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We introduce and study two new functional equations, which contain a lot of known functional
equations as special cases, arising in dynamic programming of multistage decision processes. By
applying a new fixed point theorem, we obtain the existence, uniqueness, iterative approximation,
and error estimate of solutions for these functional equations. Under certain conditions, we also
study properties of solutions for one of the functional equations. The results presented in this
paper extend, improve, and unify the results according to Bellman, Bellman and Roosta, Bhakta
and Choudhury, Bhakta and Mitra, Liu, Liu and Ume, and others. Two examples are given to
demonstrate the advantage of our results over existing results in the literature.

1. Introduction and Preliminaries

The existence, uniqueness, and successive approximations of solutions for the following
functional equations arising in dynamic programming:

£ = ma(p() + (o) fla(ey))), Vees,
f(x) = max{ (x,y)+ f(a(x,y))}, VxeSs,

fx) = mmmax{ (x,v), f(a(x,y))}, VxeS,
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f) =minmax{p(x,y),q(x,y)f(a(x,y))},  vx€S,

fo) = 3gg{p<x,y> a0 (o) } vres,

(1.1)

were first introduced and discussed by Bellman [1, 2]. Afterwards, further analyses on the
properties of solutions for the functional equations (1.1) and (1.2) and others have been
studied by several authors in [3-7] and [8-11] by using various fixed point theorems and
monotone iterative technique, where (1.2) are as follows:

f(x)=inf H(x,y,f), VYx€S,
yeD
fx) = oth{P(x, y) + > 4qi(x,y)opt{vi(x,y), f(ai(x,y))} } Vx €S (12)
ye i=1

flx) = Sg{t[u(x/y) +f(a(x,y))] + A -Hopt{v(x,y), f(a(x,y))}}, VxeS.

The aim of this paper is to investigate properties of solutions for the following
more general functional equations arising in dynamic programming of multistage decision
processes:

f@) =opt{p(xy) + H(xy, f)}, vx €S (1.3)
ye

flx) = OPt{T(xr y) + iopt{m(x,y) +qi(x,y) f(ai(x,y)),

yeD i=1
(1.4)

w(xy) +vi<x,y>f<bi<x,y>>}}, vres

where X and Y are real Banach spaces, S C X is the state space, D C Y is the decision space,
opt denotes the sup or inf, x and y stand for the state and decision vectors, respectively,
ai, ap,...,am, b1, by, ..., by, represent the transformations of the processes, and f(x) denotes
the optimal return function with initial state x. The rest of the paper is organized as follows.
In Section 2, we state the definitions, notions, and a lemma and establish a new fixed point
theorem, which will be used in the rest of the paper. The main results are presented in
Section 3. By applying the new fixed point theorem, we establish the existence, uniqueness,
iterative approximation, and error estimate of solutions for the functional equation (1.3)
and (1.4). Under certain conditions, we also study other properties of solutions for the
functional equations (1.4). The results present in this paper extend, improve, and unify
the corresponding results according to Bellman [1], Bellman and Roosta [5], Bhakta and
Choudhury [6], Bhakta and Mitra [7], Liu [8], Liu and Ume [11], and others. Two examples
are given to demonstrate the advantage of our results over existing results in the literature.
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Throughout this paper, we assume that R = (—oo, +0), R* = [0, +00), and R~ = (-0, 0].
For any t € R, [t] denotes the largest integer not exceeding t. Define

®; = {¢:¢: R" — R" is upper semicontinuous from the right on R*},
@, ={p:9:R"— R"and ¢(t) <t for t>0},
®; ={¢:¢:R" — R" is nondecreasing}, (1.5)

D, = {(sw) L, € D3, (t) >0, iqf(qv"(t)) < oo for t > 0}.

n=0

2. A Fixed Point Theorem

Let {dk } x> be a countable family of pseudometrics on a nonvoid set X such that for any two
different points x,y € X, di(x,y) > 0 for some k > 1. For any x,y € X, let

(2.1)

A(oy) = S o)

=2k 1+dk(x,y)'

then d is a metric on X. A sequence {x,},>; in X is said to converge to a point x € X if
di(x,,x) — 0asn — oo for any k > 1 and to be a Cauchy sequence if di(x,, x,) — 0 as
n,m — oo forany k > 1.

Theorem 2.1. Let (X, d) be a complete metric space, and let d be defined by (2.1). If f : X — X
satisfies the following inequality:

de(fx, fy) <o(de(x,y)), VYx,yeX kx1, (22)

where ( is some element in ® N D, then
(i) f has a unique fixed point w € X and lim,, _, o, f"x = w for any x € X,
(ii) if, in addition, ¢ € @3, then

die(f"x,w) < @"(di(x,w)), YxeX, n>1, k>1. (2.3)

Proof. Given x € X and k > 1, define ¢, = dk(f"x, f"‘lx) for each n > 1. In view of (2.2), we
know that

Cnr1 = di (f"+1X,f"x> < tp<dk <f"x, f"‘1x>> =¢(cy), Yn>1. (2.4)

Since ¢ € @1 N d,, by (2.4) we easily conclude that {cn}n21 is nonincreasing. It follows that
{cn}n>1 has a limit ¢ > 0. We claim that ¢ = 0. Otherwise, ¢ > 0. On account of (2.4) and
@ € ®; ND,, we deduce that

c <limsup ¢(c,) < o(c) <c, (2.5)

n—oo
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which is impossible. That is, ¢ = 0. We now show that { f"x},,, is a Cauchy sequence. Suppose
that { f"x},.; is not a Cauchy sequence, then there exist ¢ > 0, k > 1, and two sequences of
positive integers {m(i)};5; and {n(i)};5; with m(i) > n(i) and

ai = di(f"Ox, f"0x) 26, d(fmO7x, f1Ox) <e, Viz1, (2.6)
which yields that
e<a; <dg <f"’(i)x,f’”(i)‘1x> + d (fm(i)‘lx,f"(i)x> <cCme +€, Vi1 (2.7)

Asi — oo in (2.7), we derive that lim;_, ,,a; = €. Note that (2.2) and (2.7) mean that

a; < dy <fm(i)x, fm(i)+1x) +dy <fm(i)+1x, fn(i)+1x> +dy (fn(i)+1x, fn(i)x> o8
2.8

< (i1 + @(ai) + Cn(iy+1,
for any i > 1. Letting i — oo in (2.8), we see that
e<p(e) <e. (2.9)

This is a contradiction. By completeness of (X, d), there exists a point w € X, such that
lim, o f"x = w. Using (2.1), (2.2), and ¢ € ®; N D,, we obtain that for each x,y € X

1 _dlxfy) 1 _eldry)
ZZ" 1+dk(fx,fy)sé2k 1+¢(di(x,y))

=~
Il
—_

(2.10)

&1 di(xy)
<Y — ——  =d(x,y),
kz:;Zk 1+dk(x,y) (xy)

which yields that

d(w, fw) <d(w, f'x) +d(f"x, fw) <d(w, f"x) + d<f"‘1x,w> — 0, asn— oo,
2.11)

that is, w is a fixed point of f. If f has a fixed point v different from w, then there exists k > 1
such that di(w,v) > 0. By (2.2), we have

di(w,v) = di(fw, fv) < ¢(di(w,v)) < di(w,v), (2.12)

which is a contradiction. Consequently, w is a unique fixed point of f.
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Suppose that ¢ € @3. By (2.2), we get that foranyx € X,n>1,and k > 1
di(f"x,w) = di(f'x, f'w) < (i (f7x, 17 1w) ) <+ < g (di(x,w)). (2.13)

This completes the proof. O

Remark 2.2. Theorem 2.1 extends Theorem 2.1 of Bhakta and Choudhury [6] and Theorem 1
of Boyd and Wong [12].

Lemma 2.3 (see [11]). Let a, b, ¢, and d be in R, then

|opt{a, b} —opt{c,d}| < max{|a—c|,|b-d|}. (2.14)

3. Properties of Solutions

In this section, we assume that (X, || -||) and (Y, || - ||') are real Banach spaces, S C X is the state
space, and D C Y is the decision space. Define

BB(S)={f:f:S— R is bounded on bounded subsets of S}. (3.1)
For any positive integer k and f, g € BB(S), let

di(f,8) = sup{|f(x) - g(@)| : x € BO,K) },

& d(f,8) (3.2)
d(f.g) —éﬁ'm'

where B(0,k) = {x : x € Sand ||x| < k}, then {dk}>1 is a countable family of pseudometrics
on BB(S). Itis clear that (BB(S), d) is a complete metric space.

Theorem 3.1. Letp : Sx D — Rand H : S x D x BB(S) — R be mappings, and let ¢ be in
@ N Dy, such that

(C1) for any k > 1 and (x,y,u,v) € B(0,k) x D x BB(S) x BB(S),

|H (x,y,u) - H(x,y,v)| < ¢(dk(u,v)), (3.3)

(C2) for any k > 1 and u € BB(S), there exists a(k,u) > 0 satisfying

lp(x,y)| +|H(x,y,u)| <alk,u), V(x,y)e B(0,k) x D, (3.4)
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then the functional equation (1.3) possesses a unique solution w € BB(S), and {G"g},5, converges
to w for each g € BB(S), where G is defined by

Gg(x) = opl;f{p(x,y) +H(x,y,8)}, V(x,g) €SxBB(S). (3.5)
ye

In addition, if ¢ is in @3, then

di(G"g,w) < ¢"(di(g,w)), VYgeBB(S), n>1, k>1. (3.6)

Proof. It follows from (C2) and (3.4) that G maps BB(S) into itself. Givene > 0, k > 1, x €
B(0,k), and h, g € BB(S), suppose that opt,cp = Sup,cp, then there exist y, z € D such that

Gh(x) <p(x,y) +H(x,y,h) +¢,  Gg(x) <p(x,z)+H(x,z28) +¢,

Gh(x) > p(x,2) + H(x,z,h),  Gg(x)>p(x,y) + H(x,y,8). o7
In view of (3.3), (3.5), and (3.7), we deduce that
Gh(x) - Gg(x)| < max{|H (x, y,h) - H(x,,9)|, |H(x, 2. h) - H(x,2,8)|} + ¢ os)
<p(d(h g)) +e¢,
which implies that
di(Gh, Gg) = sup{|Gh(x) - Gg(x)| : x € BO,k) | < p(di(h,g)) +=. (3.9)

Similarly, we can show that (3.9) holds for opt,cp = infyep. Ase — 07 in (3.9), we get that
dx(Gh,Gg) < ¢(dk(h, g)). (3.10)

Notice that the functional equation (1.3) possesses a unique solution w if and only if the
mapping G has a unique fixed point w. Thus, Theorem 3.1 follows from Theorem 2.1. This
completes the proof. O

Remark 3.2. The conditions of Theorem 3.1 are weaker than the conditions of Theorem 3.1 of
Bhakta and Choudhury [6].

Theorem 3.3. Let v, p;, gi, uj,vi : SxD — Rand a;, b; : SxD — S bemappingsfori=1,2,...,m.
Assume that the following conditions are satisfied:

(CB3) for each k > 1, there exists A(k) > 0 such that

|r (e, )| + 2 max{[pi(x, )|, Jui(x,y) |} < A(k),  ¥(x,y) € B(0,k) x D, (3.11)
i=1
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(C4) max{llai(x, y)|l, 1bi(x, Yl : i € {1,2,...,m}} <|lx||, for all (x,y) € Sx D,
(C5) there exists a constant p € [0,1) such that

vi(x,y)|} <B, VY(x,y) €eSxD, (3.12)

2 max{|qi(x,y)],
i=1

then the functional equation (1.4) possesses a unique solution w € BB(S), and {w,},, converges to
w for each wy € BB(S), where {wy} 5 is defined by

0 (x) = op;{ () + S opt{p (6, 1) + () om s (as(x, ),
ye in1
(3.13)

ui(x,y) +vi(x, y)w,-1(bi(x,y))} }, VxeS n>1.
Moreover,
di(wy, w) < (1 - p) ' di(wo,w), Yn>1, k>1. (3.14)
Proof. Set

H(x,y,h) =r(x,y) + gmljopt{m (x,y) +qi(x, y)h(ai(x,y)), ui(x,y) + vi(x, y)h(bi(x,y)) }

V(x,y,h) € Sx D x BB(S),

(3.15)

Gh(x) =optH(x,y,h), VY(x,h)€ S x BB(S). (3.16)
yeD
It follows from (C3)—(C5) and (3.15) that
|H (x,y,h)| < |r(x, )| + X max{|pi(x, y)| + |4 (x y)| [ h(ai(x, 1)) |,
i=1
|ui(x, )| + |oi(x, y) [ [ (bi (x, v)) |}
<|r(xy)| +Zlmax{|r’i(x/y) Nui(xy)]} +Zlmax{|qi(x/y) Nvixy) [}

x max{|h(ai(x,v))|, |h(bi(x,y))|}

< A(k) + lz max{|gi(x,y)|, vi(x,y)|}:| sup{|h(t)| .t € B(0, k)}
i1

< A(K) + psup{ |n(t)] : t € B0, k) },
(3.17)
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forany k >1and (x,y,h) € B(0,k) x D x BB(S). Consequently, G is a self mapping on BB(S).
By Lemma 2.3, (C4), and (C5), we obtain that for any k > 1 and (x,y,g,h) € B(0,k) x D x
BB(S) x BB(S),

|H(x,y,8) -~ H(x,y,h)|

= it)pt{r)i (0, y) +ai(x,y)g(ai(x,y)), ui(x,y) +vi(x,y)g(bi(x, v)) }

i=1

—i'ppt{rn(x, y) +qi(x,y)h(ai(x,y)), uwi(x,y) +vi(x,y)h(bi(x,y))}

i=1

IN

ax{|qi(x, ¥)||g(ai(x,y)) - h(ai(x,y))|, |vi(x, ) ||g(Bi(x,y)) - h(bi(x,y)) |}

IN

M= IPMs
z 3

1]
—_

(%, y)|}

ax{[gi(x,

1

xmax{|g(ai(x,y)) - h(ai(x,y))|, [8(bi(x,y)) ~ h(bi(x,y))[}

< ¢(dk(g/ 1)),
(3.18)
where ¢(t) = ft for t € R*. Thus, Theorem 3.3 follows from Theorem 3.1. This completes the
proof. O

Remark 3.4. Theorem 2 of Bellman [1, page 121], the result of Bellman and Roosta [5, page
545], Theorem 3.3 of Bhakta and Choudhury [6], and Theorems 3.3 and 3.4 of Liu [8] are
special cases of Theorem 3.3. The example below shows that Theorem 3.3 extends properly
the results in [1, 5, 6, 8].

Example 3.5. Let X =Y =S =Rand D = R.Put m = 2, § = 2/3, and A(k) = 3k> for any
k > 1. It follows from Theorem 3.3 that the functional equation

fx)= opt{x2 sin(xy +x -y +1)

yeD
2. .2 2
+opt{x®( 1+ xry 5 Lo (x 2y+x) <xcos<x2+y2>>,
1+ (22 +y?) 3+x2+y?

x21n<1+ [xy| >+cos(xy—2x—1)f< x >}
1+ |xy| 3+ |x%y -1 1+ xy2 + (x - y)°

x’y cos?(xy — x?) . -
+OP{1+|JC|.|.|y|Jr 3+ x2y2 f<x51n<1—xy+xy>>,

x2cos(x2—y2) Vre S
1+ x| +y? 4:+x2 2f<1+2"2 ) o

possesses a unique solution w € BB(S). However, the results in [1, 5, 6, 8] are not applicable.

(3.19)
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Theorem 3.6. Let r,p;, gi, i, vi : SxD — Rand a;, b; : SxD — S bemappings fori=1,2,...,m,
and, (@, ) be in @y satisfying

(C6) Ir(x, )| + Sy max{lpi(x, v, lui(x, )|} < g(lx]), for all (x,y) € S x D,
(C7) max{llas(x, ), [1b: G, Il i € (1,2,...,m}} < p(lx]), for all (x,y) € S x D,
(C8) sUP(y, yyesup Zo max{14:(x, v loi(x, I} < 1,

then the functional equation (1.4) possesses a solution w € BB(S) that satisfies the following
conditions:

(C9) the sequence {wy},5, defined by

wo(x) = OPt{r(x,y) + iOPt{Pi(x/y)fui(x/y) } }

yeb i=1
0 =opt{ 1 (3,9) + Sopt{p(2) + s ) (x.) @20)
ye im1

ui(x,y) +0i(x, y)wn1(bi(x,y)) }} VxeS n>1,

converges to w,

(C10) limy, , o w(x,) = 0 for any xo € S, {Yn},>1 C D and x,, € {ai(xn-1,Yn), bi(Xn-1,Yn) 11 €
{1,2,...,m}},n>1,

(C11) w is unique with respect to condition (C10).

Proof. Let H and G be defined by (3.15) and (3.16), respectively. We now claim that

p(t) <t, Vt>0. (3.21)

If not, then there exists some ¢t > 0 such that ¢(t) > . On account of (¢, ¢) € @4, we know that
foranyn>1,

(" (®) 2 ¢ (0" (0) 22 ¢(t) >0, (322)
whence

Tim (9" (1)) 2 ¢ (t) > 0, (3.23)

which is a contradiction since > ;- ¢ (9" (t)) < co.
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Next, we assert that the mapping G is nonexpansive on BB(S). Let k > 1 and h €
BB(S). It is easy to see that

bi(x,y)| :i€(1,2,...,m}} <o(x]l) <k, ¥(x,y) € B(0,k)xD, (3.24)

max{||a:(x, y)]|,
by (C7) and (3.21). Consequently, there exists a constant C(k, h) > 0 satisfying

|h(bi(x,y))| i€ {1,2,...,m}} <C(k,h), VY(x,y) € B(0,k)xD.

max{[h(ai(x,y))

(3.25)
In view of (C6), (3.16), and (3.25), we derive that for any x € B(0, k),
|Gh(x)| = |opt H(x,y,h)| < sup|H(x,y,h)|
yeD yeD
<supl r(o |+ Smat o)+l ) o))
ye i=1
e )]+ e o)1)

(3.26)

Ssyt;g{lr(x,y)l + 3% max{ | (e )|, s () )

i=1

7

35 max{ a2 ) o)1) max( ) h<bf(x'y))'}}

< (k) +C(k, h),

which yields that G maps BB(S) into itself. Givene >0,k > 1, x € E(O, k), and h, g € BB(S),

suppose that opt, ., = sup, ., then there exist y, z € D such that

Gh(x) < H(x,y,h) +¢, Gg(x) <H(x,z,g) +¢,
(3.27)

Gh(x) > H(x,z,h), Gg(x) >H(x,y,8).
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Using (C6)—(C8), (3.15) and (3.27), and Lemma 2.3, we deduce that

|Gh(x) - Gg(x)| < max{|H(x,y,h) - H(x,y,

z,h)-H(x,z,8)|} +¢

< max{ $ (o) 0 ) -
oo ) Cer( ) - (62 ) ).

3 max{|qi(x, 2)| |h(ai(x, 2)) - g(ai(x, 2))],
i=1

(3.28)
vi (x, 2)|| A (bi(x, 2)) - g(bi(x, 2))]} } te
< max{z max{|4i(x,y) |, [vi(x, y)|},
=1
> max{|qi(x, 2)|, |vi(x, 2)|} }dk (h,g) +¢
i=1
<dk(h g) +¢,
which means that
di(Gh,Gg) < di(h, g) +e. (3.29)

Similarly, we can conclude that the above inequality holds for opt, ., = inf,ep. Letting ¢ —
0*, we get that

di(Gh,Gg) < di(h,g), (330)

which implies that

1 _&(GhGg) 1 d(hg)
k

d(Gh,Gg) = 1+de(hg)
(Gh,Gg) ézk 1+di(Gh, Gg) kg T+ di(n g) -

d(hg).  (331)

That is, G is nonexpansive.
We show that for each n > 0,

n

wn () < Y (¢ Ix)), Vxes. (332)

=0
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In terms of (C6) and (C9), we obtain that

|wo (x)] < sup{ r(x,y)| + Zmax lpi (x, v)|, (x,y)|}} <¢(lxl), VxeS,  (3.33)

which means that (3.32) holds for n = 0. Suppose that (3.32) holds for some n > 0. It follows
from (C6)—(C8) and (3.25) that

|1 (x)| =

Sth{r(x,y) + i}opt{m(x/ y) +qi(x,y)wn(ai(x,y)),

ui(x,y) + Ui(x/y)wn(bi(x/y))}} ‘

<sop )+ Soman(le. )]+ o o9 s,
)+ s o (e ) 1)

(%, y)|}

<sup{ r(xy)| + Zmax |pi

+g max{ |g; () |} max{ |wn (ai (x, ), lw"(bi(x,y))l}}

< ¢ (lxlD) + sup max{w (ai(x, y)) |, [eon (Bi (6, 9))| 1 1 € 1,2, m} )
ye

< g (llxl) + supmaX{iqf(wj(llai(x,y) D),

yeD j=0

Sp( (e )D) cie {1,2,...,m}}

n+l

= > ¢(¢/UIx).

j=0
(3.34)

Therefore, (3.32) holds for any n > 0.
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Next, we prove that {w, },,, is a Cauchy sequence in BB(S). Givene >0,k >1,n2>1,

j>1,and x € B(0, k), suppose that opt,cp = sup,cp. We select that y, z € D with

wn(x0) < 7(x0,y) + > 0pt{pi(x0,y) + Gi(x0, y)wn1(ai(x0,v)),

i=1

ui(x0,y) +vi(x0, y)wn-1(bi(x0,y)) } +27'¢,

Whj (x0) <7(x0,2) + Zopt{r’i(xol z) + qi(xo, Z)wn+j—1(ai(x0/ z)),
i=1

ui(x0, z) + vi(x0, 2)Wn4j-1(bi(x0,2)) } +27¢,
(3.35)

wy(x0) > 1(x0,2) + iopt{pi(xo, z) + qi(xo, z)wy-1(ai(xo, z)),
i=1

u;i(x0, z) + vi(x0, z)wy-1(bi(x0,2))},
Wyj(x0) 2 1(X0, ) + ;0pt{pi(xo,y) +qi(x0, ¥) Wnsj-1 (ai(x0, v)),

Uu; (.X'o, ]/) + U (xO/ y)wn+j—1 (bl (xOI y)) }

According to (C6)—(C8) and (3.35), we have

|wn+j (x0) = wn(x0) |

< max{

m

> opt{pi(x0, 2) + gi(x0, 2)wnsj1 (ai(x0, 2)),

i=1

u;i(xo, z) + vi(x0, 2)Wn+j-1(bi(x0, Z))}

- iopt{pi(x()/z) +qi(x0, 2)wy-1(ai(xo, 2)),
in1

u;i(xo0, z) + vi(x0, z)wn-1(bi(x0,2)) } |,

Zmlopt{r’i(xmy) + i (x0, ) Wnij1 (ai (x0, v)),
ui(x0,y) +vi(x0, ) Wnj-1(bi(x0,y)) }

- gmlopt{pi(xo,y) + (0, y)wns (@ (30, ),

(0,9 + 0150, ¥)wnr (u(x0, 7)) ‘} 2
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7

< maX{i max{|gi(xo, 2) | |wn+j-1(ai(xo, 2)) — wn-1(ai(xo, z))
i=1

[vi (x0, 2)|| W4 j-1(bi(x0, 2)) — w1 (bi(x0,2)) ]|},

S mac{ i (2o, ) | e+ (a0, )) = w01 (a1 (x0,)) ],

i=1

o o) 002 (5, ) — 04 (b1 )| }} r2le

< max{i max{ |qi(x0/ z)

,|vi(x0, 2)|} max{|wy.j-1(ai(xo, z)) — wa-1(ai(xo, 2))|,
i=1

|@wnj-1(bi(x0, 2)) = Wn1 (bi(x0, 2))

2

S max{[g: (o, )|, o1 o, )|} mae{ sy (@130, ) - 51 (a1 (0, )

i=1

7

|wn+j-1(bi(x0,y)) = wna (bi(x0, )|} } £l

< max{max{ |wn+j—1(lli(xo, z)) — wu-1(ai(xo, 2)) | ,
|wn+j—1 (bi(xO/ Z)) — Wn-1 (bi(x0/ Z))| ti€ {1r2r oo /m} }/

max{ |wp.j-1(ai(x0,v)) — wu-1(ai(xo0,y))

7

|wnsj1 (bi(x0,y)) = wur (bi(x0,y))| :i € {1,2,...,m}}} + 27l
= |wn+j—1 (xl) — Wn-1 (xl)l + 2_151

(3.36)

for some x1 € {a;(x0,y1),bi(x0,y1) : i € {1,2,...,m}} and y1 € {y,z}. In a similar way, we
can conclude that (3.36) holds for optyED = inf,ep. Proceeding in this way, we select y; € D
and x¢ € {a;(xe-1, y1), bi(xi-1, 1) i€ {1,2,...,m}} fort € {2,3,...,n} such that

|wn+j—1 (xl) — Wn-1 (xl)l < |wn+j—2(x2) - wn—Z(xZ)l + 2725/

|wWnj2(x2) = W (x2) | < |Wnsj3(x3) — wyos(x3)| +27%,
(3.37)

|w;‘+1(xn—1) — w1 (xn—l)l < |w]'(xn) - wO(xn)| +27".
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In terms of (C7), (3.21), (3.32), (3.36), and (3.37), we know that

|wnsj(x0) = wn(x0)| < |wj(xn) —wo(x,)| + 2"1271.8
i=1

< ij(xn)l + |w0(xn)| +é

i (3.38)
< S ( lal))) + g Cllall) +
i=0
< X u(v'®) +e,
i=n-1
which implies that
di(wnsj i) < Y qf((pi(k)> +e. (3.39)
i=n-1
Letting ¢ — 0" in the above inequality, we have
di(wnijwn) < 3 ('), (3.40)

i=n-1

which means that {w, },, is a Cauchy sequence in (BB(S), d) because ;2 ¢ (¢"(t)) < oo for
each t > 0. Let lim,, _, ,w, = w € BB(S). By the nonexpansivity of G, we get that

d(w, Gw) < d(w, Gw,,) + d(Gw,, Gw)
(3.41)
< d(w,wpi1) + d(w,, w) — 0, asn— oo,

which implies that w = Gw. That is, w is a solution of the functional equation (1.4).

Now, we show that (C10) holds. Given ¢ > 0, xo0 € S, {yn},>1 C D, and x, €
{ai(xn-1,Yn),bi(xn-1,yn) :i€{1,2,...,m}} forn >1,setk =1+ [||xo]|]]. It is easy to verify that
there exists a positive integer m satisfying

di(w, wy,) + iqx((p’(k)) <g forn>m. (3.42)

i=n



16 Fixed Point Theory and Applications

Notice that

llxnll < max{ ||ai(xn—1,]/n) bi(xn—1,yn) || tie€{1,2,. ,m}}

7

(3.43)
< o(llxnall) <+ <" (Ixll) < ¢*(k) <k,
for any n > 1. Consequently, we infer immediately that, for n > m,
20 Gn)| < [20(n) = 2 ()| + 200 (0)] < i, 700) + g5 (4 (lxall))
i=0
(3.44)

< dy(w, w,) + iqf((ﬂ(b) <e,

i=n

which yields that lim,, _, ,w(x,) = 0.
Atlast, we show that (C11) holds. Suppose that the functional equation (1.4) possesses
another solution h € BB(S), which satisfies (C10). Given € > 0 and xy € S, suppose that

opt,cp = Sup,.p, then there are y, z € S satisfying

w(xo) <7(x0,y) + D 0pt{pi(x0,¥) + qi(x0, y)w(ai(xo, ),
i=1
ui(x0,y) +vi(x0, y)w(bi(x0,y)) } +27e,

h(xp) < r(x0,2) + iopt{pi(xo, z) + gi(xo, z)h(ai(xo, 2)),

i=1

ui(xo, z) + vi(x0, 2)h(bi(x0,2)) } + 27,
(3.45)

w(x0) > r(x0,2) + 3 opt{piCan, 2) + di(x0, Yw(as(xo, 2),
i=1
ui(xo, z) + vi(x0, z)w(bi(x0,2)) },

h(xo) 2 r(x0,y) + Y 0pt{pi(x0, y) + i (x0, y) h(ai(x0, y)),
i=1

ui(x0,y) +vi(xo, y)h(bi(x0, ¥)) },
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Whence there exists y; € {y,z} and x; € {a(xo, y1),b(x0,y1) 11 € {1,2,...,m}} such that
|z (x0) = h(x0)|

< maX{ i |opt{pi(x0, y) + gi(x0, y)w(ai(x0,y)), ui(x0,y) + vi(x0, y)w (bi(x0,y)) }

i=1

—opt{pi(xo, ¥) +qi(x0, y) h(ai(x0, y)), ui(x0,y) +vi(x0,y) h(bi(x0,y)) }|,
Z lopt{pi(xo, z) + gi(x0, z)w(ai(x0, 2)), ui(xo, z) + vi(x0, z)w(bi(x0, 2)) }

i=1

- opt{pi(x0, z) + gi(x0, z) h(ai(xo, 2)),

ui(x0, z) + vi(x0, 2)h(bi(x0, 2)) | } +27'

< max{gmax{ |9i (x0, ) | |w(ai(x0,v)) — h(ai(x0,v))|,
|vi (x0, y) [ |w(bi (x0, 7)) = h(bi(x0,¥))]},

Z max{ |gi(xo, 2) |[w(ai(xo, 2)) — h(ai(xo, 2))|,

i=1

[vi(x0, z)||w(bi(x0, 2)) — h(b;i(xo, Z))|} } +27

< max{Zmax{ |gi (x0, v) |, |vi (x0, )| },Z max{|gi(xo, z)|, |vi(xo, z)|}}
i=1 i=1

x max{|w(ai(xo, ¥)) ~h(ai(xo, y))|, |[w(bi(xo,y)) ~h(bi(x0,y))],
lw(ai(xo, z))—h(ai(xo, 2))|, [w(bi(xo,2)) — h(bi(x0,2))| 11 € {1,2,...,m}} +27'¢

< Jw(x1) = h(x)| +27e
(3.46)

by (C8). Proceeding in this way, we select y; € D and x; € {ai(xj-1,Y;),bi(xj-1,y;) : i €
{1,2,..., m}}forje{2,3,..., n} satisfying

lw(x1) = h(x1)| < [w(x2) = h(x2)| +272%,

[w(x2) = h(x2)| < |w(x3) = h(x3)| +27%,
(3.47)

[w(xn-1) = h(xp-1)| < |[w(xn) = h(xn)| +27".
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It follows that
|w(xg) — h(xo0)| < |w(x,) = h(x,)| + ¢, (3.48)
which yields that

|w(xg) — h(xo)| < €, (3.49)
by letting n — oo. Similarly, (3.49) also holds for opt, ., = infyep. As e — 0%, we know that
w(xp) = h(xg). This completes the proof. O

Remark 3.7. Theorem 3.6 generalizes Theorem 1 of Bellman [1, page 119], Theorem 3.5 of
Bhakta and Choudhury [6], Theorem 2.4 of Bhakta and Mitra [7], Theorem 3.5 of Liu [8]
and Theorem 3.1 of Liu and Ume [11]. The following example reveals that Theorem 3.6 is
indeed a generalization of the results in [1, 6-8, 11].

Example 3.8. Let X =Y = R, S =D = R*. Define ¢, ¢ : R* — R* by
o(t) =271, () =3t", VteR" (3.50)

It is easy to verify that the following functional equation:

fx)= opt{ * max{ i + xsin(x+y)f< < >,

yeD 2+sir1(1+x2y2)Jr 1+xy 2+4x+y 2+42x+y
xt . ln(1+x+y)f x3y
l+x+y 4+x+y 1+2x%y
4 _ 3
+ max ol 5+ ycos(x y)f x ,
1+ (x-y) 1+x+4y 1+2x2 +sin(x? + y?)

5 2x — 4 : 3 3 -1
Xy +cos(xy+ x-y) [ x*ysin(x’+y> +xy-1)  vxes
1+xy 4+ xY 1+2x3y

(3.51)

satisfies conditions (C6)—(C8). Consequently, Theorem 3.6 ensures that it has a solution w €
BB(S) that satisfies conditions (C9)-(C11). However, Theorem 1 of Bellman [1, page 119],
Theorem 3.5 of Bhakta and Choudhury [6], Theorem 2.4 of Bhakta and Mitra [7], Theorem
3.5 of Liu [8], and Theorem 3.1 of Liu and Ume [11] are not applicable.
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