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The 157, 211 triangle-free symmetric 223 configurations are classified and some of their properties
are examined. We conclude that each such configuration has a blocking set. Further properties like
transitivity on lines, self-duality, and self-polarity are discussed.

1. Introduction

A finite incidence structure X is a pair (P,B), where P and B are finite sets. In particular, P =
{p1, p2, . . . , pv} is a set of v points and B = {B1, B2, . . . , Bb} is a set of b blocks (or lines) such
that Bi ⊆ P for i = 1, 2, . . . , b.

The number of blocks containing a point p ∈ P is called the degree, denoted by [p]. The
number of points that are contained in a block B is called the size of B, denoted by |B|. A pair
(p, B) with p ∈ B ∈ B is called a flag. In this case, we say that p lies on B, or that p and B are
incident.

A (combinatorial) configuration (see [1]) of type (vr, bk) is an incidence structure (P,B)
with

(C1) |Bj | = k for j = 1, . . . , b,

(C2) [pi] = r for i = 1, . . . , v,

(C3) any two distinct points being incident with at most one line.

The last axiom implies that two points determine at most one line and that two
lines intersect in at most one point. We say that two points are collinear if they lie on a
line (and two lines are concurrent if they intersect). Note that these structures are defined
purely combinatorially (and hence sometimes called combinatorial configurations). It is a
different question whether or not a given configuration can be embedded in projective space
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(such that the blocks arise from lines in that space). This question leads to the notion of
geometric configurations. In this paper, we are concerned with combinatorial configurations
only. We do not discuss the problem of whether or not they can be embedded in
projective space. Clearly, every geometric configuration is also combinatorial. Therefore,
the results in this paper may be seen as a starting point to classify the corresponding
geometric configurations. For the sake of simplicity, henceforth we will simply talk about
configurations. In all cases, this will mean combinatorial configurations.

A (vr, bk) configuration with v = b (and hence r = k) is called symmetric (see for
instance [2, 3]). A symmetric configuration is denoted by vr .

Configurations are closely related to graphs. Let C = (P,B) be a v3 configuration.
The Levi graph (or incidence graph), denoted L(C), associated with C, is the cubic bipartite
graph with vertex set P ∪ B with p ∈ P and B ∈ B adjacent if and only if p ∈ B; see [3–7].
Alternatively, it is the cubic bipartite graph with black vertices representing the points, with
white vertices representing the lines, and with an edge joining two vertices if and only if
the corresponding point and line are incident. According to Coxeter [4], configurations can
be characterized in the following way. Recall that the girth in a graph is the length of the
shortest cycle.

Proposition 1.1. An incidence structure C is a v3 configuration if and only if its Levi graph is cubic
and has girth at least 6.

An isomorphism between two incidence structures C1 = (P1,B1) and C2 = (P2,B2) is
a bijection α : P1 → P2 which takes B1 to B2 (where α(B) = {α(p) | p ∈ B} for B ∈ B1).
If such an isomorphism exists, the incidence structures are isomorphic. It is well known that
isomorphism of incidence structures is an equivalence relation. The equivalence classes are
known as isomorphism types. The problem of classifying a class of incidence structures is
determining the classes of isomorphic objects.

Furthermore, for an incidence structure C = (P,B), the isomorphisms from C to C are
known as automorphisms. They form a group, the automorphism group of C.

If G is any subgroup of the automorphism group of a configuration C, then G may be
seen as acting on the set of points, the set of blocks, and the set of flags; see [8] for more details.
An orbit of G on points, blocks, flags (resp.) is known as a point-orbit, block-orbit, flag-orbit
(resp.). It is well known that a flag transitive automorphism group G is also transitive on
points and blocks (but not conversely).

A blocking set in a configuration is a subset H of points such that each block contains
at least one element from H and one element not from H. Not every configuration has a
blocking set. An example of a blocking set free configuration is the unique 73 configuration (or
Fano plane) shown in Figure 1. The figure also shows the Levi graph of this configuration.
This graph is also known as the Heawood graph.

To each (vr, bk) configuration C = (P,B), we may associate another configuration
known as the dual configuration. The dual configuration is C∗ = (B, P), with the roles
of points and blocks reversed, but with the same incidence. That is, a “point” B is on a
“block” p in the dual configuration if p ∈ B in C. Clearly, C∗ is a (bk, vr) configuration. Also,
C and C∗ have the same Levi graph, except that the color classes are reversed. Applying
duality twice in a row, we obtain a configuration D that is isomorphic to the original
configuration C.

If C is isomorphic to its dual (C∗), we say that C is self-dual and a corresponding
isomorphism is called duality. Moreover, a duality of order 2 is called a polarity. A self-polar
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Figure 1: The Fano plane and its Levi graph (Heawood graph).

Table 1: Triangle-free configurations v3 for 15 ≤ v ≤ 22.

v A B C D E F

15 1 1 1 1 1 0

16 0 0 0 0 0 0

17 1 1 1 0 0 0

18 4 2 2 0 0 0

19 14 6 6 0 0 0

20 162 40 40 1 1 0

21 4,713 307 303 1 0 0

22 157,211 1,999 1,992 0 0 0
Note: A is the number of configurations v3, B is the number of self-dual configurations v3, C is the number of self-polar
configurations v3,D is the number of point-transitive configurations v3, E is the number of flag-transitive configurations v3,
and F is the number of blocking set free configurations v3.

configuration is a configuration that admits a polarity. The Fano plane of Figure 1 is both self-
dual and self-polar. To see this, notice that the bijective mapping pi ↔ Bi for i = 1, 2, . . . , 7
preserves the Levi graph of the Fano plane.

In this paper, we consider v3 configurations that contain no triangles. A triangle in a
configuration is a triple of points that are pairwise collinear but not with the same line.
A configuration is triangle-free if and only if the girth of the incidence graph is at least 8
(configurations in general have girth at least 6). In terms of points and lines, we have that a
point p that is not on a line B is collinear to at most one point of B. This is a weakening of
the axiom of a generalized quadrangle: in a generalized quadrangle, a point p not on a line B is
collinear to exactly one point of B.

So far, triangle-free v3 configurations have been classified for v ≤ 21. In the current
work, a classification for v = 22 is carried out. Table 1 shows the known results of the
nonisomorphic triangle-free v3 configurations for v ≤ 22. The entries for v ≤ 21 were
determined previously in [8, 9]. The entries in the last row of Table 1 are new and were
constructed in our search.
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2. Search and Results

Necessary existence conditions for a (vr, bk) configuration are

vr = bk, v − 1 ≥ r(k − 1), (2.1)

obtained by counting in two ways the incidences of points with lines and the incidences of
pairs of points containing a given point with lines, respectively. For k = 3, these conditions
are also sufficient; see Gropp [10].

In this paper, we use computer search to classify the triangle-free 223 configurations.
We find exactly 157, 211 nonisomorphic configurations of this type. Moreover, we also
verified the results in [8] for triangle-free configurations v3 with at most 21 points.

Gropp [3] has stated that there is a blocking set free 223 configuration. Our search
shows that there is no blocking set free 223 configuration which is also triangle-free. Thus,
Gropp’s configuration must contain triangles.

A v3 configuration (P,B) with P = {p1, . . . , pv} and B = {B1, . . . , Bv} can be represented
by a {0, 1} incidence matrix A = (ai,j), say, with v rows and v columns. The entry ai,j is
one if and only if pi ∈ Bj. Clearly, there are three ones in each row and column. Also, the
dot product of any two distinct rows is at most 1. Those properties are equivalent to those that
were mentioned earlier in Section 1, namely, (C1), (C2), and (C3). Moreover, two matrices are
isomorphic if one can be obtained from the other by permuting the rows and the columns. In
the incidence matrices that are displayed below, we write “x” if ai,j = 1 and “empty square”
if ai,j = 0.

Let us now describe the algorithm that we use to classify the triangle free v3

configurations. The algorithm is an instance of the method of orderly generation [11].
We carry out a row-by-row (or point-by-point) backtrack search over all incidence

matrices of triangle free v3 configurations. We start with the all-zero matrix and augment
it one row at a time, subject to the properties (C1), (C2), and (C3). Augmenting means
deciding on the positions of the three ones in one particular row. The rows are augmented
in order. Moreover, we use an algorithm from [12, 13] for testing the girth condition (of the
partially filled incidence matrix). In this way, we ensure that all of the considered structures
are triangle-free configurations. Once a row has been completed, one of two actions is taken.
If the number of completed rows is between 17 and 21, no further action is taken. In the other
cases, we perform a test whether or not the lexicographically least form of the incidence
matrix agrees with the matrix that was created. If yes, we keep the row that was just added
and proceed with the search. If no, the row is rejected and we backtrack. This test is our way
to solve the isomorphism problem. Namely, each isomorphism class is represented by its
lexicographically least representative. Since we perform this test after 22 rows, the resulting
objects are pairwise nonisomorphic. The reason for not testing after rows 18, 19, and 20 is the
following. Computing the lexicographically least incidence matrix is expensive. Therefore,
the isomorphism test described above slows down the search quite a bit. The benefits of
using the isomorphism test are worth the effort in the early rows (up to row 17). Namely,
the isomorphism test keeps the number of possibilities down and thereby reduces the size
of the search space. On the other hand, for rows 18–20, the number of possibilities of partial
incidence matrices increases dramatically. We observe, however, that many of these matrices
do not complete and hence do not contribute to the classification. Therefore, switching off
the isomorphism test for rows 18–20 means that we do not spend time on classifying partial
incidence matrices that do not complete anyway. This simple trick saves us a lot of time.
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Table 2

Order Types of groups

4 C2 × C2 (160 ×), C4 (27 ×)
6 C3 × C2 (once), D3 (13 ×)
8 E8 (35 ×), C4 × C2 (2 ×), D4 (2 ×)
12 E4 : C3 (once), C2 ×D3 (5 ×)
16 C2 ×D4 (4 ×), D4 : C2 (2 ×)
22 C22 (once)

24 D3 × E4 (3 ×)

In fact, we can classify the triangle free 223 configurations in about 19 hours CPU time (on a
single CPU machine).

We remark that we use our own algorithm to compute the lexicographically least
representative of the isomorphism class of a matrix. The complexity of this algorithm is
exponential in the size of the input. No fast algorithm to solve this problem is known.

Alternately, the idea of canonical augmentation due to McKay [14] can be used. In this
method, the lexicographically least representative is replaced by a canonical representative (that
in almost all cases is different from the lexicographically least representative). We also tried
this method, using nauty [15] to compute the canonical representative. We found that orderly
generation using lexicographically least representatives worked better for us. This may not
be seen as a critique of “canonical augmentation”. We simply did not try very hard, so a
comparison is unfair. We remark that while canonical representatives of an isomorphism class
may be computed faster than lexicographically least representatives, the procedure is still
exponential. Again, no fast (i.e., polynomial) algorithm to solve this problem is known.

Appendix

A. Some Selected Configurations

In what follows, we will present some examples and discuss some properties of the
configurations that were found in our search. We start by listing the distribution of
automorphism group orders

153, 430 × 1 14 × 6 6 × 16
3, 485 × 2 39 × 8 1 × 22

39 × 3 1 × 11 3 × 24
187 × 4 6 × 12

(A.1)

Here, x × y means that there are x configurations with an automorphism group of order y.
In the following, we will look at some of the configurations with nontrivial

automorphism groups.
At first, we determine the type of the automorphism group. We use Cn, and Dn, and

En to denote the cyclic group of order n, the Dihedral group of order 2n, and the elementary
abelian group of order n, respectively. For groups N and H, let N : H be a split extension
of N by H (with normal subgroup N). For groups of order other than a prime, we find the
following types in Table 2.
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It is often convenient to identify the blocks of a configuration v3 with the triple of
points that are incident with it. In what follows, we write 1, 2, . . . , v for points and we write
B1, B2, . . . , Bv for blocks. Also, we give the corresponding incidence matrix with row indices
1, 2, . . . , v and column indices v + 1, v + 2, . . . , 2v corresponding to the set of v points and v
blocks, respectively. The orbits of the automorphism group acting on points and blocks (resp.)
form a partition (of P and of B, resp.). In the figures, we group points and blocks according
to this partition. The boundaries of the classes of the partition are indicated by boldface
lines.

A.1. Triangle-Free Configuration with Automorphism Group of Order 4

As mentioned in Table 1, there are exactly seven configurations that are self-dual but are not
self-polar. Six configurations have a group of order 2 while one has a group of order 4. The
latter configuration has the following blocks:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 4 3 12 9 8 10 5 2 2 2 3 5

17 20 19 6 7 15 13 14 11 13 9 8 12 4 6

18 22 21 16 15 16 15 16 12 14 22 21 17 17 19

B16 B17 B18 B19 B20 B21 B22

5 6 7 4 3 11 10

7 9 8 10 11 14 13

20 18 18 20 19 22 21

(A.2)

Its partitioned incidence matrix is presented in Figure 2. The automorphism group is
generated by a and b where

a = (3, 4)(6, 7)(8, 9)(10, 11)(13, 14)(15, 16)(19, 20)(21, 22),

b = (1, 18)(6, 20)(7, 19)(8, 21)(9, 22)(10, 16)(11, 15)(13, 14).
(A.3)

It has ten point-orbits of three different sizes:

{1, 18}, {2}, {3, 4}, {5}, {6, 7, 19, 20}, {8, 9, 21, 22}, {10, 11, 15, 16}, {12}, {13, 14}, {17}. (A.4)
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17 x x x

14 x x x

13 x x x

12 x x x

15 x x x

16 x x x

10 x x x

11 x x x

8 x x x

9 x x x

22 x x x

21 x x x

7 x x x

6 x x x

20 x x x

19 x x x

5 xxx

4 x x x

3 x x x

2 xxx

18 x x x

1 x x x

23 25 24 39 40 42 41 26 27 31 28 29 30 43 44 32 33 34 35 36 37 38

Figure 2: The incidence matrix of the unique self-dual configuration with automorphism group of
order 4.

A.2. Triangle-Free Configuration with Automorphism Group of Order 11

The unique triangle-free 223 configuration with automorphism group of order 11 has the
following blocks:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 3 8 9 7 6 11 10 2 2 2 6 6

17 19 20 4 11 13 10 12 15 12 9 8 10 9 7

18 22 21 5 14 16 14 15 16 13 22 21 17 18 20

B16 B17 B18 B19 B20 B21 B22

5 3 4 5 4 3 8

7 11 14 16 15 13 12

19 17 18 21 22 20 19

(A.5)

Its partitioned incidence matrix is presented in Figure 3. Its Levi graph is shown in
Figure 4. This configuration is self-polar by the correspondence
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2 x x x

18 x x x

15 x x x

13 x x x

7 x x x

8 xx x

17 xx x

4 x x x

16 x xx

20 x xx

19 x xx

22 x x x

9 x x x

6 x x x

12 x x x

10 xx x

14 xxx

11 x x x

3 x xx

5 x x x

21 x xx

1 x x x

23 34 38 43 31 40 35 44 37 28 42 24 25 41 26 39 27 29 32 30 36 33

Figure 3: The incidence matrix of the unique configuration with automorphism group of order 11.
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Figure 4: The Levi graph of the configuration with automorphism group of order 11.
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(1, B2)(2, B12)(3, B8)(4, B15)(5, B14)(6, B4)(7, B18)(8, B13)

(9, B19)(10, B5)(11, B10)(12, B17)(13, B9)(14, B7)(15, B21)

(16, B6)(17, B22)(18, B16)(19, B1)(20, B20)(21, B11)(22, B3).

(A.6)

Its automorphism group is generated by

α = (1, 11, 6, 21, 14, 9, 5, 10, 22, 3, 12)(2, 4, 13, 19, 17, 15, 20, 8, 18, 16, 7). (A.7)

It has two point-orbits of size 11, shown in Figure 3.

A.3. Triangle-Free Configuration with Automorphism Group of Order 16

There are six triangle-free 223 configurations with an automorphism group of order 16. Four
of those structures are self-dual and self-polar. Here we present only one of those four
configurations. It has the following blocks:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 2 5 6 10 9 12 11 8 7 2 2 4

17 20 19 3 8 7 14 13 14 13 10 9 5 6 10

18 22 21 4 11 12 15 16 16 15 22 21 21 22 18

B16 B17 B18 B19 B20 B21 B22

3 5 6 7 8 3 4

9 16 15 11 12 14 13

17 18 17 20 19 20 19

(A.8)

Its partitioned incidence matrix is shown in Figure 5. The Levi graph is shown in Figure 6.
The configuration is self-polar under the correspondence

(1, B4)(2, B1)(3, B2)(4, B3)(5, B17)(6, B18)(7, B7)(8, B8)

(9, B11)(10, B12)(11, B9)(12, B10)(13, B20)(14, B19)(15, B6)

(16, B5)(17, B14)(18, B13)(19, B22)(20, B21)(21, B15)(22, B16)

(A.9)

The automorphism group is generated by the following three elements:

a = (3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22),

b = (1, 2)(3, 17)(4, 18)(5, 19)(6, 20)(11, 12)(13, 16)(14, 15),

c = (1, 5)(2, 19)(3, 13)(6, 12)(8, 22)(11, 20)(14, 15)(16, 17).

(A.10)
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10 x x x

9 x x x

22 x x x

21 xx x

8 xx x

7 x x x

14 xx x

16 x x x

18 x xx

17 x xx

15 x xx
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1 xxx

6 x xx

11 x xx

19 x x x

2 x xx

20 x x x

43 26 44 32 40 23 39 31 24 36 35 25 42 27 41 28 29 30 37 38 33 34

Figure 5: The incidence matrix of a self-dual and self-polar configuration with automorphism group of
order 16.
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Figure 6: The Levi graph of a configuration with automorphism group of order 16.
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19 x x x

20 x xx

8 x xx

9 xx x
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21 x x x

2 x x x
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14 x xx

10 x xx

7 x xx

17 xx x
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Figure 7: The incidence matrix of the unique self-dual configuration with automorphism group of order 22.

A.4. Triangle-Free Configuration with Automorphism Group of Order 22

The unique triangle-free 223 configuration with automorphism group of order 22 has the
following blocks:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 2 9 10 5 6 7 8 5 6 8 7 10

18 17 21 3 12 11 14 13 14 13 9 10 12 11 12

20 19 22 4 16 15 15 16 16 15 20 19 18 17 22

B16 B17 B18 B19 B20 B21 B22

9 3 4 4 3 2 2

11 7 8 5 6 14 13

21 20 19 22 21 18 17

(A.11)

Figure 7 shows its partitioned incidence matrix. It is self-polar via the correspondence

(1, B1)(2, B18)(3, B19)(4, B4)(5, B20)(6, B7)(7, B15)(8, B22)

(9, B16)(10, B9)(11, B5)(12, B14)(13, B10)(14, B12)(15, B8)

(16, B6)(17, B13)(18, B2)(19, B21)(20, B3)(21, B11)(22, B17)

(A.12)
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Figure 8: The unique self-dual configuration with automorphism group of order 22.

The automorphism group is generated by the following two elements:

a = (3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22),

b = (1, 3, 17, 6, 11, 16, 15, 12, 5, 18, 4)(2, 19, 21, 7, 13, 10, 9, 14, 8, 22, 20).
(A.13)

It has two point-orbits of equal sizes:

{1, 3, 4, 5, 6, 11, 12, 15, 16, 17, 18}, {2, 7, 8, 9, 10, 13, 14, 19, 20, 21, 22}. (A.14)

Its Levi graph is shown in Figure 8.

A.5. Triangle-Free Configuration with Automorphism Group of Order 24

Altogether, there are three 223 configurations with an automorphism group of order 24. In this
section, we present those three configurations, say A, B, and C. The blocks for configuration
A are

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 12 13 8 4 5 6 7 4 6 4 6 7

17 18 19 14 15 9 11 10 11 10 5 7 8 8 9

22 20 21 16 16 16 14 12 15 13 17 17 18 19 21
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B16 B17 B18 B19 B20 B21 B22

5 2 3 2 3 3 2

9 11 10 12 15 14 13

20 22 22 18 21 20 19

(A.15)

The blocks for configuration B are

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 12 13 8 4 5 6 7 4 5 4 6 7

17 18 19 14 15 9 11 10 11 10 7 6 8 8 9

22 21 20 16 16 16 14 12 15 13 17 17 18 19 21

B16 B17 B18 B19 B20 B21 B22

5 2 3 2 3 3 2

9 11 10 12 15 14 13

20 22 22 18 21 20 19

(A.16)

Finally, the blocks for configuration C are

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 1 1 4 11 10 6 9 8 7 5 4 5 4 6

19 20 17 5 14 14 13 12 13 12 6 9 8 7 9

22 21 18 14 15 16 15 16 16 15 22 19 20 21 18

B16 B17 B18 B19 B20 B21 B22

7 2 3 2 3 3 2

8 10 11 11 10 13 12

18 19 22 21 20 17 17

(A.17)

Partitioned incidence matrices for configurations A, B, and C (resp.) are shown in
Figures 9, 10, and 11, respectively.
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22 x x x

16 x x x

9 x x x

8 x x x

15 x x x

21 x x x

19 x x x

13 x x x

7 x x x

6 xx x

14 xx x

20 xx x

18 xx x

12 xx x

5 xx x

4 x x x

11 xxx

3 x x x

1 x xx

2 x xx

10 xx x

17 xx x

23 40 39 33 30 41 24 43 29 34 32 44 25 42 31 35 38 26 36 37 27 28

Figure 9: The incidence matrix of the configuration A with automorphism group of order 24.

22 x x x

16 x x x

9 x x x

8 x x x

15 x x x

21 x x x

19 x x x

13 x x x

7 x x x

6 xx x

14 xx x

20 x x x

18 xx x

12 xx x

5 x x x

4 x x x

11 xxx

3 x x x

1 x xx

2 x xx

10 xx x

17 xx x

23 40 39 33 30 41 24 43 29 34 32 44 25 42 31 35 38 26 36 37 27 28

Figure 10: The incidence matrix of the configuration B with automorphism group of order 24.
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17 x x x

5 x x x

4 x x x

14 x x x

15 x x x

7 x x x

8 x x x

16 x x x

9 x x x

6 xx x

20 xx x

21 xx x

11 xx x

22 xx x

19 xx x

10 x x x

13 xxx

12 x x x

18 x xx

3 x xx

1 xx x

2 xx x

44 25 43 39 23 40 41 24 42 37 30 31 38 32 29 28 34 33 27 36 35 26

Figure 11: The incidence matrix of the configuration C with automorphism group of order 24.

The automorphism group of configuration A is generated by

a1 = (1, 2)(3, 10)(5, 14)(7, 15)(9, 16)(11, 17)(12, 20)(13, 21),

a2 = (2, 3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 14)(13, 15)(18, 20)(19, 21),

a3 = (4, 6)(5, 7)(12, 13)(14, 15)(18, 19)(20, 21),

(A.18)

and for B is generated by

b1 = (1, 2)(3, 10)(5, 15)(7, 14)(9, 16)(11, 17)(12, 21)(13, 20),

b2 = (2, 3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 14)(13, 15)(18, 20)(19, 21),

b3 = (4, 6)(5, 7)(12, 13)(14, 15)(18, 19)(20, 21),

(A.19)

and for C is generated by

c1 = (1, 3)(4, 14)(7, 16)(9, 15)(10, 21)(11, 19)(13, 18),

c2 = (2, 3)(4, 5)(6, 7)(8, 9)(12, 13)(19, 20)(21, 22),

c3 = (1, 3)(4, 14)(6, 8)(7, 15)(9, 16)(10, 19)(11, 21)(13, 18)(20, 22),

c4 = (1, 12)(2, 18)(3, 13)(5, 14)(6, 10)(7, 21)(8, 11)(9, 19)(15, 20)(16, 22).

(A.20)
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Figure 12: The configuration A with automorphism group of order 24.

1

25 42

21

3

15

3640

13

19

31

11

6
14

29

27

34

17

7

4
33

39

32

5

303744

2

10

12
41

18
24

38

9

22

26

16

35

28

8
43 23

20

Figure 13: The configuration B with automorphism group of order 24.
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Configurations A, B, and C have four point-orbits of four different sizes. This can be
seen in the corresponding partitioned incidence matrices in Figures 9, 10, and 11.

Configuration B is self-polar under the correspondence

(1, B5)(2, B14)(3, B15)(4, B7)(5, B8)(6, B19)(7, B21)(8, B17)

(9, B18)(10, B16)(11, B13)(12, B12)(13, B3)(14, B11)(15, B2)

(16, B1)(17, B4)(18, B9)(19, B22)(20, B10)(21, B20)(22, B6).

(A.21)

Configurations A and C are not self-dual. Figures 12 and 13 show the Levi graph of
configurations A and B, respectively.
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[9] M. Boben, B. Grünbaum, T. Pisanski, and A. Žitnik, “Small triangle-free configurations of points and

lines,” Discrete & Computational Geometry, vol. 35, no. 3, pp. 405–427, 2006.
[10] H. Gropp, “Enumeration of regular graphs 100 years ago,” Discrete Mathematics, vol. 101, no. 1–3, pp.

73–85, 1992.
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