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We introduce a new method for a system of generalized equilibrium problems, system of
variational inequality problems, and fixed point problems by using S-mapping generated by a
finite family of nonexpansive mappings and real numbers. Then, we prove a strong convergence
theorem of the proposed iteration under some control condition. By using our main result, we
obtain strong convergence theorem for finding a common element of the set of solution of a system
of generalized equilibrium problems, system of variational inequality problems, and the set of
common fixed points of a finite family of strictly pseudocontractive mappings.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let A :
C — H be anonlinear mapping, and let F : C x C — R be a bifunction. A mapping T of H
into itself is called nonexpansive if ||Tx - Ty|| < ||x — y|| for all x, y € H. We denote by F(T) the
set of fixed points of T (i.e., F(T) = {x € H : Tx = x}). Goebel and Kirk [1] showed that F(T)
is always closed convex, and also nonempty provided T has a bounded trajectory.

A bounded linear operator A on H is called strongly positive with coefficient y if there
is a constant y > 0 with the property

(Ax, x) > ¥||x|* (1.1)
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The equilibrium problem for F is to find x € C such that
F(x,y) >0, VyeC. (1.2)

The set of solutions of (1.2) is denoted by EP(F). Many problems in physics, optimization,
and economics are seeking some elements of EP(F), see [2, 3]. Several iterative methods have
been proposed to solve the equilibrium problem, see, for instance, [2—4]. In 2005, Combettes
and Hirstoaga [3] introduced an iterative scheme of finding the best approximation to the
initial data when EP(F) is nonempty and proved a strong convergence theorem.

The variational inequality problem is to find a point u € C such that

(v-u, Auy >0 VwoveC (1.3)

The set of solutions of the variational inequality is denoted by VI(C, A), and we consider the
following generalized equilibrium problem.

Find z € C such that F(z,y) + (Az,y—z) >0, VyeC. (1.4)

The set of such z € C is denoted by EP(F, A), that is,

EP(F,A) ={z€C:F(z,y) +(Az,y-z) >0, Vy e C}. (1.5)

In the case of A =0, EP(F, A) = EP(F). Numerous problems in physics, optimization,
variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative
games reduce to find element of (1.5)

A mapping A of C into H is called inverse-strongly monotone, see [5], if there exists a
positive real number a such that

(x -y, Ax - Ay) > a|| Ax - Ay’ (1.6)

forall x,y € C.

The problem of finding a common fixed point of a family of nonexpansive mappings
has been studied by many authors. The well-known convex feasibility problem reduces to
finding a point in the intersection of the fixed point sets of a family of nonexpansive mapping
(see [6,7]).

The ploblem of finding a common element of EP(F, A) and the set of all common
fixed points of a family of nonexpansive mappings is of wide interdisciplinary interest and
importance. Many iterative methods are purposed for finding a common element of the
solutions of the equilibrium problem and fixed point problem of nonexpansive mappings,
see [8-10].
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In 2008, S.Takahashi and W.Takahashi [11] introduced a general iterative method for
finding a common element of EP(F, A) and F(T). They defined {x,} in the following way:

u,x; € C, arbitrarily;
F(zn, v) + (AXp,y — z4) + %(y —Zn, Zn—Xy) 20, VyeC, (1.7)

Xn+1 = Prxn + (1= Pn)T(anu + (1 - ay)z,), VneN,

where A is an a-inverse strongly monotone mapping of C into H with positive real number a,
and {a,} € [0,1], {B.} C [0,1], {X,} C [0,2a], and proved strong convergence of the scheme
(1.7) to z € NY, F(T;) N EP(F, A), where z = PN, pr)nep(r, 4yt In the framework of a Hilbert
space, under some suitable conditions on {a,}, {f,}, {1»} and bifunction F.

Very recently, in 2010, Qin, et al. [12] introduced a iterative scheme method for finding
a common element of EP(F;, A), EP(F,, B) and common fixed point of infinite family of
nonexpansive mappings. They defined {x,} in the following way:

x1 € C, arbitrarily;
1
Fy(uy,u) + (Axp,u—uy,) + ;(u — Uy, Uy, —xp) 20, YuecC,

1
F>(v,,0) + (Bxy, v —v,) + E(v —Un, Uy —x,) 20, Yoe(C, (18)

Yn = 6nun + (1 - 6n)vnr

Xn+1 = anf(xn) + ﬂnxn + annxm Vn €N,

where f : C — C is a contraction mapping and W,, is W-mapping generated by infinite
family of nonexpansive mappings and infinite real number. Under suitable conditions of
these parameters they proved strong convergence of the scheme (1.8) to z = Ps f(z), where
§ =NZ F(Ti) NEP(F1, A) NEP(Fy, B).

In this paper, motivated by [11, 12], we introduced a general iterative scheme {x,}
defined by

1
F(uy,u) + (Ax,,u—uy,) + r—(u—un,un—xn) >0,
n

1
G(vn,v)+<an,v—vn)+§(v—vn,vn—xn)20, (19)

Yn = 6nPC(un - )LnAun) + (1 - 671)PC (Un - T[nBUn)/

Xn+l = lxnf(xn) + ,ann + Ynsnyn/ Vn > 0,
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where f : C — C and S, is S-mapping generated by Ty, ..., T, and a,, a,_1, ..., a. Under
suitable conditions, we proved strong convergence of {x,} to z = P; f(z), and z is solution of

(Ax*,x —x") >0,
(1.10)
(Bx*,x —x*) > 0.
2. Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main result
in the next section.

Let C be closed convex subset of a real Hilbert space H, and let Pc be the metric
projection of H onto C, that is, for x € H, Pcx satisfies the property

[l = Pex|| =r;1€iél||x—y||. (2.1)

The following characterizes the projection Pc.

Lemma 2.1 (see [13]). Given x € H and y € C. Then Pcx = y if and only if there holds the
inequality

(x-y,y-z)>0 VzeC (2.2)
Lemma 2.2 (see [14]). Let {s,} be a sequence of nonnegative real numbers satisfying

Sn+l = (1 - an)Sn + ﬁn/ Vn >0 (23)

where {ay,}, {Pn} satisfy the conditions

(1) {an} C(0,1), 372, S ay = 00,
(2) limsup, , _ fBn/a, <0.

Then lim,, _, x5, = 0.

Lemma 2.3 (see [15]). Let C be a closed convex subset of a strictly convex Banach space E. Let
{T, : n € N} be a sequence of nonexpansive mappings on C. Suppose that (,—; F(T,)is nonempty.
Let {1} be a sequence of positive numbers with % A, = 1. Then a mapping S on C defined by

S(x) =27 A Tux (2.4)

for x € C is well defined, nonexpansive, and F(S) = ;2 F(T,) hold.

Lemma 2.4 (see [16]). Let E be a uniformly convex Banach space, C a nonempty closed convex
subset of E, and S : C — C a nonexpansive mapping. Then I — S is demiclosed at zero.
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Lemma 2.5 (see [17]). Let {x,} and {z,} be bounded sequences in a Banach space X, and let {f,}
be a sequence in [0,1] with 0 < liminf, , ., <limsup,_, B, < 1. Suppose that

Xn+l = ﬁnxn + (1 - ﬁn)zn (25)
for all integer n > 0 and

limsup, _,  ([zns1 = Zall = [[Xne1 — x4l) < 0. (2.6)

Then lim,, _, o ||x, — z,|| = 0.
For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:
(A1) F(x,x)=0forall x € C;

(A2) F is monotone, that is, F(x,y) + F(y,x) <0,

Vx,yeC,
(A3) forallx,y,z € C,

lim;,o-F(tz+ (1 -t)x,y) < F(x,y), (2.7)

(A4) forall x € C,y — F(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [2].

Lemma 2.6 (see [2]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(z, y)+ %(y—z,z—x) (2.8)

forall x € C.

Lemma 2.7 (see [3]). Assume that F : CxC — R satisfies (A1)—(A4). For r > 0 and x € H, define
a mapping T, : H — C as follows:

T, (x) = {zeC:F(z,y)+%<y—z,z—x> >0, VyeC}.

(2.9)
or all z € H. Then, the following hold:
8
(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is,
|7 (x) - T+ (v) ||2 <(T;(x)-T,(y),x-y) Vx,ye€H; (2.10)

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.
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In 2009, Kangtunyakarn and Suantai [18] defined a new mapping and proved their
lemma as follows.

Definition 2.8. Let C be a nonempty convex subset of real Banach space. Let {T;}~, be a finite
family of nonexpansive mappmgs of Cintoitself. Foreachj=1,2,..., N, leta; = (“y al, “3) €
IxIxI, wherele€[0,1] and a} + (x]2 +a, = 1. We define the mapping S : C — C as follows:

U =1,
U; = i ThUp + aiUp + all,

U, = @ ToU; + a5Uy + 3],
Us = iUy + aaUs + a3, (2.11)
Un_ = TN 1UNo + a2 1llN 2+ a3 11

S = UN =m TNUN_1 + a, LIN_1 + lXéVI

This mapping is called S-mapping generated by T, ..., Ty and ay, ay, ..., aN.

Lemma 2.9. Let C be a nonempty closed convex subset of strictly convex. Let {T; f\ll be a finite family
of nonexpanxive mappings of C into 1tself with NN, F(T) #0, and let aj = (“1/“21 a3) elIxIxlI,
j=1,23,...,N, where I = [0,1], “1 +a]2+oc3 =1, “1 € (0,1) forall j =1,2,..., N - 1,oc1
(0,1] a2,a3 [0,1) for all ] = 1,2,...,N. Let S be the mapping generated by Ti,...,Tn and
ay, an,...,aN. Then F(S) = n::l F(T,).

Lemma 2.10. Let C be a nonempty closed convex subset of Banach space. Let {T; ,N1 be a finite family

(m) (“1 -,(xz ,(x3]) aj = (al,az,ag) elIxIxlI,

where I = [0,1], a +a;]+a3 —1anda1+a;+zx3—lsuchthuta RN al. €[0,1]asn —

o fori=1,3 and j=1,2,3,...,N. Moreover, for every n € N, let S and S,, be the S-mappings
generated by T1, Ty, ..., T and a1, a2, ... ,an and T1, T, ..., Ty and a(") a;"), a§\]), respectively.

Then lim,, _, o ||Spx — Sx|| = 0 for every x € C.

of nonexpansive mappzngs of C into itself and a;

Lemma 2.11 (see [19]). Let C be a nonempty closed convex subset of a Hilbert space H, and let
G : C — C be defined by

G(x) = Pc(x - MAx), Vxe(, (2.12)

with YA > 0. Then x* € VI(C, A) if and only if x* € F(G).

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F and G be two
bifunctions from CxC into R satisfying (A1)—(A4), respectively. Let A : C — H a a-inverse strongly
monotone mapping and B : C — H be a p-inverse strongly monotone mapping. Let {T;}N, be finite
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family of nonexpansive mappings with § = ﬂf\:fl F(T;) NEP(F, A) NEP(G, B) N F(G1) N F(Gy) #0,
where G1,G, : C — C are defined by Gi(x) = Pc(x — A\, Ax), Go(x) = Pc(x — 1,Bx), Vx € C.
Let f : C — C be a contraction with the coefficient 6 € (0, 1) Let S,, be the S-mappings genemted
by Tl,Tz, .., Tn and a(") aé"), . ag\[), where a(") (), ay ,a3]) eIxIxI, I=1[01],a;’
"J

+oc3 =1analO<711§a1 561<1VneN,\7’]=1,2,...,N—1,O<11N§uc1 <1and

0 5 a2 ,as’j <O03<1VneN, Vj=1,2,...,N. Let {x,}, {un}, {vn}, {yn} be sequences generated
by x1,u,veC

1
F(uy,u) + (Axy,u—u,) + r—(u—un,un—xn> >0,
n

1
G(vy,v) + (Bxy, v —vy,) + S—(U—vn,vn —xn) >0,
n

3.1)
Yn = 6nPC(un - )LnAun) + (1 - 671)PC (Un - ﬂnan)/
Xn+l = anf(xn) + ﬁnxn + Ynsnyn/ Vn>1,
where {an}, {Pn}, {yn} € (0,1) such that ay, + pp +y, = 1, 1, € [a,b] C (0,2a), s, € [c,d] C

0,2p), )L G e,f] C (0,2a), 1, € [g, h] C (0,2P). Assume that

(i) limy, . on = 0and ¥ a, = oo,
(ii) 0 < liminf, . p, <limsup, , p. <1,

)
)

(iii) lim, — .6, =6 € (0,1),
) Z

(1V n= 0|Sn+l Sn| Zn 0|Tn+1 rn| Zn 0|)Ln+1 /\ |Zn 0|7Zn+1 71n| zn 0|an+1 an| Zn 0|pn+1
ﬂn| < o,
(v) ai”u —cx'f’j| — 0, and |cx;l+1’i —ag’j| — 0asn — oo, forall j€{1,2,3,...,N}.

Then the sequence {x,}, {yn}, {un}, {vn} converge strongly to z = P5 f(z), and z is solution of

(Ax*,x = x") >0,
(3.2)
(Bx*,x - x*) > 0.

Proof. First, we show that (I — 1,A), (I - n,B)(I - r,A) and (I — s,B) are nonexpansive. Let
x,y € C. Since A is a-strongly monotone and A, < 2a for all n € N, we have

1= Aa ) - (- 2y = [ - y - Aa(Ax - ag) P
= [lx = ylI* - 20n(x -y, Ax - Ay) + ]| Ax - Ay
< [lx = yl|* - 20k, ]| Ax - Ay||* + 13| Ax - Ay]|* (3.3)
= llx = ylI* + 4n(dn - 20) [ Ax - Ay|®

<[lx-yll*
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Thus (I — A, A) is nonexpansive. By using the same proof, we obtain that (I — 7,B) (I —r,A)
and (I — s,B) are nonexpansive.
We will divide our proof into 6 steps.

Step 1. We will show that the sequence {x,} is bounded. Since
Fuy,u) + (Axy,u—u,) + rl(u — Uy, Uy —xy) 20, Yuec, (3.4)

then we have

1
F(uy,,u) + r—(u — Uy, Uy — (I =1, A)x,) >0. (3.5)

By Lemma 2.7, we have u,, = Ty, (I — r,A)x,. By the same argument as above, we obtaine that
vy =Ts, (I —5,B)xy
Letz € §. Then F(z,y) + (y — 2z, Az) > 0and G(z, y) + (y — z,Bz) > 0. Hence

F(z,y) + %(y—z,z—z+rnAz> >0,
| (3.6)
G(zy) + S-(y—Z,Z—z+snBz> > 0.

Again by Lemma 2.7, we have z = T, (z — r,Az) = T;,(z — s,Bz). Since z € §, we have
z = Pc(I — A, A)z = Pc(I - 1,B)z. By nonexpansiveness of T, Ts,, I — 1, A, I — 5,B, we have
st = 21 < tal £ Gen) = 21| + Bulln = 21l + Y| Suym — =
< | fGen) = F @]+ aall f () — 2| + Bullxa = 2l + iy — =]
< a0, ~ 2l + @ | f () ~ 2| + Pullo - =
+ Y| 60 (Pe (un = AnAuty) = 2) + (1 = 6,) (Pc (v — 112 Boy) = 2) ||
< an0l26n = 2l + an[| £ (2) = z|| + Bullxn = 2]l + yu(Bnlltn — zll + (1 = 8n)l|vn — 2I))
= 0|2y - 2l + an | f (2) = 2| + Bullxn - =]
+Yu(Onl| T, (I = 10 A)xt = T, (I - rn A)z||
+(1 = 60)|ITs, (I = suB)xn = T, (I - s, B)z|))
< anb|lxn = zl| + anl| £ (2) = 2| + Pulloen = 2|l + yull2n - 2|
= an0lxn = 2| + | f(2) = 2| + (1 - ) 20 — 2]
= (1-an(1-0))llxn — zll + an|| f (2) — 2|

< max{”xn -z|, W}

(3.7)
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By induction we can prove that {x,} is bounded and so are {u,}, {v,}, {yn}, {Sayn}. Without
of generality, assume that there exists a bounded set K C C such that

{un}, {vn}, {yn},{Snyn} € K. (3.8)

Step 2. We will show that lim,, _, o, [[x4+1 — x| = 0.
Putting k,, = (Xn+1 — Puxn)/ (1 = Bn), we have

Xne1 = (1= Bu)kn + Puxn, Yn2>0. (3.9)

From definition of k,,, we have

Xn+2 — ,ﬁn+1xn+1 Xn+l — ,ﬁnxn
Kot — Knll = -
” n+l 11” 1 _ﬁn+] 1 _ﬁn
_ an+1f(xn+1) + Yn+15n+1yn+1 _ unf(xn) + Ynsnyn
1- ﬂn+1 1- ,Bn
_ an+1f(xn+1) + (1 - ,ﬁn+1 - an+1)sn+1]/n+1 B “nf(xn) + (1 - ,Bn - an)sn]/n
1- ﬂn+1 1- ﬂn
n Ay

= &(f(xnﬂ) - Sn+1]/n+1) - —(f(xn) - Sn]/n) + Sn+1yn+1 - Sn]/n ‘
1- ﬂn+1 1- ﬂn
Aptl Xp

< 1 —ﬁ 1 ||f(xn+1) - Sn+1yn+1” + q”f(xn) - Snyn” + ”Sn+1yn+1 - Snyn||
Anl An

<—— n+ _Sn+ n+ + Xn _Sn n

= 1= Bun ”f(x 1) 1Y 1” 1_ﬁn”f( ) Yy ”

+ ||Sn+l]/n+1 - Snyn” + || Xns1 = x|

(3.10)
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By definition of S,,, for k € {2,3,..., N}, we have

” Uit kYn —

Uiyl =

+1,k n+l,k n+l,k
Tkun+1,k—1]/n +a, un+l,k—1]/n +as Yn

n
|«

nk n,k nk
=" Tl k1Y — ;" U k-1Yn — 03" Y

n+1 K (Tkun+1 k-1Yn — Tkun k- 1yn) < Lk a?’k>Tkun,k_1yn
n (a;l+1 k o k>yn + az (Un+1,k_1yn - un,k—lyn)

n+lk n k
+ <a2 a, ) U k-1Yn

< “1 "un+1k 1Yn — nk 1]/"” + n+1k g |Tkun,k—1]/n||
+ ag+1 k ” n an+1 k ”un+1,k—lyﬂ - un,k—lyn”
+ a;ﬁ—l k n,k—ly"”

IN

IN

(af ™ s+ ay k) Ut 1y = U a |

+ a111+1k |Tkunk 1yn|| + n+1k ”

| —a nk-1Yn|

”un+1,k—1yn Uk 1yn|| + n+1 k_ nk-1Yn ”
n a;z+1k ” +| ( ;z+1k +agz+1k>
(1= (o + @)Uyl

||Un+1,k—1yn Uy 1yn|| altk n,k—lyn”

+ a;ﬁlk ” + |<a1 T+1k> + (a;lk n+1k>|”unk 1yn”
U i1 k-1ym = Un e ya| + ml Kal® | Tl -1y ||

ey - I+ i = [ Unicaya

0 s

Ut k1Yn = Ungaya| + ™ - ni1Yn |l + [Uni-1yn])
+ oy - [+ [Uniayall)-

(3.11)
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By (3.11), we obtain that for each n € N,

||Sn+1yn - Snyn” = ||un+1,Nyn - un,N]/n”

< U n-1yn = Unnaayall + [N = N (I Tyl

n+1,N

[ Unncayall) + |3 N = @] (yall + [Unn-aal)

1,N-1 ,N-1
n+ At |

< Uit N-2Yn = U N2y + | 1

* (I TN-1Un,N-2¥n| + [|[Unn-2yn||)

. a;n,N—l 3 a;"N_l'(”yn” + ||Un,N-2ym||)
N N | (I vyl + Lyl
. a;Hl,N _ a;l'N|("yn” + ||UnN-1yn||)

n+l1,j n,j
T

N
”un+1,N—2yn - un,N—Zyn” + Z
j=N-1

(Tt vl

n+l,j n,j
az ~ — 0y

(lyall + 1t j-1ya]])

N
HUnjyall) +
“N-

]

1

IN

N

< ||Un+1,1]/n - un,l]/n” + Z
=2

n+l1,j

n,j
1 T

a Tl jayull + [T 1yl

n+1,j n,j
a3 =~

(lyall + 1tnjyall)

= n <1 - zxi”l’l)yn + zx'11+1’1T1yn - <1 - a;"l)yn - zx;"llen

N . .

2| = | (T Uyl + U jawall)
i=2
N n+l,j n,j

+ o = a? | (lyall + |Unj1vall)
j=2

= |y =l || Ty =~ |

# 20| = | (1Tl + | Unjawal)
]:
N n+1,j n,j

+ 2 las  =a | (|ynl| + U j-1yal])-

= (3.12)
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This together with the condition (iv), we obtain
nliirc}ollsnﬂyn - Snyn” =0.

By (3.10), (3.13) and conditions (i), (ii), (iii), (iv), it implies that

lim sup (I ~ kall = st~ xall) < 0.

n— o0
From Lemma 2.5, (3.9), (3.14) and condition (ii), we have
lim ||x, — kn|| = 0.
n—oo
From (3.9), we can rewrite
Xni1 = Xn = (1= o) (kn = x).
By (3.15), we have

lim ||x,41 — x4]] = 0.
n— oo

On the other hand, we have

”xn - Sn]/n” < “xn - xn+1|| + ||xn+1 - Sn]/n”

= |lxn = Xpia || + ”“nf(xn) + BnXn + YnSnYn — Sn]/n”
= ”xn - xn+1|| + ”an (f(xn) - Sn]/n) + ﬁn (xn - Sn]/n) ”
= [1%n = 1|l + || f n) = Syl + Pl = Syl

This implies that

(1 - ﬂn) ”xn - Sn]/n” < ”xn - xn+1|| + an”f(xn) - Sn]/n”

By (3.17) and condition (ii), we have

Tim [|x, - S, = 0.

Step 3. Let z € §; we show that

lim ||Au, — Az|| = lim |Bv, — Bz|| = lim ||Ax, — Az|| = lim ||Bx, — Bz|| = 0.
n— oo n— oo n— oo n— oo

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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From definition of y,, we have
Ny = 2|1 = [|6n(Pe(ttn — AyAtty) = Pe(I = Xy A)z) + (1 = 6,) (Pe (04 — 17,B0y)

~Pc(I = 1.B)z) |’

< 64| (Pe (1t = AnAut) = Pe(I = 4y A)2)|?
+ (1= 6,)||(Pc(0n = 11uBoy) = Pe(I - 1,B)2) ||
< nllttn — AnAtty — 2 + Xy Az|]* + (1= 6,) |05 — 12Bon — z + 11,1Bz||2
= 6ull(un = 2) = An(Ary = AZ)|* + (1 = 6,)[| (¥n = 2) = 7(Boy, - B2)
= 6 (Ilitn = 2 + W20 (Auy — AZ)|P = 20, (1, - 2, Au, — Az))
+(1-6,) <||vn — 2| + #2||Bvn — Bz||* = 2 (vy — z, Bv, — Bz)>
< 6 (lln = 21 + 201 (Auy — AZ)|P - 20, Au, - Az])
+ (1= 6,)(low = 2I* + 121 Bo, - Bz - 21,8 Bo, - BzIP")
= 6, (Jlun = 2I* = 1n(2a = 1) (A, — A2)|)
+ (1= 6,) (I[on = 2I* = 1,(26 = 712) 1 Bvs — Bz
(3.22)
= 6 (IT;, (I = 1 A)x, = Ty, (2 = 1 AZ)|I? = Aa(2 = 1) | (Auy = A2)|?)
+(1-6,) (||:rsn(1 — $uB)xy = Ts, (z = 54BZ)|> = 10(2B — 1) | Bvy — Bz||2>
< 8 (Il = 2I* = 40 2 = L) [[(Au - AZ)|)
+ (1= 6,) (Il = 21 = 14 (26 = 1) | Bow - Bz
= [|xn = 2II* = AuBn (20 — L) || (Auty — Az)|]?

~11n(1 = 6,) (2B ~ 1) |Bvs — Bz
(3.23)
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By (3.23), we have

enat = 2I1” = @ (f (en) = 2) + Bulotn = 2) + Yu(Suyn - 2) ||

< | f () = 2| + ulln = 2IP + yul| Sy — 2|

< | fn) = 2|17 + Bullxa = 2IP + yullyn — 2|

< | £ () = 2I|” + Bl = 21 + (10 = 21 = 0828 = A | (At = AZ)?
~11a(1 = 6,) (26 = 1) 1B, - Bz|1*)

= || f () = 2||* + Ballxa = 21 + Yulltn — 2P = XY (2 = L) [ (At — Az)|?
— 1hnYn(1 = 64) (2B = 1) | Bvy — Bz||*

< at || £ (en) = 2| + [l = 2II = AnyuBu (2 — L)l (Auy — Az)|?

~ (1 = 6,) (2 = 1) ||Bv,, — Bz||".

(3.24)
By (3.24), we have
LB (2 = M) (At = AZ)? < @ f(xn) = 2| + I = 21 = [ - 21
— 1nYn(1 = 6,) (2B = 112) | Bn - Bz (3.25)
< ata || £ () = 2||* + (I = 2l + 12601 = 2I) |1 = X
From conditions (i)—(iii) and (3.17), we have
lim || Au, — Az|? = 0. (3.26)

By using the same method as (3.26), we have

lim || Bo, - Bz|* = 0. (3.27)



Fixed Point Theory and Applications 15

By nonexpansiveness of T;,, Ts,, I — 1, A, I — 1,B and (3.23), we have

[y = 2| < 6ull(Pe (it = AnAnty) = Pe(I = A, A)2)?
+ (1= 6,)||Pc (04 = 712Boy) = Pe(I = 17,B)z||?
< Bull(I = AnA)ity — (I = 1y A)z|* + (1= 8,) | (I = 1uB) vy — (I - 1,B)z||*
< 6ulln = 2| + (1= 6,)||0n — 2|
= 8ulI Ty, (T = 14 A)xy = Ty, (T = 1 A)z|* + (1= 6,)[| T, (T - 5,B) X,
~T,, (I - 5,B)z|
< 6all(I =12 A) X = (I =12 A)z|* + (1= 6,) (I = 8,B)x, = (I = 5,B)z|
= Oyllxn — hAx, —z + rnAz||2 +(1=6u)||xp — spBxy — z + snBz||2
= 6ul| (X = 2) = 1 (Axy = AZ)|* + (1= 6,)[| (0 = 2) = 52 (Bxs — B2) |
= 6, (Il = 2II” + rall Axy = Azl = 21 (x, — 2, Ax, — Az))
+ (1= 8,) (Il = 2P + 53|1Bx, — Bz|[* ~ 25,(x, - zBx, - Bz) )
= 6ullxn — z|* + 1264 Axy — Az|* = 26,70 (x, — 2, AX, — AZ)
+ (1= 6,)||x, — z||* + 52 (1 = 6,)||Bxn — Bz|* = 25,(1 — 6,)(x,, — zBx,, — Bz)
< lxn = zI* + 726,|| Axy, — Az|* = 26, rpal| Ax, — Az|)?
+52(1 = 6,)||Bxy, — Bz||* = 25,(1 - 6,,)B|| Bx,, — Bz|)*
= [1xn = 2II* = 8n7n(2a = 1) | Ay = Az|* = 5,(1 = 6,) (2 = 5) [ Bx - Bz|*.
(3.28)

By (3.28), we have

2ne1 = 217 = [|an (f (xn) = 2) + Bu(xn = 2) + Yu (Suyn — 2) ||
< | f () = 2| + Bl = 2IP + ¥l | Sy — 2|
< | f () = 2|+ Bullxa = 2I12 + |y — 2|
< | f(ea) = 2I|* + Ballxn - 2
4 (0 = 212 = Burn(2t = 1) | Ay — Az
=5u(1=6,) (2B~ 5,) |1Bx, - Bz|*)

= an”f(xn) - lez + ,ﬁn“xn - Z”Z + Yn”xn - Z||2 - 6nann(2“ - rn)”Axn - AZ||2
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— $u¥u(1 = 84) (2B - 5,) | Bx,, — Bz|*
< a"”f(x") - Z”2 + l2n = Z”2 = OnYntn(2a = 1,)|| Axy, — AZHZ

- SnYn(l - 611) (Zﬂ - Sn) ||an - BZ”2'

(3.29)
By (3.29), we have
B2 = Tu) | A%y = Az|” < | £ () = 2|1* + 1200 = 2I1° = 12001 = 21
= 5nYn(1 = 6,) (2B — 5n) || Bxy — Bz| (330)
< ay|| £ Gen) = 2I|* + (U = 2l + 12n1 = 2D 1201 = xall
From (3.17) and conditions (i)—(iii), we have
nhf;o”Ax" - Az|| =0. (3.31)
By using the same method as (3.31), we have
nlEI(}OHan - Bz|| = 0. (3.32)
Step 4. We will show that
nhjl;o”y" - x| =0. (3.33)
Putting M,, = Pc(u, — A,Au,) and N, = Pc(v, — 1,Bv,,), we will show that
i, = x| = Jim o, = ol = i Mo = ] = lim [N, =2l 0. (3.34)
Let z € §; by (3.28), we have
lyn = 21" < 6ull Mix = 2| + (1= 6,) [N ~ I
(3.35)

< Snllun = zI* + (1 = 6,)llvn — 2|1
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By nonexpansiveness of I - r, A, we have

l[un = 2I1* = 1Ty, (X0 = 70 A%n) = Ty, (2 = 12 A2) |

< ((xy — 1 Axy) — (z — 1,AZ), Uy — 2)
1 2 2
= 5 (I = raAxn) = (2 =12 AP + fjun = 2]

11t =A%) = (2 = 1 A2Z) = (= 2)|)

(3.36)
1 2 2 2
< 5 (llen = 217 + latn = =1 = 1166 = 1) = (A = A2)P)
_ 1 <” 2 2 2
= E Xn — Z” + ”un - Z” - ”xn - un“
27, (X — U, Axy, — Az) — 12| Ax,, — Az||2>.
This implies
it — 21> < |20 = 2|* = [|X0 = tal|* + 270 (2 — tn, AX, — Az) — 12| Ax,, — Az (3.37)
By using the same method as (3.37), we have
0w = 2|I* < |10 = 2lI* = |26 = ©l|* + 25, (2, — ©n, Bx, — Bz) — 52||Bx,, — Bz||%. (3.38)

Substituting (3.37) and (3.38) into (3.35), we have

[y = 2I1” < Sullun = 21 + (1 = 8)llon - 21
< 80 (Itn = 2P = Il = wl® + 212426, = 10, Axy = Az) = 12| Ax,, = Az]P)
+ (1= 80) (Il = 2I1° = 12 = 0all* + 250 (x = 0, Bx, = Bz) = 53|Bx, - Bz
< Gullxn = 2|7 = Bullotn = al® + 26uallxn — unlll| Axn = Azl + (1= 6) s — 211
= (1= 8)l[n = 0all” + 255 (1 = 6,) [0 — val|| By — Bz

= lxn - 2”2 = Onllxn - un||2 + 261010 — ||| Axp — Az|| = (1 = 6p) || xy - vnllz

+25,(1 = 6,) ||y — va||||Bxn — Bz]|.
(3.39)
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By (3.39), we have

2 2
|21 — 2”2 < an“f(xn) - Z” + Pullxn — Z||2 + Yn”yn - Z”
2 2
San”f(xn)_zll +ﬁn”xn_z||
(It = 21 = Ballen = 0l
+ 26,1l — un||||Axy, — Az|| = (1 = 6,) || %0 — vn||2

+25,(1 = 6,) [, = v || Bxy - Bz))

(3.40)
= “n”f(xn) - Z”2 + .Bn“xn - Z”z + Yn“xn - Z”2 - Yn(sn“xn - un“2

+ 2Yn6nrn||xn - un”“Axn - AZH -(1- 6n)Yn“xn - Unllz
+ ZSnYn(l = 6u) |20 — vul|||Bx, — Bz||
2 2 2
< an”f(xn) - Z” + 120 = 2[I” = YnOullxn — unll
+ ZYn(Snronn —up||||Ax, — Az|| - (1 - 6n)Yn||xn - Z711“2

+28nYn(1 = 6)ll%n — vn||Bxn — Bz

It follows that

Yn6n“xn - un||2 < an”f(xn) - Z||2 + ”xn - Z”z - ”xn+l - Z||2
+ 2Yn6nrn||xn = un||||Ax, — Az|| - (1 - 5n)Yn||xn - Un||2
+ 25nYn(1 = 6n) |2y — vul|||Bx, — Bz|| (341)

2
< an”f(xn) - Z” + (I = 2| + %041 = 2| |01 = 4]l

+ 2Yn0ntn|Xn = un|l[|Axn = Az|| + 285Yn (1 = 6n) |20 = 0nll[|Bxn — Bz|].
By conditions (i)—(iii), (3.41), (3.31), (3.32), and (3.17), we have
Jim [, —uy | = 0. (3.42)
By using the same method as (3.42), we have

lim [|x, —v,[| = 0. (3.43)
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By nonexpansiveness of T,, (I — r,A), we have

1My, = 2l = [Pty = Ay Arn) = Pe(z = 4, AZ)|?
< {(up — a,Auy) — (z — a,Az), M, — z)

1
= 5 (Il = an ) = (z = @ AP + | M = 2I* = 10— a0 A)

~(z- @ Az) - (My - 2)I)

< 5 (= 2P + 1My ~ 217 = 0~ My) ~ (A - A2) ) (3.44)
_ %(”Tm(l —ruA)xn = T, (T = 1 A2 + | My = 2| = [[ttn — M|

+20 (U — My, Atty — Az) — o2 || Atty, — Az||2>
< 3 (e = 217 + 1M 217 ~ it~ My + 2 (10~ My, Ay ~ Az)

—o2 || Auy - Az||2>.

Hence, we have
My, = zII* < lltn = zI* = [[ttn — Mall® + 20t {1ty — My, Ay — Az)
(3.45)

— a2|| Auy — Az|.
By using the same method as (3.45), we have
INw = 2I* < llxn = z|* = [[on = Nul* + 2140 — Ny, Bv, — Bz) - n3[|Bo, - Bz|>.  (3.46)
Substituting (3.45) and (3.46) into (3.35), we have
[y = z[|* < Ball My = z[* + (1 = 62) | N — 2|
< ([l = I ~ llun = Ml + 20 (s~ My, Aty = Az) = | Aut ~ Az
+ (1= 62) (1% = 2I” = [0 = Nall” + 211 (00 = Ny, Bo, - Bz) = 1B, - Bz
< 63l|%n = 2[1* = Bulltn = Myl + 26,0110 = Miy|[|| Auty — Az]|
+ (1= 8w)llxn = 2II* = (1 = 6,) 00 = Null* + 2(1 = 8)1nll0n — Nul|[|Bon - Bz|

= |lxtn = zI* = Epllttn — Mul* + 26etul[11y — My ||[| Aty — Az|| = (1 = 6,)|[on — Null®

+ 2(1 - 6n)71n||vn - Nn””an - BZ”-
(3.47)
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By (3.47), we have
%1 = zI* < et || £ (o) = 2I|* + Bullxn = 2l + ||y - 2|
< aty | f (xa) = z||* + Pullxn — 21
+ % (Il = 21 = Sallun — M|
+ 2650t |ttn — M|l Aty — Az|| = (1 = 64)[on — Nl
+2(1 = 6,)11ullon = Nol[|Bo, - Bz )
= oty | f (xn) = z[|* + Bullxn = I + Yullxn — 217 = SuYullttn — Mull?
+ 26, Yuttnlttn — M|l[| Attn, = Az|| = (1 = 84) 0w = Null?
+2(1 = 64)Yutlullvn ~ Nulll|Bos - Bz
< aty | f () = 2| + 1 = 217 = Eufullitn — Ml
+ 26, Yl — Mulll| Aty — Az = (1 = 8,)Yullvw ~ Nall?
+2(1 = 64)Yutnllvn — Nul|||Bv,, — Bz||.
(3.48)
It follows that
Euullttn — Mull” < ]| f (xa) = 2|17 + 1200 = 2117 = [l20001 — 21
+ 26, Yttt — Mul|l| Aty — Az = (1 = 8,)Yullvn — Nall?
+2(1 = 6)Yutlul|on = Nulll|Bvs - Bz|

2
< a||f (xn) = 2||” + (2w = 2]| + | Xns1 = 2IDl2%ns1 = 2l

+ 20 Yn ||ty — Mu|||| Aun — Az|| + 2(1 = 6,) Yuln||vn — Nul|||Bv, — Bz||.

(3.49)
From (3.17), (3.26), (3.27), and conditions (i)—(iii), we have
lim [|uy = M| = 0. (3.50)

By using the same method as (3.50), we have

lim [, = N = 0. (3.51)
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By (3.42) and (3.50), we have

Jim [[M, = x| = 0. (3.52)
By (3.43) and (3.51), we have

im [Ny, = x| = 0. (3.53)
Since M,, = Pc(u,, — Ay Auy,) and N, = Pc(vy, — 17,Bv,), we have

Yn = Xn = 6p(Mp = xp) + (1= 6,) (Np — X). (3.54)

By (3.52) and (3.53), we obtain

Tim [|y, — x| = 0. (3.55)

Note that

”xn - Snxn” S ”xn - Snyn” + ”Snyn - Snxn”

(3.56)
< {120 = Suyull + lyn = xull-
From (3.20) and (3.55), we have
lim |12, = Syatal| = 0. (3.57)
Step 5. We will show that
limsup(f(z) - z,x, — z) <0, (3.58)
n— oo
where z = P; f(z). To show this inequality, take subsequence {x,,} of {x,} such that
limsup(f(z) — z,x, — z) = limsup(f(z) - z,x,, — z). (3.59)

n— oo i— oo

Since {x,,} is bounded, there exists a subsequence {xnij} of {x,,} which converges weakly
to g. Without loss of generality, we can assume that x,, — g. Since C is closed convex, C is
weakly closed. So, we have g € C. Let us show thatg € § = ﬂf\ll F(T;) nEP(F, A)nEP(G,B)n
F(G1) N F(Gy). We first show that g € EP(F, A) N EP(G, B) N F(G1) N F(Gy). From (3.42), we
have u,, — gq. Since u,, = T, (I - r,A)x,, for any y € C, we have

F(un,y) + (Axn, y — un) + %(y = Uy, Uy — X ) > 0. (3.60)
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From (A2), we have
(Axp, y —up) + %(y—un,un—x,) > F(y,un). (3.61)
This implies that
1
<Axni/y - u"i) + T_<y = Un;y Un; — xni> 2 F(y' u"i)' (3'62)

Putz; =ty + (1 -t)gforallt € (0,1] and y € C. Then, we have z; € C. So, from (3.62), we
have

Un

;= Xn,
(2t — Un, Azy) 2 (2 — Up,, AZy) — (2 — Upy, AXpy) — <Zt — Uy, ’r = > + F(zt, uy,)

ni

=z — Up, Azt — Ay, ) + (24 — Up,, Ally, — AXy,) (3.63)

Up, — Xn,
- <Zt = U, — : > + F(z¢,uy,).

Tn;

Since ||uy, — xp,|| — 0, we have ||Au,, — Axy,,|| — 0. Further, from monotonicity of A, we have
(zt — Uy, Azt — Auy,) > 0. So, from (A4), we have

(z+—q,Az) > F(z1,q) asi— oo. (3.64)
From (A1), (A4), and (3.64), we also have
0= F(z,z) <tF(zi,y) + (1 -t)F(z,q)
<tF(z,y) + (1-t)(z - q, Az/) (3.65)
=tF(z,y) + (1 - )y — q, Az).
Thus
0<F(z,y) +(1-t){y—q,Az). (3.66)
Letting f — 0, we have, for each y € C,
0<F(qy)+{y—-q Aq). (3.67)
This implies that

q € EP(F, A). (3.68)
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From (3.43), we have v,,; — g. Since v, = T, (I — s,B)xy,, for any y € C, we have
1
G(vy,y) + (Bxy, y —vp) + S—(y = Uy, Uy — Xp) 2 0. (3.69)
From (A2), we have
1
(Bxp, y —vy) + S—(y—vn,vn—xn> > G(y,vn). (3.70)
This implies that
1
<B'x"i’y - vni> + S_<y = Unis On; — x"i> 2 G(y' v"i)' (3'71)
Putz; =ty+(1-t)qforallt € (0,1] and y € C. Then, we have z; € C. So, from (3.71) we have
Uy,

— Xy
> "‘>+G(zt,vm)

ni

(2t = Un;, Bzy) > (2t — Un,, Bzi) — (2t — Un;, Bxp,) — <Zt ~ Un,,

= (z¢ — Uy, Bzt — Buy,) + (z¢ — vy, Buy, — Bxy,) — <zt — Un,, @> (3.72)
n;

+ G(zt,vp,).

Since ||vy,, — x| — 0, we have ||Bv,, — Bx,,|| — 0. Further, from monotonicity of B, we have
(2t — Uy, Bzi — Buy,) > 0. So, from (A4), we have

(zt —q,Bz) > G(z1,9). (3.73)
From (A1), (A4), and (3.64), we also have

0=G(zt,zt) <tG(z,y) + 1 -1)G(z1,9)
<tG(zy,y) + (1 -1)(zt — q,Bz) (3.74)

=tG(z,y) + (1 -t){y — g, Bz),
hence
0<G(zr,y) + (1 -t){y —q,Bz). (3.75)
Letting t — 0, we have, for each y € C,

0<G(q,v)+{y—-4q Bg). (3.76)
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This implies that

q € EP(G, B). (3.77)
Define a mapping Q : C — C by
Qx =6Pc(I-1A)x+(1-6)Pc(I-1n,B)x, VxeC, (3.78)
where lim,, -, ,6,, = 6 € (0,1). From Lemma 2.3, we have that Q is nonexpansive with
F(Q) = F(Pc(I - A, A)) (\F(Pc(I - 14B)). (3.79)
Next, we show that

lim [l — Qx| = 0. (3.80)
By nonexpansiveness of I —#,B and I — 1, A, we have

1260 = Qxall < |%n = Y| + ||y — Q|
= {|%n = Yl + |62P (1t = A Atty) + (1 = 6,)Pe (0 = 1By = 5Pc(I = 1y A)x,
~(1=8)Pc(I - 1uB) x|
= ||%n = Yul| + 162Pc(I = Ly Aty — 6, Pc(I = Xy A)xy, + 6, Pc (I — Ay A)xy,
+(1—=64)Pc(I -1yB)v, — (1 - 64)Pc(I - 1,B)x,
+(1=6,)Pc(I = nuB)xy — 6Pc(I = Ay A)xy — (1 = 6)Pc (I — 11,B) x|
= |20 = Y| + 1162 (Pc(I = Ay Ayt = Pc(I = Ly A)xn) + (62 = 8) Pe(I = Ay A)xy
+ (1= 6,) (Pc(I = 1uB)vn — Pc(I = 1nB)xn)
+(6 = 6n)Pc (I = 11aB) x|
< 2w = Y| + Eall Pe(I = Xy A)yuy = Pe(I = Ay A) x| + 16, = 6| Pc(I = Ay A) x|
+ (1= 8)||Pe(I = 12B) vy — Pe(I = 1,B) x| + 164 - 81| Pe (I - 11.B) x|
< ||%n = Y| + Gullten = xall + 165 = 6lIIPc(I = LnA)xull + (1 = E) |0n = x|
+16n = 6|||Pc (I = 14B) x|

< ln = Y| + Eullttn — x|l + 2165 — 6|Mi + (1 = 6,)|[vn — xall,
(3.81)
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where My = sup, .o {|Pc(I = Ay A)xn|| + [|[Pc(I = 11,B)xy||}. From (3.17), (3.42), (3.43), (3.55),
and condition (iii), we have lim, ., ,||x, — Qx,| = 0. Since x,,, — g, it follows from (3.80) that,
lim; _, oo || x5, — Qxp,|| = 0. By Lemma 2.4, we obtain that

g € F(Q) = F(Pc(I - \,A)) N F(Pe(I - ,B)) = F(G1) N F(Gy). (3.82)
Assume that g # Sq. Using Opial s’ property, (3.57) and Lemma 2.10 we have

lim inf||x,, — g|| < liminf||x,, — Sq]|
< liinlglf(”xni = S|l + || Snixn; = Sniql| + || Snq — Sql|) (3.83)

< liminf||x,, - g||.
i— o0
This is a contradiction, so we have

ge (N]F(Ti) = F(S). (3.84)

i=1

From (3.68), (3.77) (3.82), and (3.84), we have g € §. Since P;f is contraction with the
coefficient 6 € (0,1), Pz has a unique fixed point. Let z be a fixed point of P;f, that is
z = Py f(z). Since x,, — g and q € §, we have

limsup(f(z) — z,x, — z) = limsup(f(z) - z,x,, — z)
e e (3.85)

=(f(z) -z,9-z) <0.

Step 6. Finally, we will show that x, — z asn — oo. By nonexpansiveness of T, ,T;,, I —
MA, I -n,B,1-1r,A,I-s,B, we can show that ||y, — z|| < ||x, — z||. Then

%ni1 = 2lI* = {an (f (xn) = 2) + Pu(Xn = 2) + Yu (Sulyn = Z), Xna1 — 2)
=, (f (%) = 2, Xpe1 — 2) + Bu(Xn — 2, Xpi1 — 2) + Yn(Suln — 2, Xna1 — 2)
<ty (f (xn) = f(2), Xne1 = 2) + u{f(2) = 2, X1 = 2) + Pulln = 2| X001 — 2]
+¥u||Suyn — 2 X021 — 2|l
< | f(xn) = F@) 1xne1 = 2] + an(f (2) = 2, %ns1 = 2) + Bullxn = 2]l 2001 = 2|

+ Yullyn = 2|l lIxne1 = =l
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< anBllxn = zllllxnar = 2l + an(f(2) = 2, %1 = 2) + Pullxn = zlll|xn41 - 2|
+ ¥l Xn = Z[l[| X001 = ]|

= (1= an(1=0)lIxn = 2llllxn1 = 2l + an(f (2) = 2, %p11 = 2)

_ 2 _ 2
S (1 _ an(l _ 9)) < ||le Z” +2||x7l+1 Z” > + an<f(z) —Z, Xyl — Z>
_ _ _ 2
< wnxn - Z||2 + M + tXn<f(Z) —Z,Xn+1 — Z>}
(3.86)
we have
||xn+1 - 2”2 < (1 - “n(l - 6))”3(,1 - Z||2 + 2“n<f(z) —Z,Xn+1 — Z>- (3-87)

By Step 5, (3.87), and Lemma 2.2, we have lim, X, = z, where z = Prf(z). It easy to see
that sequences {y,}, {u,}, and {v,} converge strongly to z = Py f(z). O

4. Application

Using our main theorem (Theorem 3.1), we obtain the following strong convergence
theorems involving finite family of x-strict pseudocontractions.

To prove strong convergence theorem in this section, we need definition and lemma
as follows.

Definition 4.1. A mapping T : C — C is said to be a x-strongly pseudo contraction mapping,
if there exist x € [0, 1) such that

ITx =Tyl < Jlx -yl + %l T~ T)x - T -Tyylf, VxyeC @)

Lemma 4.2 (see [20]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C — Cax-strict pseudo contraction. Define S : C — C by Sx = ax+ (1 -a)Tx for each x € C.
Then, as a € [x,1) S is nonexpansive such that F(S) = F(T).

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let F and G be two
bifunctions from C x C into R satisfying (A1)—(A4), respectively. Let A : C — H is a a-inverse
strongly monotone mapping and B : C — H be a p-inverse strongly monotone mapping. Let {T;}~,
be a finite family of w;-psuedo contractions with § = (i, F(T;) N EP(F, A) N EP(G, B) N F(G1) N
F(Gy) #0, where G1, Gy : C — C are defined by G1(x) = Pc(x — MyAx), Ga(x) = Pe(x -
N.Bx), forall x € C. Define a mapping T, by Ty, = xix+(1-x;)Tix, forall x € C,i e {1,2,...,N}.
Let f : C — C be a contraction with the coefficient 8 € (0,1). Let S, be the S-mappings generated
() () (n) nj o n

by Ty, Ty, - .., Ty, and aﬁ"),az ,o..,ay , where a’ = (a?’],az’,aS’]) eIxIxI, I=1[01],
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"J nj

+oc2 +a;"j =land 0 <n < a;"j <O <lforallneN,forallj=1,2,....,N-1, 0<nyn <
N<land0<ay!, af) <0;<1forallneN, forall j=1,2,...,N. Let {x,)}, {ttn}, (Vn}, {Yn)
be sequences generated by x1,u,v € C

1

Fuy, u) + (Axy, u—uy,) + r—(u—un,un—xn) >0,
n
1

G(v,,0) + (Bx,,v —vy,) + S—(v—vn,vn - Xu) 20,
n

(4.2)

Yn = 6nPC(un - /\nAun) + (1 - 6n)PC (Un - nnan)/

Xn+l = “nf(xn) + ﬁnxn + Ynsnyn/ Yn>1,

where {an}, {Pn}, {yn} € (0,1) such that ay + fn +yn =1, 1o € [a,b] C (0,2a), s, € [c,d] C
(0,26), An € [e, f] C (0,2a), 1, € [g,h] C (0,2B). Assume that

(i) limy, o, = 0 and =¥ a, = oo,
(ii) liminf, B, < limsup, | B, <1,
(iii) lim, 6, =6 € (0,1),

(iv) Zrzolsnﬂ —- Sul, Z;’lo:O|Tn+1 — Tl Z:ozol)lnﬂ - Al Z;.lozolrlnﬂ - 7’ln|/ Zfzolanﬂ -
lxn|/ Z;.lo:ol,ﬁwrl _ﬁnl < oo,

(v) |an+1’ 7| — 0 and |an+1’—a37| — 0asn — oo, forall je({1,2,3,..., N}.

Then the sequence {x,}, {Yn}, {1n}, {vn} converges strongly to z = Ps f (z), and z is solution of

(Ax*, x = x*) >0,
(4.3)
(Bx*, x—=x") > 0.

Proof. For every i € {1,2,...,N}, by Lemma 4.2, we have T, is nonexpansive mappings.
From Theorem 3.1, we can concluded the desired conclusion. O

Theorem 4.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let F and G be two
bifunctions from C x C into R satisfying (A1)—(A4), respectively. Let A : C — H be a a-inverse
strongly monotone mapping. Let (T;}~, be a finite family of x;-strict pseudo contractions with § =
ﬂf\zjl F(T:))NEP(F, A)NF(G1) #0, where Gy : C — C defined by G1(x) = Pc(x—\,Ax), for all x €
C. Define a mapping Ty, by Ty, = xix + (1 — x;))Tix, forallx € C,i € N.Let f : C — Ca
contraction with the coefficient 6 € (0,1). Let S,, be the S-mappings generated by T, Tx,, - ..,TKN

and ai"),cxgn), ) ,a(") where a(") (a ‘,az ,a3]) €eIxIxI, I=101],a) +a2]

and0<711§a1’7561<1f0rallneN, for all ]=1,2,...,N—1,0<11N§ac1 < 1and

+a3 =1
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0 < a;"j,exg’j <03 <1foralln e N, forall j=1,2,...,N. Let {x,}, {tn}, {yn} be sequences
generated by x1,u, € C

1
F(uy,u) + (Axy,u—u,) + T—(u—un,un—xn> >0,
n

Yn = PC(un - -)‘nAun)/ (44)

Xn+l = anf(xn) + ,ann + Ynsn]/n/ Yn>1,

where {a,}, {Pn}, {yn) € (0,1) such that ay + B+ yn =1, vy € [a,b] C (0,2a), A, € [e, f] C
(0,2a). Assume that

(i) limy, . wa, = 0 and ¥ ja, = oo,
(ii) 0 < liminfy—o B, < limsup, ,  fn <1,
(iii) Zflo=0|rn+1 ~Tnl, Zf:optml = Xl Zf:omnﬂ —-ayl, Z,;";Olﬂn+1 =Pl < oo,
(iv) |a?+1’j —zx;l’i| — 0 and |a§+1’i —ag’i — O0asn — oo, forall j€{1,2,3,...,N}.

Then the sequence {x}, {yn}, {un} converges strongly to z = P f(z), and z is solution of

(Ax*,x —x") > 0. (4.5)

Proof. Foreveryie {1,2,...,N}, by Lemma 4.2, we have that T}, is nonexpansive mappings,
putting F = G, A= B, s, = tn, Ay = 1, and u,, = v,. From Theorem 3.1, we can conclude the
desired conclusion. O
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