 − λ)
+
1
2
(k − 2)λk−2

(
k − 1
k

λ − k + 1
k

))

v1

+

(

1 − λk−1

k(1 − λ)2
−
(

1 − 1
k

)
λk−1

1 − λ

)

v2 +
1 − λk

k(1 − λ)
v3

(18)

which approaches to∞ as k → ∞. This completes the proof.

We now consider applications of preceding theorems to approximation of solution of
a linear systemAx = b, whereA ∈ Mn and b a given vector in C

n. LetQ be a given invertible
matrix in Mn. x is a solution of Ax = b if and only if x is a fixed point of the mapping T
defined by

Tx =
(

I −Q−1A
)

x +Q−1b. (19)

T is a contraction if and only if I − Q−1A is. In this case, by the well known Contraction
Mapping Theorem, given any initial vector x0, the sequence of iterates xk = Tkx0, k =
0, 1, 2, . . . , converges to the unique solution of Ax = b. In practice, given x0, each successive
xk is obtained from xk−1 by solving the equation

Q(xk) = (Q −A)xk−1 + b. (20)

The classical methods of Richardson, Jacobi, and Gauss-Seidel (see, e.g., [3]) have Q = I,D,
and L respectively, where I is the identity matrix, D the diagonal matrix containing the
diagonal of A, and L the lower triangular matrix containing the lower triangular portion
of A. Thus by Theorem 1 we have the following known theorem.

Theorem 4. Let A,Q ∈ Mn, with Q invertible. Let b, x0 ∈ C
n. If ρ(I − Q−1A) < 1, then A is

invertible and the sequence xk, k = 1, 2, . . . , defined recursively by

Q(xk) = (Q −A)xk−1 + b (21)

converges to the unique solution of Ax = b.

Theorem 4 fails if ρ(I −Q−1A) = 1, For a simple 2 × 2 example, let Q = I, b = 0, A = 2I
and x0 any nonzero vector.

We need the following lemma in the proof of the next two theorems. For a matrix
A ∈ Mn, we will denote R(A) and N(A) the range and the null space of A respectively.

Lemma 5. Let A be a singular matrix in Mn such that the geometric multiplicity and the algebraic
multiplicity of the eigenvalue 0 are equal, that is, index(0) = 1. Then there is a unique projection
PA whose range is the range of A and whose null space is the null space of A, or equivalently, C

n =
R(A)⊕N(A). Moreover,A restricted to R(A) is an invertible transformation from R(A) onto R(A).
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Proof. IfA = SJS−1 is a Jordan canonical form ofAwhere the eigenvalues 0 appear at the end
portion of the diagonal of J , then the matrix

PA = S

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

·
·

1

0

·
·

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S−1 (22)

is the required projection. Obviously A maps R(A) into R(A). If z ∈ R(A) and Az = 0, then
z ∈ N(A) ∩ R(A) = {0} and so z = 0. This proves that A is invertible on R(A).

Remark 6. Under the assumptions of Lemma 5, we will call the component of a vector c in
N(A) the projection of c onN(A) along R(A). Note that by definition of index, the condition
in the lemma is equivalent to N(A2) = N(A).

Theorem 7. Let A be a matrix inMn and b a vector in C
n. LetQ be an invertible matrix inMn and

let B = I − Q−1A. Assume that ρ(B) ≤ 1 and that index(λ) = 1 for every eigenvalue λ of B with
modulus 1, that is, B is nonexpansive relative to a matrix norm. Starting with an initial vector x0 in
C

n define xk recursively by

Q(xk) = (Q −A)xk−1 + b (23)

for k = 1, 2, . . . . Let

yk =
x0 + x1 + · · · + xk−1

k
. (24)

If Ax = b is consistent, that is, has a solution, then yk, k = 1, 2, . . . , converge to a solution vector z
with rate of convergence ‖yk − z‖ = O(1/k). IfAx = b is inconsistent, then limk‖xk‖ = limk‖yk‖ =
∞. More precisely, limkxk/k = c′ and limkyk/k = c′/2, where c = Q−1b and c′ is the projection of c
onN(A) = N(Q−1A) along R(Q−1A).

Proof. First we assume that A is invertible so that I − B = Q−1A is also invertible. Let T be the
mapping defined by Tx = Bx+c. Then Tkx = Bkx+c+Bc+· · ·+Bk−1c. Let s = c+Bc+· · ·+Bk−1c.
Then s − Bs = c − Bkc and hence s = (I − B)−1c − (I − B)−1Bkc = (I − B)−1c − Bk(I − B)−1c. Let
z = (I − B)−1c = A−1b. z is the unique solution of Ax = b and

Tkx = Bkx + z − Bkz = Bk(x − z) + z. (25)
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Since the sequence xk in the theorem is Tkx0, we have

yk =
1
k

(

I + B + · · · + Bk−1
)

(x0 − z) + z = Bk(x0 − z) + z. (26)

Since I − B is invertible, 1 is not an eigenvalue of B, and by Theorem 3 part (a) ‖yk − z‖ =
‖Bk(x0−z‖ → 0 as k → ∞. Moreover, from the proof of the same theorem, ‖yk−z‖ = O(1/k).

Next we consider the case when A is not invertible. Since Q is invertible, we have
R(Q−1A) = Q−1(R(A)) and N(Q−1A) = N(A). The index of the eigenvalue 0 of Q−1A is the
index of eigenvalue 1 of B = I −Q−1A. Thus by Lemma 5, Cn = Q−1(R(A)) ⊕N(A). For every
vector v ∈ C

n, let v(r) and v(n) denote the component of v in the subspace Q−1(R(A)) and
N(A), respectively.

Assume that Ax = b is consistent, that is, b ∈ R(A). Then c ∈ R(Q−1A). By Lemma 5,
the restriction of Q−1A on its range is invertible, so there exists a unique z′ in R(Q−1A) such
that Q−1Az′ = c, or equivalently, (I − B)z′ = c. For any vector x, we have

Tkx = Bkx + c + Bc + · · · + Bk−1c

= BK
(

x(r) + x(n)
)

+
(

I + B + · · · + Bk−1
)

(I − B)z′

= Bk
(

x(r)
)

+ x(n) + z′ − Bk(z′
)

= Bk
(

x(r) − z′
)

+ x(n) + z′.

(27)

Since B maps R(Q−1A) into R(Q−1A) and I −B = Q−1A restricted to R(Q−1A) is invertible, we
can apply the preceding proof and conclude that the sequence yk as defined before converges
to z = x

(n)
0 + z′ and ‖yk − z‖ = O(1/k). Now Az = A(x(n)

0 ) +A(z′) = A(z′) = Qc = b, showing
that z is a solution of Ax = b.

Assume now that b /∈R(A), that is, Ax = b is inconsistent. Then c /∈R(Q−1A) and c =
c(r) + c(n) with c(n) /= 0. As in the preceding case there exists a unique z′ ∈ R(Q−1A) such that
(I − B)z′ = c(r). Note that for all y ∈ N(A), B(y) = (I −Q−1A)(y) = y. Thus for any vector x
and any positive integer j

xj = Tjx

= Bjx + c + Bc + · · · + Bj−1c

= Bj
(

x(r) + x(n)
)

+
(

I + B + · · · + Bj−1
)

(I − B)z′ + jc(n)

= Bj
(

x(r)
)

+ x(n) + z′ − Bj(z′
)

+ jc(n)

= Bj
(

x(r) − z′
)

+ x(n) + z′ + jc(n),

yk =
1
k

(

x + Tx + · · · + Tk−1x
)

= Bk

(

x(r) − z′
)

+ x(n) + z′ +
k − 1
2

c(n),

(28)
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where Bk = (I +B+ · · ·+Bk−1). As in the preceding case, Bk(x(r) −z′), k = 0, 1, 2, . . . is bounded
and Bk(x(r)−z′), k = 1, 2, . . . , converges to 0. Thus limk→∞(xk/k) = c(n) and limk→∞(yk/k) =
c(n)/2, and hence limk→∞‖xk‖ = limk→∞‖yk‖ = ∞. This completes the proof.

Next we consider another kind of iteration in which the nonlinear case was considered
in Ishikawa [4]. Note that the type of mappings in this case is slightly weaker than
nonexpansivity (see condition (c) in the next lemma).

Lemma 8. Let B be an n × n matrix. The following are equivalent:

(a) for every 0 < μ < 1, there exists a matrix norm ‖ · ‖μ such that ‖μI + (1 − μ)B‖μ ≤ 1,

(b) for every 0 < μ < 1, there exists an induced matrix norm ‖·‖μ such that ‖μI+(1−μ)B‖μ ≤ 1,

(c) ρ(B) ≤ 1 and index(1) = 1 if 1 is an eigenvalue of B.

Proof. As in the proof of Theorem 2, (a) and (b) are equivalent. For 0 < μ < 1, denote μI +
(1 − μ)B by B(μ). Suppose now that (a) holds. Let λ be an eigenvalue of B. Then μ + (1 −
μ)λ is an eigenvalue of B(μ). By Theorem 2 |μ + (1 − μ)λ| ≤ 1 for every 0 < μ < 1 and
hence |λ| ≤ 1. If 1 is an eigenvalue of B, then it is also an eigenvalue of B(μ). By Theorem 2,
the index of 1, as an eigenvalue of B(μ), is 1. Since obviously B and B(μ) have the same
eigenvectors corresponding to the eigenvalue 1, the index of 1, as an eigenvalue of B, is also
1. This proves (c).

Now assume (c) holds. Since |μ + (1 − μ)λ| < 1 for |λ| = 1, λ /= 1, every eigenvalue of
B(μ), except possibly for 1, has modulus less than 1. Reasoning as above, if 1 is an eigenvalue
of B(μ), then its index is 1. Therefore by Theorem 2, (a) holds. This completes the proof.

Theorem 9. Let A ∈ Mn and b ∈ C
n. Let Q be an invertible matrix in Mn, and B = I − Q−1A.

Suppose ρ(B) ≤ 1 and that index(1) = 1 if 1 is an eigenvalue of B. Let 0 < μ < 1 be fixed. Starting
with an initial vector x0, define xk, yk, k = 0, 1, 2, . . . , recursively by

y0 = x0,

Q(xk) = (Q −A)
(

yk−1
)

+ b,

yk = μyk−1 +
(

1 − μ
)

xk.

(29)

If Ax = b is consistent, then yk, k = 0, 1, 2, . . . , converges to a solution vector z of Ax = b with rate
of convergence given by

∥
∥yk − z

∥
∥ = o

(

ζk
)

, (30)

where ζ is any number satisfying

max
{∣
∣μ +

(

1 − μ
)

λ
∣
∣ : λ an eigenvalue of B, λ/= 1

}

< ζ < 1. (31)
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If Ax = b is inconsistent, then limk→∞‖yk‖ = ∞; more precisely,

lim
k→∞

yk

k
=
(

1 − μ
)

c(n), (32)

where c(n) is the projection of c on N(A) along R(Q−1A).

Proof. Let c = Q−1b, B1 = μI + (1 − μ)B = I − (1 − μ)Q−1A, and Tx = B1x + (1 − μ)c. Then
yk = Tk(x0).

First we assume that A is invertible. Then I − B1 = (1 − μ)Q−1A is invertible and 1 is
not an eigenvalue of B1; thus ρ(B1) < 1. Let z = (1 − μ)(I − B1)

−1c = A−1b. We have

yk = Tkx0

= Bk
1x0 +

(

1 − μ
)(

c + B1c + · · · + Bk−1
1 c
)

= Bk
1x0 +

(

1 − μ
) 1
1 − μ

(

I + B1 + · · · + Bk−1
1

)

(I − B1)z

= Bk
1 (x0 − z) + z.

(33)

By a well known theorem (see, e.g. [1]), ‖yk − z‖ = o(ζk) for every ζ > ρ(B1).
Assume now that A is not invertible and b ∈ R(A). Then c is in the range of Q−1A.

Since B = I − Q−1A satisfies the condition in Lemma 8, Q−1A satisfies the condition in
Lemma 5. Thus the restriction ofQ−1A on its range is invertible and there exists z′ in R(Q−1A)
such that Q−1Az′ = c, or equivalently, (I − B1)z′ = (1 − μ)c. For any vector x = x0, we
have

yk = Tk(x)

= Bk
1x +

(

1 − μ
)(

c + B1c + · · · + Bk−1
1 c
)

= Bk
1

(

x(r) + x(n)
)

+
(

I + B1 + · · · + Bk−1
1

)

(I − B1)z′

= Bk
1

(

x(r)
)

+ x(n) + z′ − Bk
1

(

z′
)

= Bk
1

(

x(r) − z′
)

+ x(n) + z′.

(34)

Since B1 maps R(Q−1A) into R(Q−1A) and I − B = Q−1A restricted to R(Q−1A) is invertible,
we can apply the preceding proof and conclude that the sequence yk, k = 0, 1, 2, . . . converges
to z = x(n) + z′ and ‖yk − z‖ = o(ζk). z solves Ax = b since Az = A(x(n)) + A(z′) = A(z′) =
Qc = b.



Fixed Point Theory and Applications 11

Assume lastly that b /∈R(A), that is, Ax = b is inconsistent. Then c /∈R(Q−1A) and
c = c(r) + c(n) with c(n) /= 0. As before there exists z′ ∈ R(Q−1A) such that (I −b1)z′ = (1−μ)c(r).
Note that B1(p) = p for p ∈ N(A). Then

yk = Tk(x)

= Bk
1x +

(

1 − μ
)(

c + B1c + · · · + Bk−1
1 c
)

= Bk
1

(

x(r) + x(n)
)

+
(

I + B1 + · · · + Bk−1
1

)

(I − B1)z′ + k
(

1 − μ
)

c(n)

= Bk
1

(

x(r) − z′
)

+ x(n) + z′ + k
(

1 − μ
)

c(n).

(35)

Since Bk
1 (x

(r) − z′), k = 0, 1, 2, . . . , converges to 0, we have

lim
k→∞

yk

k
=
(

1 − μ
)

c(n), (36)

and hence limk→∞‖yk‖ = ∞. This completes the proof.

By takingQ = I and considering only nonexpansive matrices in Theorems 7 and 9, we
obtain the following corollary.

Corollary 10. Let A be an n × n matrix such that ‖I −A‖ ≤ 1 for some matrix norm ‖ · ‖. Let b be a
vector in C

n. Then:
(a) starting with an initial vector x0 in C

n define xk recursively as follows:

xk = (I −A)(xk−1) + b (37)

for k = 1, 2, . . . . Let

yk =
x0 + x1 + · · · + xk−1

k
(38)

for k = 1, 2, . . . . If Ax = b is consistent, then yk, k = 1, 2, . . . , converges to a solution vector z with
rate of convergence given by

∥
∥yk − z

∥
∥ = O

(
1
k

)

. (39)

If Ax = b is inconsistent, then limk→∞‖xk‖ = limk→∞‖yk‖ = ∞.
(b) let 0 < μ < 1 be a fixed number. Starting with an initial vector x0, let

y0 = x0,

xk = (I −A)
(

yk−1
)

+ b,

yk = μyk−1 +
(

1 − μ
)

xk.

(40)
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If Ax = b is consistent, then yk, k = 0, 1, 2, . . . , converges to a solution vector z of Ax = b with rate
of convergence given by

∥
∥yk − z

∥
∥ = o

(

ζk
)

(41)

where ζ is any number satisfying

max
{∣
∣μ +

(

1 − μ
)

λ
∣
∣ : λ an eigenvalue of B, λ/= 1

}

< ζ < 1. (42)

If Ax = b is inconsistent, then limk→∞‖yk‖ = ∞.

Remark 11. If in the previous corollary, ‖I −A‖ < 1, and μ = 0 in part (b), the sequence yk = xk

converges to a solution. This is the Richardsonmethod, see for example, [3]. Even in this case,
our method in part (b)may yield a better approximation. For example if

A =

(

1 0.9

−0.9 1

)

, (43)

b = 0, and x0 = e1, then the nth iterate in the Richardson method is 0.9n away from the
solution 0, while the nth iterate using the method in the corollary part (b)with μ = 1/2 is less
than (0.5)n/2.

An n × n matrix A = (aij) is called diagonally dominant if

|aii| ≥
n∑

j=1,j /= i

∣
∣aij

∣
∣ (44)

for all i = 1, . . . , n. IfA is diagonally dominant with aii /= 0 for every i and ifQ = D or L, where
D is the diagonal matrix containing the diagonal of A, and L the lower triangular matrix
containing the lower triangular entries of A, then it is easy to prove that ‖I − Q−1A‖∞ ≤
1 where ‖ · ‖∞ denotes the maximum row sum matrix norm; see, for example, [1, 3]. The
following follows from Theorems 7 and 9.

Corollary 12. LetA be a diagonally dominant n×nmatrix with aii /= 0 for all i = 1, . . . , n. LetQ = D
or L, where D is the diagonal matrix containing the diagonal of A, and L the lower triangular matrix
containing the lower triangular entries of A. Let b be a vector in C

n. Then:
(a) starting with an initial vector x0 in C

n define xk recursively as follows:

Q(xk) = (Q −A)(xk−1) + b (45)

for k = 1, 2, . . . . Let

yk =
x0 + x1 + · · · + xk−1

k
(46)
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for k = 1, 2, . . . . If Ax = b is consistent, then yk, k = 1, 2, . . . converges to a solution vector z with
rate of convergence given by

∥
∥yk − z

∥
∥ = O

(
1
k

)

. (47)

If Ax = b is inconsistent, then limk→∞‖xk‖ = limk→∞‖yk‖ = ∞.
(b) Let 0 < μ < 1 be a fixed number. Starting with an initial vector x0, let

y0 = x0,

Q(xk) = (Q −A)
(

yk−1
)

+ b,

yk = μyk−1 +
(

1 − μ
)

xk.

(48)

If Ax = b is consistent, then yk, k = 0, 1, 2, . . . , converges to a solution vector z of Ax = b with rate
of convergence given by

∥
∥yk − z

∥
∥ = o

(

ζk
)

, (49)

where ζ is any number satisfying

max
{∣
∣μ +

(

1 − μ
)

λ
∣
∣ : λ an eigenvalue of B, λ/= 1

}

< ζ < 1. (50)

If Ax = b is inconsistent, then limk→∞‖yk‖ = ∞.
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