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We consider two new iterative methods for a countable family of nonexpansive mappings in
Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed
point of a countable family of nonexpansive mappings which solves the corresponding variational
inequality. Our results improve and extend the corresponding ones announced by many others.

1. Introduction

LetH be a real Hilbert space and letC be a nonempty closed convex subset ofH. Recall that a
mapping T : C → C is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, for all x, y ∈ C. We use
F(T) to denote the set of fixed points of T . A mapping F : H → H is called k-Lipschitzian if
there exists a positive constant k such that

∥
∥Fx − Fy

∥
∥ ≤ k

∥
∥x − y

∥
∥, ∀x, y ∈ H. (1.1)

F is said to be η-strongly monotone if there exists a positive constant η such that

〈

Fx − Fy, x − y
〉 ≥ η

∥
∥x − y

∥
∥
2
, ∀x, y ∈ H. (1.2)

Let A be a strongly positive bounded linear operator on H, that is, there exists a
constant γ̃ > 0 such that

〈Ax, x〉 ≥ γ̃‖x‖2, ∀x ∈ H. (1.3)
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A typical problem is that of minimizing a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

min
x∈F(T)

1
2
〈Ax, x〉 − 〈x, b〉, (1.4)

where b is a given point in H.

Remark 1.1. From the definition ofA, we note that a strongly positive bounded linear operator
A is a ‖A‖-Lipschitzian and γ̃-strongly monotone operator.

Construction of fixed points of nonlinear mappings is an important and active research
area. In particular, iterative algorithms for finding fixed points of nonexpansive mappings
have received vast investigation (cf. [1, 2]) since these algorithms find applications in variety
of applied areas of inverse problem, partial differential equations, image recovery, and signal
processing; see [3–8]. One classical way to find the fixed point of a nonexpansive mapping T
is to use a contraction to approximate it. More precisely, take t ∈ (0, 1) and define a contraction
Tt : C → C by Ttx = tu + (1 − t)Tx, where u ∈ C is a fixed point. Banach’s Contraction
Mapping Principle guarantees that Tt has a unique fixed point xt in C, that is,

xt = tu + (1 − t)Txt, u ∈ C. (1.5)

The strong convergence of the path xt has been studied by Browder [9] and Halpern [10] in
a Hilbert space.

Recently, Yao et al. [11] considered the following algorithms:

xt = TPC[(1 − t)xt], (1.6)

and for x0 ∈ C arbitrarily,

yn = PC[(1 − αn)xn],

xn+1 =
(

1 − βn
)

xn + βnTyn, n ≥ 0.
(1.7)

They proved that if {αn} and {βn} satisfying appropriate conditions, then the {xt} defined by
(1.6) and {xn} defined by (1.7) converge strongly to a fixed point of T .

On the other hand, Yamada [12] introduced the following hybrid iterative method for
solving the variational inequality:

xn+1 = Txn − μλnF(Txn), n ≥ 0, (1.8)

where F is a k-Lipschitzian and η-strongly monotone operator with k > 0, η > 0, 0 < μ <
2η/k2. Then he proved that {xn} generated by (1.8) converges strongly to the unique solution
of variational inequality 〈Fx̃, x − x̃〉 ≥ 0, x ∈ F(T).

In this paper, motivated and inspired by the above results, we introduce two new
algorithms (3.3) and (3.13) for a countable family of nonexpansive mappings in Hilbert
spaces. We prove that the proposed algorithms strongly converge to x∗ ∈ ⋂∞

n=1 F(Tn) which
solves the variational inequality: 〈Fx∗, x∗ − u〉 ≤ 0, u ∈ ⋂∞

n=1 F(Tn).
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2. Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For the sequence {xn} in
H, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x implies
that {xn} converges strongly to x. For every point x ∈ H, there exists a unique nearest point
in C, denoted by PCx such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.1)

The mapping PC is called the metric projection of H onto C. It is well know that PC is a
nonexpansive mapping. In a real Hilbert space H, we have

∥
∥x − y

∥
∥
2 = ‖x‖2 + ∥

∥y
∥
∥
2 − 2

〈

x, y
〉

, ∀x, y ∈ H. (2.2)

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [13]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → C
a nonexpansive mapping with F(T)/= ∅, if {xn} is a sequence in C weakly converging to x and if
{(I − T)xn} converges strongly to y, then (I − T)x = y.

Lemma 2.2 (see [14]). Let {xn} and {zn} be bounded sequences in Banach space E and {γn} a
sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.3)

Suppose that xn+1 = γnxn + (1 − γn)zn, n ≥ 0 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.
Then limn→∞‖zn − xn‖ = 0.

Lemma 2.3 (see [15, 16]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0, (2.4)

where {λn}, {δn}, and {γn} satisfy the following conditions: (i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞, (ii)
lim supn→∞δn ≤ 0 or

∑∞
n=0 λnδn < ∞, (iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞. Then limn→∞sn = 0.

Lemma 2.4 (see [17, Lemma 3.2]). Let C be a nonempty closed convex subset of a Banach space E.
Suppose that

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ C} < ∞. (2.5)

Then, for each y ∈ C, {Tny} converges strongly to some point of C. Moreover, let T be a mapping of C
into itself defined by Ty = limn→∞Tny, for all y ∈ C. Then limn→∞ sup{‖Tz − Tnz‖ : z ∈ C} = 0.
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Lemma 2.5. Let F be a k-Lipschitzian and η-strongly monotone operator on a Hilbert space H with
0 < η ≤ k and 0 < t < η/k2. Then S = (I − tF) : H → H is a contraction with contraction

coefficient τt =
√

1 − t(2η − tk2).

Proof. From (1.1), (1.2), and (2.2), we have

∥
∥Sx − Sy

∥
∥
2 =

∥
∥
(

x − y
) − t

(

Fx − Fy
)∥
∥
2

=
∥
∥x − y

∥
∥
2 + t2

∥
∥Fx − Fy

∥
∥
2 − 2t

〈

Fx − Fy, x − y
〉

≤ ∥
∥x − y

∥
∥
2 + t2k2∥∥x − y

∥
∥
2 − 2tη

∥
∥x − y

∥
∥
2

=
[

1 − t
(

2η − tk2
)]∥

∥x − y
∥
∥
2
,

(2.6)

for all x, y ∈ H. From 0 < η ≤ k and 0 < t < η/k2, we have

∥
∥Sx − Sy

∥
∥ ≤ τt

∥
∥x − y

∥
∥, (2.7)

where τt =
√

1 − t(2η − tk2). Hence S is a contraction with contraction coefficient τt.

3. Main Results

Let F be a k-Lipschitzian and η-strongly monotone operator onH with 0 < η ≤ k and T : C →
C a nonexpansive mapping. Let t ∈ (0, η/k2) and τt =

√

1 − t(2η − tk2); consider a mapping
St on C defined by

Stx = TPC[(I − tF)x], x ∈ C. (3.1)

It is easy to see that St is a contraction. Indeed, from Lemma 2.5, we have

∥
∥Stx − Sty

∥
∥ ≤ ∥

∥TPC[(I − tF)x] − TPC(I − tF)y
∥
∥

≤ ∥
∥(I − tF)x − (I − tF)y

∥
∥

≤ τt
∥
∥x − y

∥
∥,

(3.2)

for all x, y ∈ C. Hence it has a unique fixed point, denoted xt, which uniquely solves the fixed
point equation

xt = TPC[(I − tF)xt], xt ∈ C. (3.3)

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. Let F be a k-Lipschitzian and η-strongly monotone



Fixed Point Theory and Applications 5

operator onH with 0 < η ≤ k. For each t ∈ (0, η/k2), let the net {xt} be generated by (3.3). Then, as
t → 0, the net {xt} converges strongly to a fixed point x∗ of T which solves the variational inequality:

〈Fx∗, x∗ − u〉 ≤ 0, u ∈ F(T). (3.4)

Proof. We first show the uniqueness of a solution of the variational inequality (3.4), which is
indeed a consequence of the strong monotonicity of F. Suppose x∗ ∈ F(T) and x̃ ∈ F(T) both
are solutions to (3.4); then

〈Fx∗, x∗ − x̃〉 ≤ 0,

〈Fx̃, x̃ − x∗〉 ≤ 0.
(3.5)

Adding up (3.5) gets

〈Fx∗ − Fx̃, x∗ − x̃〉 ≤ 0. (3.6)

The strong monotonicity of F implies that x∗ = x̃ and the uniqueness is proved. Below we
use x∗ ∈ F(T) to denote the unique solution of (3.4).

Next, we prove that {xt} is bounded. Take u ∈ F(T); from (3.3) and using Lemma 2.5,
we have

‖xt − u‖ = ‖TPC[(I − tF)xt] − TPCu‖
≤ ‖(I − tF)xt − u‖
≤ ‖(I − tF)xt − (I − tF)u − tFu‖
≤ ‖(I − tF)xt − (I − tF)u‖ + t‖Fu‖
≤ τt‖xt − u‖ + t‖Fu‖,

(3.7)

that is,

‖xt − u‖ ≤ t

1 − τt
‖Fu‖. (3.8)

Observe that

lim
t→ 0+

t

1 − τt
=

1
η
. (3.9)

From t → 0, we may assume, without loss of generality, that t ≤ η/k2 − ε. Thus, we have that
t/(1 − τt) is continuous, for all t ∈ [0, η/k2 − ε]. Therefore, we obtain

sup
{

t

1 − τt
: t ∈

(

0,
η

k2
− ε

]}

< +∞. (3.10)

From (3.8) and (3.10), we have that {xt} is bounded and so is {Fxt}.
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On the other hand, from (3.3), we obtain

‖xt − Txt‖ = ‖TPC[(I − tF)xt] − TPCxt‖ ≤ ‖(I − tF)xt − xt‖ = t‖Fxt‖ −→ 0 (t −→ 0).
(3.11)

To prove that xt → x∗. For a given u ∈ F(T), by (2.2) and using Lemma 2.5, we have

‖xt − u‖2 = ‖TPC[(I − tF)xt] − TPCu‖2

≤ ‖(I − tF)xt − (I − tF)u − tFu‖2

≤ τt
2‖xt − u‖2 + t2‖Fu‖2 + 2t〈(I − tF)u − (I − tF)xt, Fu〉

≤ τt‖xt − u‖2 + t2‖Fu‖2 + 2t〈u − xt, Fu〉 + 2t2〈Fxt − Fu, Fu〉

≤ τt‖xt − u‖2 + t2‖Fu‖2 + 2t〈u − xt, Fu〉 + 2t2k‖xt − u‖‖Fu‖.

(3.12)

Therefore,

‖xt − u‖2 ≤ t2

1 − τt
‖Fu‖2 + 2t

1 − τt
〈u − xt, Fu〉 + 2t2k

1 − τt
‖xt − u‖‖Fu‖. (3.13)

From τt =
√

1 − t(2η − tk2), we have limt→ 0(t2/(1 − τt)) = 0 and limt→ 0(2t2k/(1 − τt)) = 0.
Observe that, if xt ⇀ u, we have limt→ 0(2t/(1 − τt))〈u − xt, Fu〉 = 0.

Since {xt} is bounded, we see that if {tn} is a sequence in (0, η/k2−ε] such that tn → 0
and xtn ⇀ x̃, then by (3.13), we see xtn → x̃. Moreover, by (3.11) and using Lemma 2.1, we
have x̃ ∈ F(T). We next prove that x̃ solves the variational inequality (3.4). From (3.3) and
u ∈ F(T), we have

‖xt − u‖2 ≤ ‖(I − tF)xt − u‖2

= ‖xt − u‖2 + t2‖Fxt‖2 − 2t〈Fxt, xt − u〉,
(3.14)

that is,

〈Fxt, xt − u〉 ≤ t

2
‖Fxt‖2. (3.15)

Now replacing t in (3.15) with tn and letting n → ∞, we have

〈Fx̃, x̃ − u〉 ≤ 0. (3.16)

That is x̃ ∈ F(T) is a solution of (3.4); hence x̃ = x∗ by uniqueness. In a summary, we have
shown that each cluster point of {xt} (as t → 0) equals x∗. Therefore, xt → x∗ as t → 0.
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Setting F = A in Theorem 3.1, we can obtain the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. Let A be a strongly positive bounded linear operator
with coefficient 0 < γ̃ ≤ ‖A‖. For each t ∈ (0, γ̃/‖A‖2), let the net {xt} be generated by xt =
TPC[(I− tA)xt]. Then, as t → 0, the net {xt} converges strongly to a fixed point x∗ of T which solves
the variational inequality:

〈Ax∗, x∗ − u〉 ≤ 0, u ∈ F(T). (3.17)

Setting F = I, the identity mapping, in Theorem 3.1, we can obtain the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. For each t ∈ (0, 1), let the net {xt} be generated
by (1.6). Then, as t → 0, the net {xt} converges strongly to a fixed point x∗ of T which solves the
variational inequality:

〈x∗, x∗ − u〉 ≤ 0, u ∈ F(T). (3.18)

Remark 3.4. The Corollary 3.3 complements the results of Theorem 3.1 in Yao et al. [11], that
is, x∗ is the solution of the variational inequality: 〈x∗, x∗ − u〉 ≤ 0, u ∈ F(T).

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn} be a
sequence of nonexpansive mappings ofC into itself such that

⋂∞
n=1 F(Tn)/= ∅. Let F be a k-Lipschitzian

and η-strongly monotone operator on H with 0 < η ≤ k. Let {αn} and {βn} be two real sequences in
(0, 1) and satisfy the conditions:

(A1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(A2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Suppose that
∑∞

n=1 sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞ for any bounded subset B of C.
Let T be a mapping of C into itself defined by Tz = limn→∞Tnz for all z ∈ C and suppose that
F(T) =

⋂∞
n=1 F(Tn). For given x1 ∈ C arbitrarily, let the sequence {xn} be generated by

yn = PC[(I − αnF)xn],

xn+1 =
(

1 − βn
)

xn + βnTnyn, n ≥ 1.
(3.19)

Then the sequence {xn} strongly converges to a x∗ ∈ ⋂∞
n=1 F(Tn) which solves the variational

inequality:

〈Fx∗, x∗ − u〉 ≤ 0, u ∈
∞⋂

n=1

F(Tn). (3.20)
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Proof. We proceed with the following steps.

Step 1. We claim that {xn} is bounded. From limn→∞ αn = 0, we may assume, without loss of
generality, that 0 < αn ≤ η/k2 − ε for all n. In fact, let u ∈ ⋂∞

n=1 F(Tn), from (3.19) and using
Lemma 2.5, we have

∥
∥yn − u

∥
∥ = ‖PC[(I − αnF)xn] − PCu‖
≤ ‖(I − αnF)xn − (I − αnF)u − αnFu‖
≤ ταn‖xn − u‖ + αn‖Fu‖,

(3.21)

where ταn =
√

1 − αn(2η − αnk2). Then from (3.19) and (3.21), we obtain

‖xn+1 − u‖ =
∥
∥
(

1 − βn
)

(xn − u) + βn
(

Tnyn − u
)∥
∥

≤ (

1 − βn
)‖xn − u‖ + βn

∥
∥yn − u

∥
∥

≤ (

1 − βn
)‖xn − u‖ + βn[ταn‖xn − u‖ + αn‖Fu‖]

≤ [

1 − βn(1 − ταn)
]‖xn − u‖ + βnαn‖Fu‖

≤ max
{

‖xn − u‖, αn‖Fu‖
1 − ταn

}

.

(3.22)

By induction, we have

‖xn − u‖ ≤ max{‖x1 − u‖,M1‖Fu‖}, (3.23)

whereM1 = sup{αn/(1−ταn) : 0 < αn ≤ η/k2 −ε} < +∞. Therefore, {xn} is bounded. We also
obtain that {yn}, {Tnyn}, and {Fxn} are bounded. Without loss of generality, we may assume
that {xn}, {yn}, {Tnyn}, and {Fxn} ⊂ B, where B is a bounded set of C.

Step 2. We claim that limn→∞‖xn+1−xn‖ = 0. To this end, define a sequence {zn} by zn = Tnyn.
It follows that

‖zn+1 − zn‖ =
∥
∥Tn+1yn+1 − Tnyn

∥
∥

≤ ∥
∥Tn+1yn+1 − Tn+1yn

∥
∥ +

∥
∥Tn+1yn − Tnyn

∥
∥

≤ ∥
∥yn+1 − yn

∥
∥ +

∥
∥Tn+1yn − Tnyn

∥
∥

≤ ‖(I − αn+1F)xn+1 − (I − αnF)xn‖ +
∥
∥Tn+1yn − Tnyn

∥
∥

≤ ‖xn+1 − xn‖ + αn+1‖Fxn+1‖ + αn‖Fxn‖ + sup{‖Tn+1z − Tnz‖ : z ∈ B}.

(3.24)

Thus, we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1‖Fxn+1‖ + αn‖Fxn‖ + sup{‖Tn+1z − Tnz‖ : z ∈ B}. (3.25)
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From limn→∞αn = 0 and (3.25), we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.26)

By (3.26), (A2), and using Lemma 2.2, we have limn→∞‖zn − xn‖ = 0. Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖zn − xn‖ = 0. (3.27)

Step 3. We claim that limn→∞‖xn − Tnxn‖ = 0. Observe that

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖
≤ ‖xn − xn+1‖ +

(

1 − βn
)‖xn − Tnxn‖ + βn

∥
∥Tnyn − Tnxn

∥
∥

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − Tnxn‖ + βn

∥
∥yn − xn

∥
∥

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − Tnxn‖ + αn‖Fxn‖,

(3.28)

that is,

‖xn − Tnxn‖ ≤ 1
βn

(‖xn+1 − xn‖ + αn‖Fxn‖) −→ 0 (n −→ ∞). (3.29)

Step 4. We claim that limn→∞‖xn − Txn‖ = 0. Observe that

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖
≤ ‖xn − Tnxn‖ + sup{‖Tnz − Tz‖ : z ∈ B}.

(3.30)

Hence, from Step 3 and using Lemma 2.4, we have

lim
n→∞

‖xn − Txn‖ = 0. (3.31)

Step 5. We claim that lim supn→∞〈Fx∗, x∗ −xn〉 ≤ 0, where x∗ = limt→ 0 xt and xt is defined by
(3.3). Since xn is bounded, there exists a subsequence {xnk} of {xn} which converges weakly
to ω. From Step 4, we obtain Txnk ⇀ ω. From Lemma 2.1, we have ω ∈ F(T). Hence, by
Theorem 3.1, we have

lim sup
n→∞

〈Fx∗, x∗ − xn〉 = lim
k→∞

〈Fx∗, x∗ − xnk〉 = 〈Fx∗, x∗ −ω〉 ≤ 0. (3.32)
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Step 6. We claim that {xn} converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn). From (3.19), we have

‖xn+1 − x∗‖2 ≤ (

1 − βn
)‖xn − x∗‖2 + βn

∥
∥Tnyn − x∗∥∥2

≤ (

1 − βn
)‖xn − x∗‖2 + βn

∥
∥yn − x∗∥∥2

≤ (

1 − βn
)‖xn − x∗‖2 + βn‖(I − αnF)xn − (I − αnF)x∗ − αnFx

∗‖2

≤ (

1 − βn
)‖xn − x∗‖2

+ βn
[

τ2αn
‖xn − x∗‖2 + α2

n‖Fx∗‖ + 2αn〈(I − αnF)x∗ − (I − αnF)xn, Fx
∗〉
]

≤ (

1 − βn
)‖xn − x∗‖2 + βnταn‖xn − x∗‖2 + βnα

2
n‖Fx∗‖2 + 2αnβn〈x∗ − xn, Fx

∗〉
+ 2βnα2

n〈Fxn − Fx∗, Fx∗〉
≤ [

1 − βn(1 − ταn)
]‖xn − x∗‖2 + βnα

2
n‖Fx∗‖2 + 2αnβn〈x∗ − xn, Fx

∗〉
+ 2βnα2

nk‖xn − x∗‖‖Fx∗‖
≤ [

1 − βn(1 − ταn)
]‖xn − x∗‖2 + βnα

2
nM2 + 2αnβn〈x∗ − xn, Fx

∗〉 + 2βnα2
nM2

≤ [

1 − βn(1 − ταn)
]‖xn − x∗‖2 + βn(1 − ταn)

{

3α2
nM2

1 − ταn

+ 2M1〈x∗ − xn, Fx
∗〉
}

= (1 − λn)‖xn − x∗‖2 + λnδn,

(3.33)

where M2 = sup{‖Fx∗‖2, k‖xn − x∗‖‖Fx∗‖}, λn = βn(1 − ταn), and δn = 3α2
nM2/(1 − ταn) +

2M1〈x∗ − xn, Fx
∗〉. It is easy to see that λn → 0,

∑∞
n=1 λn = ∞, and lim supn→∞ δn ≤ 0.

Hence, by Lemma 2.3, the sequence {xn} converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn). From x∗ =

limt→ 0xt and Theorem 3.1, we have that x∗ is the unique solution of the variational inequality:
〈Fx∗, x∗ − u〉 ≤ 0, u ∈ ⋂∞

n=1 F(Tn).

Remark 3.6. From Remark 3.1 of Peng and Yao [18], we obtain that {Wn} is a sequence of
nonexpansive mappings satisfying condition

∑∞
n=1 sup{‖Wn+1z − Wnz‖ : z ∈ B} < ∞ for

any bounded subset B of H. Moreover, let W be the W-mapping; we know that Wy =
limn→∞ Wny for all y ∈ C and that F(W) =

⋂∞
n=1 F(Wn). If we replace {Tn} by {Wn}

in the recursion formula (3.19), we can obtain the corresponding results of the so-called
W-mapping.

Setting F = A and Tn = T in Theorem 3.5, we can obtain the following result.

Corollary 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. Let A be a strongly positive bounded linear operator
with coefficient 0 < γ̃ ≤ ‖A‖. Let {αn} and {βn} be two real sequences in (0, 1) and satisfy the
conditions (A1) and (A2). For given x1 ∈ C arbitrarily, let the sequence {xn} be generated by

yn = PC[(I − αnA)xn],

xn+1 =
(

1 − βn
)

xn + βnTyn, n ≥ 1.
(3.34)
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Then the sequence {xn} strongly converges to a fixed point x∗ of T which solves the variational
inequality:

〈Ax∗, x∗ − u〉 ≤ 0, u ∈ F(T). (3.35)

Setting F = I and Tn = T in Theorem 3.5, we can obtain the following result.

Corollary 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. Let {αn} and {βn} be two real sequences in (0, 1)
and satisfy the conditions (A1) and (A2). For given x1 ∈ C arbitrarily, let the sequence {xn} be
generated by (1.7). Then the sequence {xn} strongly converges to a fixed point x∗ of T which solves
the variational inequality:

〈x∗, x∗ − u〉 ≤ 0, u ∈ F(T). (3.36)

Remark 3.9. The Corollary 3.8 complements the results of Theorem 3.2 in Yao et al. [11], that
is, x∗ is the solution of the variational inequality: 〈x∗, x∗ − u〉 ≤ 0, u ∈ F(T).
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