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We introduce several types of Levtin-Polyak well-posedness for a vector quasivariational
inequality with functional constraints. Necessary and/or sufficient conditions are derived for
them.

1. Introduction

It is well known that, under certain conditions, a Nash equilibrium problem can be
formulated and solved as a variational inequality problem. A generalized Nash game is
a Nash game in which each player’s strategy depends on other players’ strategies [1].
The connection between generalized Nash games and quasivariational inequalities was first
recognized by Bensoussan [2]. Recently, some researchers [1, 3, 4] found that mathematical
models of many real world problems, including some engineering problems, can be
formulated as certain kinds of variational inequality problems, including quasivariational
inequality problems. However, as noted in [5], compared with variational inequality
problems, the study on quasivariational inequality problems is still in its infancy, in particular
only a few algorithms have been proposed to solve variational inequalities numerically.

Vector variational inequality problems were introduced by Giannessi [6] and are
related to vector network equilibrium problems [7]. Since then, various types of vector
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variational inequalities were introduced and studied (see, e.g., [8, 9] and the references
therein).

In this paper, we will consider vector quasivariational inequality problems with
functional constraints, which are described below.

Let (X, ‖ · ‖) be a normed space and (Z, d1) a metric space. Let X1 ⊆ X, K ⊆ Z
be nonempty and closed sets. Let Y be a locally convex space and C ⊆ Y be a nontrivial
closed and convex cone with nonempty interior intC. Define the following order in Y , for
any y1, y2 ∈ Y ,

y1 ≤ y2 ⇐⇒ y2 − y1 ∈ C. (1.1)

Let L(X,Y ) be the space of all the linear continuous operators from X to Y . Let F : X1 →
L(X,Y ) and g : X1 → Z be two functions. We denote by 〈F(x), z〉 the function value F(x)(z),
where z ∈ X1. Let S : X1 → 2X1 be a strict set-valued map (i.e., S(x)/= ∅, for all x ∈ X1).

Let

X0 =
{
x ∈ X1 : g(x) ∈ K

}
. (1.2)

The vector quasivariational inequality problem with functional and abstract set
constraints considered in this paper is:

Find x ∈ X0 such that x ∈ S(x) satisfying

〈F(x), x − x〉/∈ − intC, ∀x ∈ S(x).
(VQVI)

Denote by X the solution set of (VQVI).
Well-posedness for unconstrained and constrained optimization problems was first

studied by Tikhonov [10] and Levitin and Polyak [11]. The issue being considered is that for
each approximating solution sequence, there exists a subsequence that converges to a solution
of the problem.

In Tikhonov’s well posedness, the approximating solution is always feasible. However,
it should be noted that many algorithms in optimization and variational inequalities, such as
penalty-type methods and augmented Lagrangian methods, terminate when the constraint is
approximately satisfied. These methods may generate sequences that may not be necessarily
feasible [12].

Up to now, various extensions of these well posednesses have been developed and
well studied (see, e.g., [13–18]). Studies on well posedness of optimization problems have
been extended to vector optimization problems (see e.g., [19–24]). The study of Levitin-
Polyak well posedness for scalar convex optimization problems with functional constraints
originates from [25]. Recently, this research was extended to nonconvex optimization
problems with abstract and functional constraints [12] and nonconvex vector optimization
problems with both abstract and functional constraints [26]. Well-posedness of variational
inequality problems, mixed variational inequality problems, and equilibrium problems
without functional constraints was investigated in the literature (see, e.g., [27–30]). Well-
posedness in variational inequality problems with both abstract and functional constraints
was investigated in [31]. Well-posedness of (generalized) quasivariational inequality and
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mixed quasivariational-like inequalities has been studied in the literature [32–35]. The study
of well posedness for (generalized) vector variational inequality, vector quasiequilibria and
vector equilibrium problems can be found in [36–39] and the references therein.

In this paper, we will introduce and study several types of Levitin-Polyak (LP in
short) well posednesses and generalized LP well posednesses for vector quasivariational
inequalities with functional constraints. The paper is organized as follows. In Section 2, four
types of LPwell posednesses and generalized LPwell posednesses for vector quasivariational
inequality problems will be defined. In Section 3, we will derive various criteria and
characterizations for the various (generalized) LP well posednesses of constrained vector
quasivariational inequalities.

2. Definitions and Preliminaries

Let Z1, Z2 be two normed spaces. A set-valued map G from Z1 to 2Z2 is

(i) closed, on Z3 ⊆ Z1, if for any sequence {xn} ⊆ Z3 with xn → x ∈ Z3 and yn ∈ G(xn)
with yn → y, one has y ∈ G(x);

(ii) lower semicontinuous (l.s.c. in short) at x ∈ Z1, if {xn} ⊆ Z1, xn → x, and y ∈ G(x)
imply that there exists a sequence {yn} ⊆ Z2 satisfying yn → y such that yn ∈ G(xn)
for n sufficiently large. If G is l.s.c. at each point of Z1, we say that G is l.s.c on Z1.

Let (P, d2) be a metric space, P1 ⊆ P , and p ∈ P . In the sequel, we denote by dP1(p) =
inf{d(p, p′) : p′ ∈ P1} the distance function from point p to set P1. For a topological vector
space V , we denote by V ∗ its dual space. For any cone Φ ⊆ V , we will denote the (positive)
polar cone of Φ by

Φ∗ =
{
φ ∈ V ∗ : φ(v) ≥ 0, ∀v ∈ Φ

}
. (2.1)

Let e ∈ intC be fixed. Denote

C∗0 = {λ ∈ C∗ : λ(e) = 1}. (2.2)

Throughout this paper, we always assume that the feasible setX0 is nonempty and the
function g is continuous on X1.

Definition 2.1. (i) A sequence {xn} ⊆ X1 is called a type I Levtin-Polyak (LP in short)
approximating solution sequence if there exists {εn} ⊆ R1

+ with εn → 0 such that

dX0(xn) ≤ εn, (2.3)

xn ∈ S(xn), (2.4)

〈F(xn), x − xn〉 + εne /∈ − intC, ∀x ∈ S(xn). (2.5)

(ii) {xn} ⊆ X1 is called a type II LP approximating solution sequence if there exist
{εn} ⊆ R1

+ with εn → 0 and {yn} ⊆ X1 with yn ∈ S(xn) such that (2.3)–(2.5) hold and

〈F(xn), yn − xn〉 − εne ∈ −C. (2.6)
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(iii) {xn} ⊆ X1 is called a generalized type I LP approximating solution sequence if
there exists {εn} ⊆ R1

+ with εn → 0 such that

dK

(
g(xn)

) ≤ εn, (2.7)

and (2.4), (2.5) hold.
(iv) {xn} ⊆ X1 is called a generalized type II LP approximating solution sequence if

there exist {εn} ⊆ R1
+ with εn → 0 and {yn} ⊆ X1 with yn ∈ S(xn) such that (2.4)–(2.7) hold.

Definition 2.2. (VQVI) is said to be type I (resp., type II, generalized type I, generalized type
II) LP well posed if the solution set X of (VQVI) is nonempty, and for any type I (resp., type
II, generalized type I, generalized type II) LP approximating solution sequence {xn}, there
exist a subsequence {xnj} of {xn} and x ∈ X such that xnj → x.

Remark 2.3. (i) It is easily seen that if Y = R1, C = R1
+, then type I (resp., type II, generalized

type I, generalized type II) LP well posedness of (VQVI) reduces to type I (resp., type II,
generalized type I, generalized type II) LP well posedness of (QVI) defined in [34].

(ii) It is clear that any (generalized) type II LP approximating solution sequence is a
(generalized) type I LP approximating solution sequence. Thus, (generalized) type I LP well
posedness implies (generalized) type II LP well posedness.

(iii)Each type of LP well posedness of (VQVI) implies that its solution set X is
compact.

To see that the various LP well posednesses of (VQVI) are adaptations of the
corresponding LP well posednesses in minimizing problems by using the Auslender gap
function, we consider the following general constrained optimization problem:

min f(x)

s.t. x ∈ X′
1

g(x) ∈ K,

(P)

where X′
1 ⊆ X1 is nonempty and f : X1 → R1 ∪ {+∞} is proper. The feasible set of (P) is X′

0,
where X′

0 = {x ∈ X′
1 : g(x) ∈ K}. The optimal set and optimal value of (P) are denoted by

X
′
and v, respectively. Note that if Dom(f) ∩X′

0 /= ∅, where

Dom
(
f
)
=
{
x ∈ X1 : f(x) < +∞}

, (2.8)

then v < +∞. In this paper, we always assume that v > −∞. We note that LP well posedness
for the special case, where f is finite valued and l.s.c., X′

1 is closed, has been studied in [12].

Definition 2.4. (i) A sequence {xn} ⊆ X′
1 is called a type I LP minimizing sequence for (P) if

lim sup
n→+∞

f(xn) ≤ v, (2.9)

dX′
0
(xn) −→ 0. (2.10)
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(ii) {xn} ⊆ X′
1 is called a type II LP minimizing sequence for (P) if

lim
n→+∞

f(xn) = v (2.11)

and (2.10) hold.
(iii) {xn} ⊆ X′

1 is called a generalized type I LP minimizing sequence for (P) if

dK

(
g(xn)

) −→ 0. (2.12)

and (2.9) hold.
(iv) {xn} ⊆ X′

1 is called a generalized type II LP minimizing sequence for (P) if (2.11)
and (2.12) hold.

Definition 2.5. (P) is said to be type I (resp., type II, generalized type I, generalized type
II) LP well posed if the solution set X

′
of (P) is nonempty, and for any type I (resp.,

type II, generalized type I, generalized type II) LP minimizing sequence {xn}, there exist
a subsequence {xnj} of {xn} and x ∈ X

′
such that xnj → x.

The Auslender gap function for (VQVI) is

f(x) = sup
x′∈S(x)

inf
λ∈C∗0

λ〈F(x), x − x′〉
λ(e)

, ∀x ∈ X1. (2.13)

From Lemma 1.1 in [40], we know that C∗0 is weak∗ compact. This fact combined with that
λ(e) = 1 when λ ∈ C∗0 implies that

f(x) = sup
x′ ∈S(x)

min
λ∈C∗0

λ
〈
F(x), x − x′〉, ∀x ∈ X1. (2.14)

Recall the following nonlinear scalarization function (see, e.g., [9]):

ξ : Y −→ R1 : ξ
(
y
)
= min

{
t ∈ R1 : y − te ∈ −C

}
. (2.15)

It is known that ξ is a continuous, (strictly)monotone (i.e., for any y1, y2 ∈ Y , y1 −y2 ∈
C implies that ξ(y1) ≥ ξ(y2) and y1 − y2 ∈ intC implies that ξ(y1) > ξ(y2)), subadditive, and
convex function. Moreover, for any t ∈ R1, it holds that ξ(te) = t. Furthermore, following the
proof of [9, Proposition 1.44], we can prove that

ξ
(
y
)
= sup

λ∈C∗0

λ
(
y
)

λ(e)
= max

λ ∈C∗0
λ
(
y
)
, ∀y ∈ Y. (2.16)

Let X2 ⊆ X be defined by

X2 = {x ∈ X1 | x ∈ S(x)}. (2.17)
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First we have the following lemma.

Lemma 2.6. Let f be defined by (2.14), then

(i) f(x) ≥ 0, for all x ∈ X2 ∩X0,

(ii) f(x) = 0 and x ∈ X2 ∩X0 if and only if x ∈ X.

Proof. (i) Let x ∈ X2 ∩X0, then x ∈ S(x). We let x′ in (2.14) be equal to x, then f(x) ≥ 0.
(ii) Assume that f(x) = 0. Suppose to the contrary that x /∈X, then, there exists x0 ∈

S(x) such that

〈F(x), x0 − x〉 ∈ − intC. (2.18)

Thus,

λ〈F(x), x − x0〉 > 0, ∀λ ∈ C∗0. (2.19)

It follows that

min
λ∈C∗0

λ〈F(x), x − x0〉 > 0. (2.20)

Hence, f(x) > 0, contradicting the assumption, so x ∈ X. Conversely, assume that x ∈ X,
then we have

x ∈ X2 ∩X0,
〈
F(x), x′ − x

〉
/∈ − intC, ∀x′ ∈ S(x). (2.21)

As a result, for any x′ ∈ S(x), there exists λ ∈ C∗0 such that

λ〈F(x), x − x′〉 ≤ 0. (2.22)

It follows that f(x) ≤ 0. This fact combined with (i) implies that f(x) = 0.

In the rest of this paper, we set X′
1 in (P) equal to X2. Note that if the set-valued map

S is closed on X2, then X′
1 is closed. By Lemma 2.6, x ∈ X if and only if x minimizes f(x)

(defined by (2.26)) over X0 ∩X2 with f(x) = 0.
The following lemma establishes some relationship between LP approximating

solution sequence and LP minimizing sequence.

Lemma 2.7. Let the function f be defined by (2.14) as follows:

(i) {xn} ⊆ X1 is a sequence such that there exists {εn} ⊆ R1
+ with εn → 0 satisfying (2.4)-

(2.5) if and only if {xn} ⊆ X′
1 and (2.9) holds with v = 0.

(ii) {xn} ⊆ X1 is a sequence such that there exist {εn} ⊆ R1
+ with εn → 0 and {yn} ⊆ X1 with

yn ∈ S(xn) satisfying (2.4)–(2.6) if and only if {xn} ⊆ X′
1 and (2.11) holds with v = 0.
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Proof. (i) Let {xn} ⊆ X1 be any sequence, if there exists {εn} ⊆ R1
+ with εn → 0 satisfying

(2.4)-(2.5), then we can easily verify that

{xn} ⊆ X′
1, f(xn) ≤ εn. (2.23)

It follows that (2.9) holds with v = 0.
For the converse, let {xn} ⊆ X′

1 and (2.9) hold. We can see that {xn} ⊆ X1 and (2.4)
hold. Furthermore, by (2.9), we have that there exists

{εn} ⊆ R1
+ with εn −→ 0 (2.24)

such that

f(xn) ≤ εn. (2.25)

That is,

sup
x′∈S(xn)

inf
λ∈C∗0

λ
〈
F(xn), xn − x′〉 ≤ εn. (2.26)

Now, we will show that (2.5) holds, otherwise there exists x0 ∈ S(xn) such that

〈F(xn), x0 − xn〉 + εne ∈ − intC. (2.27)

As a result, for any λ ∈ C∗0, λ〈F(xn), xn − x0〉 > εn. Since C∗0 is a weak∗ compact set, we have

inf
λ∈C∗0

λ
〈
F(xn), xn − x′

0
〉
> εn, (2.28)

which contradicts (2.26).
(ii) Let {xn} ⊆ X1 be any sequence, we can check that

lim inf
n→+∞

f(xn) ≥ 0, (2.29)

holds if and only if there exists {αn} ⊆ R1
+ with αn → 0 and {yn} ⊆ X1 with yn ∈ S(xn) such

that (2.6) (with εn replaced by αn) holds. From the proof of (i), we know that

lim sup
n→+∞

f(xn) ≤ 0 (2.30)

and {xn} ⊆ X′
1 hold if and only if {xn} ⊆ X1 such that there exists {βn} ⊆ R1

+ with βn →
0 satisfying (2.4)-(2.5) (with εn replaced by βn). Finally, we set εn = max{αn, βn} and the
conclusion follows.

The next proposition establishes relationships between the various LP well posed-
nesses of (VQVI) and those of (P) with f(x) defined by (2.14).
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Proposition 2.8. Assume that X /= ∅, then

(i) (VQVI) is generalized type I (resp., generalized type II) LP well posed if and only if (P) is
generalized type I (resp., generalized type II) LP well posed with f(x) defined by (2.14).

(ii) If (VQVI) is type I (resp., type II) LP well posed, (P) is type I (resp., type II) LP well posed
with f(x) defined by (2.14).

Proof. By Lemma 2.6, if X /∈ ∅, x is a solution of (VQVI) if and only if x is an optimal solution
of (P)with v = f(x) = 0 and f(x) defined by (2.14).

(i) Similar to the proof of Lemma 2.7, it is also routine to check that a sequence {xn}
is a generalized type I (resp., generalized type II) LP approximating solution sequence if and
only if it is a generalized type I (resp., generalized type II) LP minimizing sequence of (P).
So (VQVI) is generalized type I (resp., generalized type II) LP well posed if and only if (P) is
generalized type I (resp., generalized type II) LP well posed with f(x) defined by (2.26).

(ii) SinceX′
0 ⊆ X0, dX0(x) ≤ dX′

0
(x) for any x. This fact together with Lemma 2.7 implies

that a type I (resp., type II) LP minimizing sequence of (P) is a type I (resp., type II) LP
approximating solution sequence. So type I (resp., type II) LP well posedness of (VQVI)
implies type I (resp., type II) LP well posedness of (P)with f(x) defined by (2.26).

To end this section, we note that all the results in [12] for the well posedness hold for
(P) so long as X′

1 is closed, f is l.s.c. on X′
1, and Dom(f) ∩X′

0 /= ∅.

3. Criteria and Characterizations for
Various LP Well-Posedness of (VQVI)

In this section, we give necessary and/or sufficient conditions for the various types of
(generalized) LP well posednesses defined in Section 2.

Consider the following statement:

[
X /= ∅ and for any type I

(
resp., type II, generalized type I, generalized type II

)
LP

approximating solution sequence {xn}, we have dX(xn) −→ 0
]
.

(3.1)

The next proposition can be straightforwardly proved.

Proposition 3.1. If (VQVI) is type I (resp., type II, generalized type I, generalized type II) LP well
posed, then (3.1) holds. Conversely, if (3.1) holds andX is compact, then (VQVI) is type I (resp., type
II, generalized type I, generalized type II) LP well posed.

Now, we consider a real-valued function c = c(t, s, r) defined for t, s, r ≥ 0 sufficiently
small such that

c(t, s, r) ≥ 0, ∀t, s, r, c(0, 0, 0) = 0,

sn −→ 0, tn ≥ 0, rn = 0, c(tn, sn, rn) −→ 0 imply that tn −→ 0.
(3.2)
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With the help of Lemma 2.7, analogously to [35, Theorems 3.1, and 3.2], we can prove
the following two theorems.

Theorem 3.2. If (VQVI) is type II LP well posed, the set-valued map S is closed valued, then there
exists a function c satisfying (3.2) such that

∣
∣f(x)

∣
∣ ≥ c

(
dX(x), dX0(x), dS(x)(x)

) ∀x ∈ X1, (3.3)

where f(x) is defined by (2.14). Conversely, suppose thatX is nonempty and compact, and (3.3) holds
for some c satisfying (3.2), then (VQVI) is type II LP well posed.

Theorem 3.3. If (VQVI) is type II LP well posed in the generalized sense, the set-valued mapping S
is closed, then there exists a function c satisfying (3.2) such that

∣∣f(x)
∣∣ ≥ c

(
dX(x), dK

(
g(x)

)
, dS(x)(x)

) ∀x ∈ X1, (3.4)

where f(x) is defined by (2.14). Conversely, suppose thatX is nonempty and compact, and (3.4) holds
for some c satisfying (3.2), then (VQVI) is generalized type II LP well posed.

Next we give Furi-Vignoli type characterizations [41] for the (generalized) type I LP
well posednesses of (VQVI).

Let (X, ‖·‖) be a Banach space. Recall that the Kuratowski measure of noncompactness
for a subset H of X is defined as

μ(H) = inf

{

ε > 0 : H ⊆
n⋃

i=1

Hi, diam(Hi) < ε, i = 1, . . . , n

}

, (3.5)

where diam(Hi) is the diameter of Hi defined by

diam(Hi) = sup{‖x1 − x2‖ : x1, x2 ∈ Hi}. (3.6)

For any ε ≥ 0, define

Ψ1(ε) =
{
x ∈ X′

1 : f(x) ≤ v + ε, dX′
0
(x) ≤ ε

}
,

Ψ2(ε) =
{
x ∈ X′

1 : f(x) ≤ v + ε, dK

(
g(x)

) ≤ ε
}
.

(3.7)

Lemma 3.4. Let f(x) be defined by (2.14) and v = 0. Let

Ω1(ε) =
{
x ∈ X1 : x ∈ S(x), dX0(x) ≤ ε,

〈
F(x), x′ − x

〉
+ εe /∈ − intC, ∀x′ ∈ S(x)

}
, (3.8)

Ω2(ε) =
{
x ∈ X1 : x ∈ S(x), dK

(
g(x)

) ≤ ε,
〈
F(x), x′ − x

〉
+ εe /∈ − intC, ∀x′ ∈ S(x)

}
, (3.9)

then one has Ψ1(ε) ⊂ Ω1(ε) and Ψ2(ε) = Ω2(ε).
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Proof. First, we prove the former result. For any x ∈ X′
1 satisfying

f(x) ≤ ε, dX′
0
(x) ≤ ε, (3.10)

we have x ∈ X1 and x ∈ S(x). We will show that 〈F(x), x′ − x〉 + εe /∈ − intC, for all x′ ∈
S(x). Otherwise, there exists x′ ∈ S(x) such that 〈F(x), x′ − x〉 + εe ∈ − intC. By the weak∗

compactness of C∗0, we have infλ∈C∗0λ〈F(x), x−x′〉 > ε, which leads to f(x) > ε and gives rise
to a contradiction. Furthermore, we observe thatX′

0 ⊆ X0. This fact combined with dX′
0
(x) ≤ ε

implies that dX0(x) ≤ ε.
Now, we prove the equivalence between Ψ2(ε) and Ω2(ε). Firstly, we can establish the

same inclusion for Ψ2(ε) and Ω2(ε) analogously to the proof stated above. Then if x ∈ X1

satisfies x ∈ S(x), dK(x) ≤ ε and

〈
F(x), x′ − x

〉
+ εe /∈ − intC, ∀x′ ∈ S(x). (3.11)

It is routine to check that x ∈ X′
1. From (3.11), we know that for each x′ ∈ S(x), there exists

λ ∈ C∗0 such that λ〈F(x), x−x′〉 ≤ ε. As a result, we can see that f(x) ≤ ε. Thus, we prove the
conclusion.

The next lemma can be proved analogously to ([25, Theorem 5.5]).

Lemma 3.5. Let (X, ‖ · ‖) be a Banach space. Suppose that f is l.s.c. on X′
1 and bounded below on X′

0.
Assume that the optimal solution set of (P) is nonempty and compact, then, (P) is (generalized) type
I LP well posed if and only if

(
lim
ε→ 0

μ(Ψ2(ε)) = 0.
)
lim
ε→ 0

μ(Ψ1(ε)) = 0. (3.12)

To continue our study, we make some assumptions below.

Assumption 1. (i) X is a Banach space.
(ii) The set-valued map S is closed, and lower semicontinuous on X1.
(iii) The map F is continuous on X1.

We have the following lemma concerning the l.s.c. of f defined by (2.14).

Lemma 3.6. Let function f be defined by (2.14) and Assumption 1 hold, then f is l.s.c. function from
X1 to R1 ∪ {+∞}. Further assume that the solution set X of (VQVI) is nonempty, then Dom(f)/= ∅.

Proof. First we show that f(x) > −∞, for all x ∈ X1. Suppose to the contrary that there exists
x0 ∈ X1 such that f(x0) = −∞, then,

inf
λ∈C∗0

λ(〈F(x0), x0 − x〉) = −∞, ∀x ∈ S(x0). (3.13)

That is,

sup
λ∈C∗0

λ(〈F(x0), x0 − x〉) = +∞, ∀x ∈ S(x0). (3.14)
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Namely,

ξ(〈F(x0), x0 − x〉) = +∞, ∀x ∈ S(x0), (3.15)

which is impossible since ξ is a finite function on Y . Second, we show that f is l.s.c. on X1.
Note that the function

h
(
x, y

)
= min

λ∈C∗0
λ
(〈
F(x), x − y

〉)
= −ξ(〈F(x), y − x

〉)
(3.16)

is continuous on X1 × X2 by the continuity of F on X1 and the continuity of ξ. We also note
that f(x) = supy∈S(x)h(x, y). Let t ∈ R1. Suppose that the sequence {xn} ⊆ X1 satisfies

f(xn) ≤ t (3.17)

and xn → x∗ ∈ X1. For any y ∈ S(x∗), by the lower semicontinuity of S and continuity of h,
we have a sequence {yn}with yn ∈ S(xn) converging to y such that

h
(
x∗, y

)
= lim

n→+∞
h
(
xn, yn

) ≤ lim inf
n→+∞

f(xn) ≤ t. (3.18)

It follows that f(x∗) = supy∈S(x)h(x
∗, y) ≤ t. Hence, f is l.s.c. on X1. Furthermore, if X/= ∅, by

Lemma 2.6, we see that Dom(f)/= ∅.

Theorem 3.7. Let Assumption 1 hold and let the solution setX of (QVVI) be nonempty and compact,
then, (VQVI) is generalized type I LP well posed if and only if

lim
ε→ 0

μ(Ω2(ε)) = 0. (3.19)

Proof. Note that the function f(x) defined by (2.14) is nonnegative on X′
0. By the lower

semicontinuity of S and Lemma 3.6, f is l.s.c. on X′
1 = X1 ∩ X2. Moreover, X′

1 is closed, since
S is closed on X1 ∩X2. By Proposition 2.8, Lemmas 3.4 and 3.5, the conclusion follows.

Although the type I (type II) LPwell posedness of (VQVI) is not equivalent to the type
I (type II) LP well posedness of (P), we can still establish the same characterization for type I
(type II) LP well posedness of (VQVI) as Theorem 3.7. We need the next lemma.

Lemma 3.8. Let Assumption 1 hold, then Ω1(ε) defined by (3.8) is closed.

Proof. Let xn ∈ Ω1(ε) and xn → x0. We show that x0 ∈ Ω1(ε). It is obvious that dX0(x0) ≤ ε.
Since xn ∈ S(xn) and xn → x0, by the closedness of S, we have x0 ∈ S(x0). Moreover, since

〈zn, x′ − xn〉 + εe /∈ − intC, ∀x′ ∈ S(xn) (3.20)
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hold and S is l.s.c., for any y ∈ S(x0), we can find that yn ∈ S(xn) with {yn} → y such that

〈F(x0), y − x0〉 = lim
n→∞

〈
F(xn), yn − xn

〉
+ εe /∈ − intC. (3.21)

Hence, Ω1 is closed.

Theorem 3.9. Let Assumption 1 hold and let Ω1(ε) be defined by (2.14). Assume that the solution
set X of (QVVI) is nonempty and compact, then (VQVI) is type I LP well posed if and only if

lim
ε→ 0

μ(Ω1(ε)) = 0. (3.22)

Proof. The proof is similar to that of Theorem 3.4 in [35] and thus omitted.

Example 3.10. (i) Let X = Y = R2, C = R2
+, e = (1, 1)T , X1 = R2, and X0 = R2

+. F maps R2
+ into

an identical mapping, that is to say 〈F(x), y〉 = (y1, y2)
T , for any x, y ∈ R2. The set valued

mapping S is defined as follows, given y ∈ S(x) for some x, y ∈ R2, then

yi =

⎧
⎨

⎩

[xi, 1], if xi ≤ 1,

[2xi − 1, 3xi − 2], if xi > 1,
(3.23)

with i ∈ {1, 2}, of course S is closed and l.s.c. Now, we can show that, when 0 ≤ ε ≤ 1,
Ω1(ε) ⊆ {x | −ε ≤ x1 ≤ 1,−ε ≤ x2 ≤ 1}, which is bounded. Thus, μ(Ω(ε)) = 0, by applying
Theorem 3.9, we know that (VQVI) is type I LP well posed.

(i) Suppose that G is a set-valued mapping from R2 to 2R
2
, for fixed x ∈ R2, y ∈ G(x)

implies that

yi =

⎧
⎨

⎩

[xi, 1], if xi ≤ 1,

[1, 2xi − 1], if xi > 1,
(3.24)

with i ∈ {1, 2}, obviouslyG is still closed and l.s.c. If we replace S byG in (i), thenΩ1(ε) ⊇ {x |
−ε ≤ x1 ≤ 1+ε, x2 ≥ 0}with 0 ≤ ε ≤ 1, which is unbounded. Therefore, limε→ 0μ(Ω1(ε))/= 0 and
the (VQVI) is not LP well posed in sense of type I. Actually, the solution set of this problem
is {x | 0 ≤ x1 ≤ 1, x2 ≥ 0} ∪ {x | 0 ≤ x2 ≤ 1, x1 ≥ 0} and thus unbounded.

Definition 3.11. (i) Let Z be a topological space, and let Z1 ⊆ Z be nonempty. Suppose that
h : Z → R1 ∪ {+∞} is an extended real-valued function. h is said to be level compact on Z1

if, for any s ∈ R1, the subset {z ∈ Z1 : h(z) ≤ s} is compact.
(ii) Let Z be a finite dimensional normed space, and let Z1 ⊆ Z be nonempty. A

function h : Z → R1 ∪ {+∞} is said to be level bounded on Z1 if Z1 is bounded or

lim
z∈Z1,‖z‖→+∞

h(z) = +∞. (3.25)
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The following proposition presents some sufficient conditions for type I LP well
posedness of (VQVI)

Proposition 3.12. Let Assumption 1 hold. Further assume that one of the following conditions holds.

(i) There exists 0 < δ1 < δ0 such that X1(δ1) is compact, where

X1(δ1) = {x ∈ X1 ∩X2 : dX0(x) ≤ δ1}, (3.26)

(ii) the function f defined by (2.14) is level compact on X1 ∩X2,

(iii) X is finite dimensional and

lim
x∈X1∩X2,‖x‖→+∞

max
{
f(x), dX0(x)

}
= +∞, (3.27)

where f is defined by (2.14).

(iv) There exists 0 < δ1 < δ0 such that f is level-compact on X1(δ1) defined by (3.26). Then,
(VQVI) is type I LP well posed.

Proof. First, we show that each one of (i), (ii), and (iii) implies (iv). Clearly, either of (i) and
(ii) implies (iv). Now, we show that (iii) implies (iv). We notice that the set X1 ∩X2 is closed
by the closedness of S. Then, we need only to show that for any t ∈ R1, the set

A =
{
x ∈ X1(δ1) : f(x) ≤ t

}
(3.28)

is bounded since X is a finite dimensional space and the function f defined by (2.14) is l.s.c.
onX1 and, thus,A is closed. Suppose to the contrary that there exist t ∈ R1 and {x′

n} ⊆ X1(δ1)
such that ‖x′

n‖ → +∞ and f(x′
n) ≤ t. From {x′

n} ⊆ X1(δ1), we have

dX0

(
x′
n

) ≤ δ1. (3.29)

Thus,

max
{
f
(
x′
n

)
, dX0

(
x′
n

)} ≤ max{t, δ1}, (3.30)

which contradicts condition (3.27).
Now, we show that if (iv) holds, then (VQVI) is type I LP well posed. Let {xn} be

a type I LP approximating solution sequence of (VQVI). Then, there exist {εn} ⊆ R1
+ with

εn → 0 and zn ∈ T(xn) such that

〈
F(xn), x′ − xn

〉
+ εn /∈ intC, ∀x′ ∈ S(xn), (3.31)

dX0(xn) ≤ εn, (3.32)

xn ∈ S(xn). (3.33)
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From (3.32) and (3.33), we can assume without loss of generality that {xn} ⊆ X1(δ1). By
Lemma 2.7, we can assume without loss of generality that

{xn} ⊆ {
x ∈ X1(δ1) : f(x) ≤ 1

}
, (3.34)

where f is defined by (2.14). By the level compactness of f on X1(δ1), there exist a
subsequence of {xnj} of {xn} and x ∈ X1(δ1) such that xnj → x. From this fact and (3.32), we
have x ∈ X0. Since S is closed and (3.33) holds, we also have x ∈ S(x). That is,

x ∈ X0 ∩X2 = X′
0. (3.35)

Furthermore, by Lemmas 2.7 and 3.6, we have

f(x) ≤ lim inf
n→+∞

f
(
xnj

)
≤ lim sup

n→+∞
f
(
xnj

)
≤ 0. (3.36)

We know that f(x) ≥ 0 by Lemma 2.6, so f(x) = 0. This fact combined with (3.35) and
Lemma 2.6 implies that x ∈ X.

Similarly, we can prove the next proposition.

Proposition 3.13. Let Assumption 1 hold. Further assume that one of the following conditions holds.

(i) There exists 0 < δ1 < δ0 such that X2(δ1) is compact, where

X2(δ1) =
{
x ∈ X1 ∩X2 : dK

(
g(x)

) ≤ δ1
}
, (3.37)

(ii) the function f defined by (2.14) is level compact on X1 ∩X2,

(iii) X is finite dimensional and

lim
x∈X1∩X2,‖x‖→+∞

max
{
f(x), dK

(
g(x)

)}
= +∞. (3.38)

(iv) There exists 0 < δ1 < δ0 such that f is level compact on X2(δ1) defined by (3.37). Then,
(VQVI) is generalized type I LP well posed.

Remark 3.14. If X is finite dimensional, then the “level-compactness” condition in Proposi-
tions 3.12 and 3.13 can be replaced by the “level-boundedness” condition.

Now, we consider the case when Y is a normed space, K is a closed and convex cone
with nonempty interior intK and let e ∈ intK.

Let t ≥ 0 and denote

X3(t) =
{
x ∈ X1 ∩X2 : g(x) ∈ K − te

}
. (3.39)

The next proposition follows immediately from Proposition 2.8(i), Lemma 3.6, and
[12, Proposition 2.3(iv)].
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Proposition 3.15. Let Y be a normed space, letK be a closed and convex cone with nonempty interior
intK and e ∈ intK. Let the set-valued map S be closed and l.s.c on X1. Assume that the solution set
X of (VQVI) is nonempty. Further assume that there exists t1 > 0 such that the function f(x) defined
by (2.14) is level compact on X3(t1), then (VQVI) is generalized type I LP well posed.

Remark 3.16. If X is finite dimensional, then the level-compactness condition of f can be
replaced by the level boundedness of f .
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