Research Article

On Isosceles Sets in the 4-Dimensional Euclidean Space

Hiroaki Kido

Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Correspondence should be addressed to Hiroaki Kido, kido@math.kyushu-u.ac.jp
Received 22 July 2010; Accepted 4 November 2010
Academic Editor: Gerard Jennhwa Chang
Copyright © 2010 Hiroaki Kido. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A subset X in the k-dimensional Euclidean space \mathbb{R}^{k} that contains n points (elements) is called an n-point isosceles set if every triplet of points selected from them forms an isosceles triangle. In this paper, we show that there exist exactly two 11-point isosceles sets in \mathbb{R}^{4} up to isomorphisms and that the maximum cardinality of isosceles sets in \mathbb{R}^{4} is 11 .

1. Introduction

Let \mathbb{R}^{k} be the k-dimensional Euclidean space, let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be in \mathbb{R}^{k}, and $d(x, y)=\sqrt{\sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{2}}$.

For a finite set $X \subset \mathbb{R}^{k}$, let

$$
\begin{equation*}
A(X)=\{d(x, y) \mid x, y \in X, x \neq y\} \tag{1.1}
\end{equation*}
$$

If $|A(X)|=s$, we call X an s-distance set.
Two subsets in \mathbb{R}^{k} are said to be isomorphic if there exists similar transformation from one to the other.

We have the following interesting problems on s-distance sets.
(1) What is the cardinality of points when the number of s-distance sets in \mathbb{R}^{k} is finite up to isomorphisms?
(2) What is the maximum cardinality of s-distance sets in \mathbb{R}^{k} ?
(3) Can we say something about the ratios of distances in an s-distance set?

Table 1: The maximum cardinality of 2-distance sets.

k	$\left.\begin{array}{c}(k+2 \\ 2\end{array}\right)$	The maximum cardinality of 2-distance sets	The number of 2-distance sets giving the maximum cardinality
1	3	3	1
2	6	5	1
3	10	6	6
4	15	10	1
5	21	16	1
6	28	27	1
7	36	29	1
8	45	45	≥ 1

As regards question (1), Einhorn and Schoenberg [1] showed that the number of 2distance sets in \mathbb{R}^{k} is finite if cardinalities are more than or equal to $k+2$.

For question (2) with $s=2$ and $k \leq 8$, Erdös and Kelly [2], Croft [3], and Lisoněk [4] gave the maximum cardinalities. Their results are summarized in Table 1 (see [4, 5]).

As regards question (3), Larman et al. [6] showed that if $|X|>2 k+3$, the ratio of 2 distances in any 2 -distance set X is given by $\sqrt{\alpha-1}: \sqrt{\alpha}$, where α is an integer α satisfying $\alpha \leq 1 / 2+\sqrt{k / 2}$.

Bannai et al. [7] and Blokhuis [8] proved that the cardinality of an s-distance set in \mathbb{R}^{k} is bounded above by $\binom{k+s}{s}$. For the case $s=3$ and $k=2$, Shinohara [9] gave the answers to questions (1) and (2) by classifying 3-distance sets in \mathbb{R}^{2}. He proved that there are finitely many 3-distance sets when cardinalities are more than or equal to 5 . He also proved that the maximum cardinality of 3-distance sets is 7 . The complete classification of 3-distance sets in \mathbb{R}^{2} was also given. Recently Shinohara [10] showed uniqueness of maximum 3-distance sets in \mathbb{R}^{3}.

In this paper, we deal with isosceles sets which are defined in the following.
We call a set in \mathbb{R}^{k} with n points an n-point isosceles set if every triplet of points selected from them forms an isosceles triangle.

Here three collinear points will be interpreted as forming an isosceles triangle if and only if one of them is the mid-point of the other pair.

We remark that all n-point 2 -distance sets are n-point isosceles sets.
In this paper, we consider classification and the maximum cardinality of isosceles sets in \mathbb{R}^{4}. The following theorem and corollary are the main results.

Theorem 1.1. There exist exactly two 11-point isosceles sets in \mathbb{R}^{4} up to isomorphisms. They are X and Y, which will be explicitly defined in the following section.

Corollary 1.2. There is no 12-point isosceles set in \mathbb{R}^{4}. Therefore the maximum cardinality of isosceles sets in \mathbb{R}^{4} is 11 .

We prove them by expanding the method by Croft [3] into \mathbb{R}^{4}.

2. Known Results and Example of Isosceles Sets

The following are the known facts about isosceles sets so far.

Figure 1: A unique 8-point isosceles set in \mathbb{R}^{3} (from Kido [11]).
(i) Ten-point isosceles sets in \mathbb{R}^{4} exist infinitely many up to isomorphisms. For example, $\{(\cos (2 j / 5) \pi, \sin (2 j / 5) \pi, 0,0) \mid 0 \leq j \leq 4\} \cup\{c(0,0, \cos (2 k / 5) \pi, \sin (2 k / 5) \pi) \mid$ $0 \leq k \leq 4\}$ is a 10-point isosceles set for any positive real number c. It is nonisomorphic to $\{(\cos (2 j / 5) \pi, \sin (2 j / 5) \pi, 0,0) \mid 0 \leq j \leq 4\} \cup$ $\left\{c^{\prime}(0,0, \cos (2 k / 5) \pi, \sin (2 k / 5) \pi) \mid 0 \leq k \leq 4\right\}$ for any positive real number c^{\prime} satisfying $c^{\prime} \neq c$.
(ii) No 9-point isosceles set in \mathbb{R}^{3} exists (Croft [3]).
(iii) There exists a unique 8-point isosceles set in \mathbb{R}^{3} up to isomorphisms. It is in Figure 1 (Kido [11]).
(iv) Seven-point isosceles sets in \mathbb{R}^{3} exist infinitely many up to isomorphisms.
(v) No 7-point isosceles set in \mathbb{R}^{2} exists (Erdös and Golomb [12], Erdös and Kelly [2]).
(vi) There exists a unique 6-point isosceles set in \mathbb{R}^{2} up to isomorphisms. It consists of five points of a regular pentagon and its center (Erdös and Golomb [12], Erdös and Kelly [2]).
(vii) There exist exactly three 5-point isosceles sets in \mathbb{R}^{2} up to isomorphisms. They are four points of a square and its center, five points of a regular pentagon, and four points of a regular pentagon and its center (Fishburn [13], Erdös and Golomb [12]).
(viii) Four-point isosceles sets in \mathbb{R}^{2} exist infinitely many up to isomorphisms.

Now we define two examples X and Y which are mentioned in Theorem.

2.1. Example of 11-Point Isosceles Sets in \mathbb{R}^{4}

Let $e_{i}, 1 \leq i \leq 4$ be the canonical basis of \mathbb{R}^{4}. Then 11 -point sets X and Y in \mathbb{R}^{4} defined as follows are isosceles sets:

$$
\begin{equation*}
X=X^{\prime} \cup\left\{u_{0}\right\} \tag{2.1}
\end{equation*}
$$

Figure 2: The Petersen graph.
where

$$
\begin{equation*}
X^{\prime}=\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq 4\right\} \cup\left\{-e_{k}+u \mid 1 \leq k \leq 4\right\}, \tag{2.2}
\end{equation*}
$$

and $u_{0}=((5+\sqrt{5}) / 10,(5+\sqrt{5}) / 10,(5+\sqrt{5}) / 10,(5+\sqrt{5}) / 10)$ and $u=((3+\sqrt{5}) / 4,(3+$ $\sqrt{5}) / 4,(3+\sqrt{5}) / 4,(3+\sqrt{5}) / 4):$

$$
\begin{align*}
Y & =\left\{\left.\left(\cos \frac{2 j}{5} \pi, \sin \frac{2 j}{5} \pi, 0,0\right) \right\rvert\, 0 \leq j \leq 4\right\} \tag{2.3}\\
& \cup\left\{\left.\left(0,0, \cos \frac{2 k}{5} \pi, \sin \frac{2 k}{5} \pi\right) \right\rvert\, 0 \leq k \leq 4\right\} \cup\{(0,0,0,0)\} .
\end{align*}
$$

Remark 2.1. In above X^{\prime} is known as a unique 10-point 2-distance set (see Lisoněk [4]). It is constructed by the Petersen graph (Figure 2) and it is on a 3-dimensional sphere whose center is u_{0}. Also we can easily see that X^{\prime} and X contain a square and that Y contains a regular pentagon.

3. Notation and Some Isosceles Set Configurations

We introduce the following notation (see [3]): apex: a point of a set of three or more points equidistant from all the others.

Let $D=\left\{P_{1}, \ldots, P_{n}\right\}$ be an n-point isosceles set. We define the vertex-number $V\left(P_{i}\right)$ of a point $P_{i} \in D$ by the number of distinct isosceles triangles of which P_{i} is an apex. It is easy to see that

$$
\begin{equation*}
V\left(P_{1}\right)+\cdots+V\left(P_{n}\right) \geq\binom{ n}{3} . \tag{3.1}
\end{equation*}
$$

Especially let α be the number of regular triangles in p :

$$
\begin{equation*}
V\left(P_{1}\right)+\cdots+V\left(P_{n}\right)=2 \alpha+\binom{n}{3} . \tag{3.2}
\end{equation*}
$$

We further say that a point $P_{i} \in D$ is of type (r, s, \ldots, u) if the lines joining it to the remaining points in D are constituted; thus: r of length a, s of length b, \ldots, u of length l, where a, b, \ldots, l are no two of them equal. Setting $r \geq s \geq \cdots \geq u, r+s+\cdots+u=n-1$ clearly holds. Moreover if P_{i} is of type (r, s, \ldots, u), then

$$
\begin{equation*}
V\left(P_{i}\right)=\binom{r}{2}+\binom{s}{2}+\cdots+\binom{u}{2} . \tag{3.3}
\end{equation*}
$$

Lemma 3.1. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in \mathbb{R}^{4}, and suppose that P_{1} has the largest vertex-number. Then the type of P_{1} satisfies one of the following cases $(A)-(H)$:

Case (A): (10),
Case (B): $(9,1),(8,2),(8,1,1)$,
Case (C): $(7,3),(7,2,1)$,
Case (D): $(6,4),(6,3,1),(5,5),(5,4,1)$,
Case (E): $(7,1,1,1)$,
Case (F): $(6,2,2)$,
Case (G): $(6,2,1,1)$,
Case (H): $(6,1,1,1,1)$.
Proof. Since $V\left(P_{1}\right)+\cdots+V\left(P_{11}\right) \geq\binom{ 11}{3}=165$ by (3.1), we have $V\left(P_{1}\right) \geq 15$. Let (r, s, \ldots, u) be the type of P_{1}. Then we have

$$
\begin{equation*}
\binom{r}{2}+\binom{s}{2}+\cdots+\binom{u}{2} \geq 15 \tag{3.4}
\end{equation*}
$$

and we have

$$
\begin{equation*}
r+s+\cdots+u=10 \tag{3.5}
\end{equation*}
$$

In order to satisfy (3.4) and $(3.5),(r, s, \ldots, u)$ must be one in the list of the lemma.
Throughout this paper, we refer to the condition (X) as "four points in a set lie on a circle."

We first show the following lemma.
Lemma 3.2. If an 11-point isosceles set in \mathbb{R}^{4} exists, then the condition (X) is true for it.
In Sections $4-11$, we prove Lemma 3.2 case by case according to eight cases $(A)-(H)$ of types of P_{1} given in Lemma 3.1. In Sections 12 and 13, we deal with 11-point isosceles sets satisfying the condition (X). In Section 14, we complete the proofs of Theorem 1.1 and Corollary 1.2.

The following propositions are useful for us to prove Lemma 3.2 and Theorem 1.1. We can prove Propositions 3.3 and 3.4 using a similar method to Lemma 3.1.

Figure 3

Proposition 3.3. In a 10-point isosceles set in \mathbb{R}^{4}, let P be a point that has the largest vertex-number. Let (r, s, \ldots, u) be the type of P. If $r<6$, then it must be $(5,4),(5,3,1),(5,2,2)$, or $(4,4,1)$.

Proposition 3.4. In a 6-point isosceles set in \mathbb{R}^{3}, let P be a point that has the largest vertex-number. Then the type of P is one of $(5),(4,1)$, and $(3,2)$.

Proposition 3.5. Let an n-point isosceles set in \mathbb{R}^{4} be constituted thus: P_{1}, which is the center of a 3-dimensional sphere S; upon S lie $P_{2}, P_{3}, P_{4}, \ldots$, being at least 3 and less than or equal to $n-2$ points; and at least one P, say P_{n}, does not lie on S. Then those points of the set that lie on S lie on one of two disjoint 2-dimensional spheres.

Proof. We may assume that the equation of S is $x^{2}+y^{2}+z^{2}+w^{2}=1$ and $P_{n}=(k, 0,0,0)$, where $k>0$ and $k \neq 1$. Then $P_{1}=(0,0,0,0)$. For a point $P_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}\right)$ on S, we consider $\Delta P_{1} P_{i} P_{n}$.

When $P_{1} P_{i}=P_{i} P_{n}=1$ holds, we have $x_{i}^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1$ and $\left(x_{i}-k\right)^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1$. Then $x_{i}=k / 2$ and $y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1-k^{2} / 4$.

On the other hand, when $P_{1} P_{n}=P_{i} P_{n}=k$ holds, we have $x_{i}^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1$ and $\left(x_{i}-k\right)^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=k^{2}$. Then $x_{i}=1 / 2 k$ and $y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1-1 / 4 k^{2}$.

Combining them, it holds that P_{i} is on one of two disjoint 2-dimensional spheres.
Proposition 3.6. If three points, P_{1}, P_{2}, P_{3}, say, in an n-point isosceles set in \mathbb{R}^{4} are collinear in this order, then the other points of the set all lie on a 2-dimensional sphere.

Proof. We may assume that $P_{1}=(-1,0,0,0), P_{2}=(0,0,0,0)$, and $P_{3}=(1,0,0,0)$. We consider the position of $P_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}\right)$ for $i=4, \ldots, n$. By a similar method used in the proof of Kelly [2] or Lemma 6 in Croft [3], in a plane, P_{1}, P_{2}, P_{3}, and P_{i} must satisfy Figure 3.

Hence $x_{i}^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1,\left(x_{i}+1\right)^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=2$, and $\left(x_{i}-1\right)^{2}+y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=2$ hold. Then we have $x_{i}=0$ and $y_{i}^{2}+z_{i}^{2}+w_{i}^{2}=1$.

Therefore the other points lie on a 2-dimensional sphere.
Corollary 3.7. For $n \geq 11$, there is no n-point isosceles set in \mathbb{R}^{4} which has three collinear points.
Proof. We may show that this corollary holds for $n=11$. By Proposition 3.6, the other eight points must lie on a 2-dimensional sphere. So they form an 8-point isosceles set in the 2dimensional sphere $\left(\subset \mathbb{R}^{3}\right)$. We know that there exists a unique 8-point isosceles set in \mathbb{R}^{3}

Figure 4: All 6-point 2-distance sets in \mathbb{R}^{3} (from Einhorn and Schoenberg [14]).
and it is in Figure 1. But looking at the figure, we see that eight points in it do not lie on a 2-dimensional sphere. Hence there is no 8-point isosceles set in the 2-dimensional sphere.

Therefore there is no 11-point isosceles set in \mathbb{R}^{4} which has three collinear points.

Proposition 3.8. Let $D=\left\{P_{1}, \ldots, P_{6}\right\}$ be a 6 -point isosceles set in a 2-dimensional sphere S. Then four points in D lie on a circle; the condition (X) holds.

Proof. Let P_{1} be a point that has the largest vertex-number in D. By Proposition 3.4, the type of P_{1} is one of $(5),(4,1)$, and $(3,2)$. If the type of P_{1} is (5) or $(4,1)$, then at least four points among P_{2}, \ldots, P_{6} are on the intersection of S and the sphere whose center is P_{1}. So at least four points are on a circle, the condition (X) holds.

Thus we suppose that P_{1} is of type $(3,2)$ with corresponding distances r_{1} and r_{2}. For $i=1,2$, let S_{i} be the sphere centered at P_{1} with radius r_{i}. Let $U_{1}=D \cap S_{1}=\left\{P_{2}, P_{3}, P_{4}\right\}$ and $U_{2}=p \cap S_{2}=\left\{P_{5}, P_{6}\right\}$.

Now D is a 2- or an s-distance set $(s \geq 3)$. We suppose that it is a 2 -distance set. We know that there exist exactly six 6 -point 2 -distance sets in \mathbb{R}^{3}. These six figures are in Figure 4. Two figures contain all points of a square, and the others contain four points of a regular pentagon. All points of a square and four points of a regular pentagon are both on a circle. Therefore the condition (X) holds.

On the other hand, we suppose that D is an s-distance set $(s \geq 3)$. So there exists a pair of points in D whose distance is c, that is, distinct from r_{1} and r_{2}. Since $P_{1} P_{i}=r_{1}$ or $r_{2}(i=2, \ldots, 6), c$ is the distance apart of a pair of points in $\left\{P_{2}, \ldots, P_{6}\right\}$. If $P_{i} P_{j}=c$ holds for some $P_{i} \in U_{1}$ and $P_{j} \in U_{2}$, then $\Delta P_{1} P_{i} P_{j}$ is scalene with sides r_{1}, r_{2}, c. Thus the following condition holds:

$$
\begin{equation*}
P_{i} P_{j}=r_{1} \text { or } r_{2} \text { for any } P_{i} \in U_{1}, P_{j} \in U_{2} \tag{3.6}
\end{equation*}
$$

Because c is the distance apart of a pair of points in U_{1} or U_{2}, at least one of $P_{2} P_{3}, P_{2} P_{4}, P_{3} P_{4}$, and $P_{5} P_{6}$ is c.

We suppose that $P_{5} P_{6}=c$. Let $P_{i} \in U_{1}$ and consider $\Delta P_{i} P_{5} P_{6}$. Since $P_{i} P_{5}$ and $P_{i} P_{6}$ are of length r_{1} or r_{2} by (3.6), we have $P_{i} P_{5}=P_{i} P_{6}$. Thus three points P_{2}, P_{3}, and P_{4} are on the plane perpendicularly bisecting $P_{5} P_{6}$, the sphere S_{1}, and the sphere S. But the plane and the two
spheres intersect at exactly two points. This is a contradiction. Therefore $P_{5} P_{6} \neq c$, without loss of generality we may assume $P_{2} P_{3}=c$.

Next we suppose that $P_{2} P_{3}=c$ and $P_{2} P_{4}=d\left(d \neq r_{1}, d \neq r_{2}\right.$, but we can admit $\left.c=d\right)$. Let $P_{j} \in U_{2}$ and consider $\Delta P_{2} P_{3} P_{j}$. Because $P_{2} P_{j}$ and $P_{3} P_{j}$ are of length r_{1} or r_{2} by (3.6), we have $P_{2} P_{j}=P_{3} P_{j}$. When we consider $\Delta P_{2} P_{4} P_{j}$ similarly, we have $P_{2} P_{j}=P_{4} P_{j}$. Thus P_{6} and P_{7} are on the plane perpendicularly bisecting $P_{2} P_{3}$, the plane perpendicularly bisecting $P_{2} P_{4}$, the sphere S_{2}, and the sphere S. Since the segment $P_{2} P_{3}$ and the segment $P_{2} P_{4}$ are not mutually parallel, the two planes and the two spheres have no intersection. Hence $P_{2} P_{3}=c$ and $P_{2} P_{4}=d$ do not hold. Similarly we can show that $P_{2} P_{3}=c$ and $P_{3} P_{4}=d$ do not hold.

So in D, there is exactly one pair $P_{2} P_{3}$ whose distance is distinct from r_{1} and r_{2}. When we consider $\Delta P_{2} P_{3} P_{k}$ for $k=4,5,6, P_{2} P_{k}=P_{3} P_{k}$ holds by the configuration hypothesis. And we have $P_{1} P_{2}=P_{1} P_{3}$. Then four points P_{1}, P_{4}, P_{5}, and P_{6} on the plane perpendicularly bisecting $P_{2} P_{3}$ and the sphere S. The intersection of them is a circle, the condition (X) holds.

4. Case (A) in Lemma 3.1

We consider the case (A) in Lemma 3.1. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which P_{1} is of type (6.1). Let S be the sphere centered at P_{1} and $V=D \cap S=\left\{P_{2}, \ldots, P_{11}\right\}$.

We notice that V is a 10-point isosceles set. Let P_{2} be a point that has the largest vertexnumber in V. Let (r, s, \ldots, u) be the type of P_{2} in V, the type of P_{2} is $r \geq 6,(5,4),(5,3,1),(5,2,2)$, or $(4,4,1)$ by Proposition 3.3.

Proposition 4.1. Let (r, s, \ldots, u) be the type of P_{2} in V. If the type of P_{2} satisfies $r \geq 6$, then the condition (X) holds.

Proof. If the type of P_{2} in V satisfies $r \geq 6$, then at least six points among P_{3}, \ldots, P_{11} are on the intersection of S and the sphere whose center is P_{2}. So they are on a 2-dimensional sphere. By Proposition 3.8, the condition (X) holds.
Proposition 4.2. If the type of P_{2} is $(5,4)$ in V, then the condition (X) holds.
Proof. We suppose that P_{2} is of type $(5,4)$ in V. We see that five points in V are distributed on a 2-dimensional sphere which is the intersection of S and the sphere whose center is P_{2} and another four points in V are distributed on another 2-dimensional sphere. These two spheres are disjoint.

We will call them S_{1} (on which P_{3}, \ldots, P_{7} are) and S_{2} (on which P_{8}, \ldots, P_{11} are). Let $V_{1}=V \cap S_{1}=\left\{P_{3}, \ldots, P_{7}\right\}$ and $V_{2}=V \cap S_{2}=\left\{P_{8}, \ldots, P_{11}\right\}$. For $P_{i} \in V_{1}$, let $P_{2} P_{i}=a$ and for $P_{j} \in V_{2}$, let $P_{2} P_{j}=b$.

If V is a 2-distance set, then the types of ten points in V must be all $(6,3)$ by looking at the Petersen graph (Figure 2). But P_{2} is of type (5,4), V is not a 2-distance set. Hence V is an s-distance set $(s \geq 3)$, there exists a pair of points in P_{2}, \ldots, P_{11} whose distance is c, that is, distinct from a and b. Because $P_{2} P_{k}=a$ or $b(k=3, \ldots, 11), c$ is the distance between a pair of distinct points in $\left\{P_{3}, \ldots, P_{11}\right\}$. If $P_{i} P_{j}=c$ holds for some $P_{i} \in V_{1}$ and $P_{j} \in V_{2}$, then $\Delta P_{2} P_{i} P_{j}$ is scalene with sides a, b, c. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in V_{1}, P_{j} \in V_{2} \tag{4.1}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 2-dimensional sphere.

Table 2: 5-point graphs.
(5,

We suppose that c is the distance between a pair of distinct points on S_{1}. Without loss of generality we may assume $P_{3} P_{4}=c$. For $P_{j} \in V_{2}$ we consider $\Delta P_{3} P_{4} P_{j}$. Since $P_{3} P_{j}$ and $P_{4} P_{j}$ are of length a or b by (4.1), $P_{3} P_{j}=P_{4} P_{j}$ holds. Thus four points P_{8}, \ldots, P_{11} are on the hyperplane perpendicularly bisecting $P_{3} P_{4}$, the sphere S, and the sphere S_{2}. The intersection of them is a circle. Therefore the condition (X) holds.

We can repeat the similar discussion when we suppose that c is the distance between a pair of distinct points on S_{2}.

Next we consider that the type of P_{2} is $(5,3,1)$ or $(5,2,2)$ in V. We see that five points in V are distributed on a 2 -dimensional sphere which is the intersection of S and the sphere whose center is P_{2} and another two or three points in V are distributed on another 2-dimensional sphere. These two spheres are disjoint.

We will call them S_{1} (on which P_{3}, \ldots, P_{7} are) and S_{2} (on which P_{8} and P_{9} are). Let $V_{1}=V \cap S_{1}=\left\{P_{3}, \ldots, P_{7}\right\}$ and $V_{2}=V \cap S_{2}=\left\{P_{8}, P_{9}\right\}$. For $P_{i} \in V_{1}$, let $P_{2} P_{i}=a$ and for $P_{j} \in V_{2}$, let $P_{2} P_{j}=b$. Moreover let $P_{2} P_{11}=c$.

Proposition 4.3. Let $X_{1}=\left\{P_{2}, \ldots, P_{9}\right\}$. If X_{1} is an s-distance set $(s \geq 3)$, then the condition (X) holds.

Proof. Because we suppose that X_{1} is an s-distance set $(s \geq 3)$, there exists a pair of points P_{2}, \ldots, P_{9} whose distance is d, that is, distinct from a and b (but we can admit $c=d$).

Since $P_{2} P_{i}=a$ or $b(i=3, \ldots, 9), d$ is the distance apart of a pair of points in $\left\{P_{3}, \ldots, P_{9}\right\}$. If $P_{i} P_{j}=d$ holds for some $P_{i} \in V_{1}$ and $P_{j} \in V_{2}$, then $\Delta P_{2} P_{i} P_{j}$ is scalene with sides a, b, d. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in V_{1}, P_{j} \in V_{2} . \tag{4.2}
\end{equation*}
$$

So d is the distance between a pair of distinct points on the same 2-dimensional sphere.
We suppose that d is the distance between a pair of distinct points on S_{2}, that is, $P_{8} P_{9}=d$. In this case, if we repeat the similar discussion as Proposition 4.2, then the condition (X) holds. Hence we suppose that d is the distance between a pair of distinct points on S_{1}. For P_{3}, \ldots, P_{7} on S_{1}, we consider 5-point graphs in Table 2. Edges in a graph represent the distance, that is, distinct from a and b. We regard the others, (i.e., transparent edges) as the distances a and b. Here we need not consider the graph which has no edge, because we suppose that there is at least one pair whose distance is distinct from a and b. We remark that 33 graphs in Table 2 and the graph which has no edge are all 5-point graphs.

We can classify 33 graphs into the following:
(i) a 4-point subgraph is "connected"; graphs satisfying it are $(5,3,1),(5,3,3),(5,4,1)$, $(5,4,2),(5,4,3),(5,4,5),(5,4,6)$, and $(5, a, *)$ for $5 \leq a \leq 10$ (* is arbitrary);
(ii) another four graphs whose a 3-point subgraph is

and no edge between them and the other two points; they are $(5,2,1),(5,3,2),(5,3,4)$, and (5,4,4);
(iii) $(5,2,2)$;
(iv) $(5,1,1)$.

We observe each case. In the case (i), we may assume that the 4-point subgraph with P_{3}, \ldots, P_{6} is connected. Without loss of generality we may assume $P_{3} P_{4}=d$. For $i=8,9$, consider $\Delta P_{3} P_{4} P_{i}$. Then we have $P_{3} P_{i}=P_{4} P_{i}$ by (4.2). Since the 4-point subgraph with P_{3}, \ldots, P_{6} is connected, we have $P_{3} P_{i}=P_{4} P_{i}=P_{5} P_{i}=P_{6} P_{i}$ by the similar discussion. Moreover we have $P_{3} P_{j}=P_{4} P_{j}=P_{5} P_{j}=P_{6} P_{j}$ for $j=1,2$ by the assumption. Then four points $P_{1}, P_{2}, P_{8}, P_{9}$ are equidistant from P_{3}, \ldots, P_{6} on the 2 -dimensional sphere S_{1}. If P_{3}, \ldots, P_{6} are on a plane, then they are on a circle; the condition (X) holds. On the other hand, if P_{3}, \ldots, P_{6} are not on a plane, then P_{1}, P_{2}, P_{8}, and P_{9} are on a line. We cannot take four points on a line. This is a contradiction.

In the case (ii), we may assume that $P_{3} P_{4}=d$ and $P_{3} P_{5}=e$ (we can admit $d=e$). For $i=8,9$, consider $\Delta P_{3} P_{4} P_{i}$ and $\Delta P_{3} P_{5} P_{i}$. Then we have $P_{3} P_{i}=P_{4} P_{i}$ and $P_{3} P_{i}=P_{5} P_{i}$ by (4.2). In this case, $P_{3} P_{j}, P_{4} P_{j}$, and $P_{5} P_{j}$ are a or b for $j=6,7$. When we consider $\Delta P_{3} P_{4} P_{j}$ and $\Delta P_{3} P_{5} P_{j}, P_{3} P_{j}=P_{4} P_{j}$ and $P_{3} P_{j}=P_{5} P_{j}$ hold. By the assumption we have $P_{3} P_{k}=P_{4} P_{k}$ and $P_{3} P_{k}=P_{5} P_{k}$ for $k=1,2$. Then six points $P_{1}, P_{2}, P_{6}, P_{7}, P_{8}, P_{9}$ are equidistant from P_{3}, P_{4}, and P_{5}. Hence they are in the 2-dimensional Euclidean space, that is, $\left\{P_{1}, P_{2}, P_{6}, P_{7}, P_{8}, P_{9}\right\}$ is a 6point isosceles set in \mathbb{R}^{2}. We know that there exists a unique 6-point isosceles set in \mathbb{R}^{2} up to isomorphisms. It consists of five points of a regular pentagon and its center. So four points in $\left\{P_{1}, P_{2}, P_{6}, P_{7}, P_{8}, P_{9}\right\}$ lie on a circle; the condition (X) holds.

In the case (iii), we may assume that $P_{3} P_{4}=d$ and $P_{5} P_{6}=e$ (we can admit $d=e$). For $i=8,9$, consider $\Delta P_{3} P_{4} P_{i}$ and $\Delta P_{5} P_{6} P_{i}$. Then we have $P_{3} P_{i}=P_{4} P_{i}$ and $P_{5} P_{i}=P_{6} P_{i}$ by (4.2). In this case, $P_{3} P_{7}, P_{4} P_{7}, P_{5} P_{7}$, and $P_{6} P_{7}$ are a or b. When we consider $\Delta P_{3} P_{4} P_{7}$ and $\Delta P_{5} P_{6} P_{7}$, $P_{3} P_{7}=P_{4} P_{7}$ and $P_{5} P_{7}=P_{6} P_{7}$ hold. By the assumption we have $P_{3} P_{j}=P_{4} P_{j}$ and $P_{5} P_{j}=P_{6} P_{j}$ for $j=1,2$. Then five points $P_{1}, P_{2}, P_{7}, P_{8}, P_{9}$ are on the hyperplane perpendicularly bisecting $P_{3} P_{4}$ and the hyperplane perpendicularly bisecting $P_{5} P_{6}$. For the intersection of them, there are two cases:
(α) since two hyperplanes are same, the intersection is a 3-dimensional Euclidean space.
(β) a 2-dimensional Euclidean space.
In the case (α), since P_{3}, \ldots, P_{6} are on the 2-dimensional sphere S_{1}, the segment $P_{3} P_{4}$ and the segment $P_{5} P_{6}$ are mutually parallel. Then there is a plane that contains P_{3}, \ldots, P_{6}. So they are on a circle; the condition (X) holds.

In the case $(\beta),\left\{P_{1}, P_{2}, P_{7}, P_{8}, P_{9}\right\}$ is a 5 -point isosceles set in \mathbb{R}^{2}. We know that there exist exactly three 5 -point isosceles sets in \mathbb{R}^{2} up to isomorphisms. They are four points of a square and its center, five points of a regular pentagon, and four points of a regular pentagon and its center. So four points in $\left\{P_{1}, P_{2}, P_{7}, P_{8}, P_{9}\right\}$ lie on a circle; the condition (X) holds.

In the case (iv), we may assume that $P_{3} P_{4}=d$. Then we see that there is exactly one pair $P_{3} P_{4}$ whose distance is distinct from a and b in X_{1}. When we consider $\Delta P_{3} P_{4} P_{i}$ for $i=$ $2,5, \ldots, 9, P_{3} P_{i}=P_{4} P_{i}$ holds by the configuration hypothesis. Thus six points $P_{2}, P_{5}, P_{6}, P_{7}, P_{8}$, and P_{9} are on the hyperplane perpendicularly bisecting $P_{3} P_{4}$. This hyperplane is a 3dimensional Euclidean space. Since $A\left(\left\{P_{2}, P_{5}, P_{6}, P_{7}, P_{8}, P_{9}\right\}\right)=\{a, b\}$, this is a 2-distance set in \mathbb{R}^{3}. We know that there exist exactly six 6 -point 2 -distance sets in \mathbb{R}^{3}. Any set contains four points lying on a circle. Hence the condition (X) holds.

Proposition 4.4. Similarly let $X_{1}=\left\{P_{2}, \ldots, P_{9}\right\}$. If X_{1} is a 2-distance set, then the condition (X) holds.

Proof. We consider the sum of all vertex-numbers in p. Because P_{2} has the largest vertexnumber in $V, V\left(P_{1}\right)+\cdots+V\left(P_{11}\right) \leq\binom{ 10}{2}+10 \times\left\{\binom{5}{2}+\binom{3}{2}+\binom{1}{2}\right\}=175$. Let α be the number of regular triangles in p. Then $2 \alpha+\binom{11}{3} \leq 175$ holds by (3.2). Thus $\alpha \leq 5$.

Let $V_{1}=\left\{P_{3}, \ldots, P_{7}\right\}$. We notice that V_{1} on S_{1} is a 2-distance set in \mathbb{R}^{3}. We consider 5 -point graphs in Table 2 again. Edges in a graph represent the distance b. We regard the others, (i.e., transparent edges) as the distance a. Here we need not consider the graph which has no edge, because there is no 5 -point 1 -distance set in \mathbb{R}^{3}. Similarly we need not consider the complete graph $(5,10,1)$.

If $P_{i} P_{j}=a$ for $i, j \in\{3, \ldots, 7\}(i \neq j)$, then $\Delta P_{2} P_{i} P_{j}$ is a regular triangle. Since $\alpha \leq 5$, there are at most five pairs in V_{1} whose distances are a. The number of pairs in V_{1} is $\binom{5}{2}=10$. Thus there are at least five pairs in V_{1} whose distances are b.

Hence we have only to consider the 19 graphs between $(5,5,1)$ and $(5,9,1)$ in Table 2. In any graph, a 4-point subgraph is "connected". We may assume that their four points are P_{3}, \ldots, P_{6} and that there is an edge between P_{3} and P_{4}, that is, $P_{3} P_{4}=b$. We consider $\Delta P_{2} P_{3} P_{11}$ and $\Delta P_{2} P_{4} P_{11}$. Since $P_{2} P_{3}=P_{2} P_{4}=a$ and $P_{2} P_{11}=c, P_{3} P_{11}$ and $P_{4} P_{11}$ are a or c. Then we consider $\Delta P_{3} P_{4} P_{11}$, we have $P_{3} P_{11}=P_{4} P_{11}$. Because the 4 -point subgraph with P_{3}, \ldots, P_{6} is connected, we have $P_{3} P_{11}=P_{4} P_{11}=P_{5} P_{11}=P_{6} P_{11}$ by the similar discussion. Moreover we have $P_{3} P_{k}=P_{4} P_{k}=P_{5} P_{k}=P_{6} P_{k}$ for $k=1,2$ by the assumption. Thus three points P_{1}, P_{2}, P_{11} are equidistant from P_{3}, \ldots, P_{6} on the 2-dimensional sphere S_{1}. If P_{3}, \ldots, P_{6} are on a plane,
then they are on a circle; the condition (X) holds. On the other hand, if P_{3}, \ldots, P_{6} are not on a plane, then P_{1}, P_{2}, and P_{11} are on a line. By Corollary 3.7, this is a contradiction.

Therefore if X_{1} is a 2-distance set, then the condition (X) holds.
Combining Propositions 4.3 and 4.4, we have the following proposition.
Proposition 4.5. If the type of P_{2} is $(5,3,1)$ or $(5,2,2)$ in V, then the condition (X) holds.
The last case is what the type of P_{2} is $(4,4,1)$ in V. We see that four points in V are distributed on a 2-dimensional sphere which is the intersection of S and the sphere whose center is P_{2} and another four points in V are distributed on another 2-dimensional sphere. These two spheres are disjoint.

We will call these two spheres S_{1} (on which P_{3}, \ldots, P_{6} are) and S_{2} (on which P_{7}, \ldots, P_{10} are). Let $V_{1}=V \cap S_{1}=\left\{P_{3}, \ldots, P_{6}\right\}$ and $V_{2}=V \cap S_{2}=\left\{P_{7}, \ldots, P_{10}\right\}$. For $P_{i} \in V_{1}$, let $P_{2} P_{i}=a$ and for $P_{j} \in V_{2}$, let $P_{2} P_{j}=b$. Moreover let $P_{2} P_{11}=c$. Because $V\left(P_{2}\right)=12, V\left(P_{k}\right)=12$ for $k=3, \ldots, 11$. Thus the type of P_{k} is $(4,4,1)$ in V for any k. (Since $V\left(P_{k}\right)=12$, the type of P_{k} may be $(5,2,2)$ in V. In this case, if we apply Proposition 4.5 , then the condition (X) holds.)

Proposition 4.6. If the type of P_{2} is $(4,4,1)$ in V, then P_{11} is equidistant from four points on one of the 2-dimensional spheres S_{1} and S_{2}.

Proof. Since the type of P_{11} is $(4,4,1)$ in V and $P_{2} P_{11}=c$, the distance c corresponds to 1 or 4 of type $(4,4,1)$. If c corresponds to 1 of type $(4,4,1)$, then $P_{i} P_{11} \neq c$ for $i=3, \ldots, 10$. Considering $\Delta P_{2} P_{i} P_{11}$, we have $P_{3} P_{11}=P_{4} P_{11}=P_{5} P_{11}=P_{6} P_{11}=a$ and $P_{7} P_{11}=P_{8} P_{11}=P_{9} P_{11}=P_{10} P_{11}=b$. Thus this proposition holds.

On the other hand, if c corresponds to 4 of type $(4,4,1)$, then for $j=3, \ldots, 10$, there are exactly three points such that $P_{j} P_{11}=c$. We may assume that $P_{3} P_{11}=c$. We have three means to select the other two points.
(i) $P_{4} P_{11}=P_{5} P_{11}=c$. (Both points are on S_{1}.)
(ii) $P_{4} P_{11}=P_{7} P_{11}=c$. (One is on S_{1} and the other is on S_{2}.)
(iii) $P_{7} P_{11}=P_{8} P_{11}=c .\left(\right.$ Both points are on $\left.S_{2}.\right)$

In the case (i), considering $\Delta P_{2} P_{k} P_{11}$ for $k=6, \ldots, 10$, we have $P_{6} P_{11}=a$ and $P_{7} P_{11}=$ $P_{8} P_{11}=P_{9} P_{11}=P_{10} P_{11}=b$. Thus this proposition holds for S_{2}. In the case (ii), considering $\Delta P_{2} P_{l} P_{11}$ for $l=5,6,8,9,10$, we have $P_{5} P_{11}=P_{6} P_{11}=a$ and $P_{8} P_{11}=P_{9} P_{11}=P_{10} P_{11}=b$. Then the type of P_{11} is $(4,3,2)$, not $(4,4,1)$. This is a contradiction. In the case (iii), considering $\Delta P_{2} P_{m} P_{11}$ for $m=4,5,6,9,10$, we have $P_{4} P_{11}=P_{5} P_{11}=P_{6} P_{11}=a$ and $P_{9} P_{11}=P_{10} P_{11}=b$. Then the type of P_{11} is $(4,3,2)$, not $(4,4,1)$. This is a contradiction.

Therefore P_{11} is equidistant from four points on one of the 2-dimensional spheres S_{1} and S_{2}.

Proposition 4.7. If the type of P_{2} is $(4,4,1)$ in V, then the condition (X) holds.
Proof. By Proposition 4.6, P_{11} is equidistant from four points on one of the 2-dimensional spheres S_{1} and S_{2}. We may assume that it is S_{1}. Moreover we have $P_{i} P_{3}=P_{i} P_{4}=P_{i} P_{5}=P_{i} P_{6}$ for $i=1,2$ by the assumption. Thus three points P_{1}, P_{2}, P_{11} are equidistant from P_{3}, \ldots, P_{6} on the 2-dimensional sphere S_{1}. If P_{3}, \ldots, P_{6} are on a plane, then they are on a circle; the condition
(X) holds. On the other hand, if P_{3}, \ldots, P_{6} are not on a plane, then P_{1}, P_{2}, and P_{11} are on a line. By Corollary 3.7, this is a contradiction.

Therefore if the type of P_{2} is $(4,4,1)$ in V, then the condition (X) holds.
Summing up the results of Propositions 4.1, 4.2, 4.5, and 4.7, we have the following.
Lemma 4.8. For any 11-point isosceles set in \mathbb{R}^{4} in which P_{1} is of type (6.1), the condition (X) holds.

5. Case (B) in Lemma 3.1

We consider the case (B) in Lemma 3.1. We see that at least eight points in an 11-point isosceles set are distributed on a 3-dimensioal sphere, and at least one point does not lie on the sphere.

Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} satisfies the case (B). Let S be the sphere centered at P_{1} with radius a and $V=D \cap S=\left\{P_{2}, \ldots, P_{9}\right\}$. Let P_{11} be the point which is not on S and $P_{1} P_{11}=b$.

Lemma 5.1. The condition (X) holds for any 11-point isosceles set in which the type of P_{1} satisfies the case (B) in Lemma 3.1.

Proof. By Proposition 3.5, eight points P_{2}, \ldots, P_{9} are on one of two disjoint 2-dimensional spheres S_{1} and S_{2}, where P_{i} on S_{1} satisfies $P_{i} P_{11}=a$ and P_{j} on S_{2} satisfies $P_{j} P_{11}=b$ (consider $\Delta P_{1} P_{k} P_{11}$ for $\left.k=2, \ldots, 9\right)$.

If more than or equal to six points lie on one sphere, then the condition (X) holds by Proposition 3.8. So we consider the following cases.
(i) Five points lie on one sphere; the other three points lie on the other sphere.
(ii) Four points lie on one sphere; the other four points lie on the other sphere.

We consider the case (i). We may suppose that P_{2}, \ldots, P_{6} are on S_{1} and P_{7}, P_{8}, P_{9} are on S_{2}. Let $V_{1}=V \cap S_{1}=\left\{P_{2}, \ldots, P_{6}\right\}$ and $V_{2}=V \cap S_{2}=\left\{P_{7}, P_{8}, P_{9}\right\}$.

Here the 10-point set $\left\{P_{1}, \ldots, P_{9}, P_{11}\right\}$ is not a 2-distance set, because P_{1} is of type $(8,1)$ in it, not of type $(6,3)$ in the Petersen graph. Hence it is an s-distance set $(s \geq 3)$, there exists a pair of points in $\left\{P_{2}, \ldots, P_{9}\right\}$ whose distance is c, that is, distinct from a and b. If $P_{i} P_{j}=c$ holds for some $P_{i} \in V_{1}$ and $P_{j} \in V_{2}$, then $\Delta P_{i} P_{j} P_{11}$ is scalene. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in V_{1}, P_{j} \in V_{2} . \tag{5.1}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 2-dimensional sphere.
We suppose that c is the distance between a pair of distinct points on S_{2}. Without loss of generality we may assume $P_{7} P_{8}=c$. For $P_{i} \in V_{1}$ we consider $\Delta P_{i} P_{7} P_{8}$. Since $P_{i} P_{7}$ and $P_{i} P_{8}$ are of length a or b by (5.1), we have $P_{i} P_{7}=P_{i} P_{8}$. Thus five points P_{2}, \ldots, P_{6} are on the hyperplane perpendicularly bisecting $P_{7} P_{8}$ and the 2 -dimensional sphere S_{1}. The intersection of them is a circle. Hence the condition (X) holds.

On the other hand, we suppose that c is the distance between a pair of distinct points on S_{1}. Without loss of generality we may assume $P_{2} P_{3}=c$.

Next we suppose that there exist more than or equal to two pairs of points on S_{1} whose distances are distinct from a and b. One is $P_{2} P_{3}=c$. We have two cases as the second pair whose distance is distinct from a and b.

Case 1. $P_{2} P_{3}=c$ and $P_{4} P_{5}=d(d \neq a, d \neq b$, but we can admit $c=d)$.
Let $P_{j} \in V_{2}$ and consider $\Delta P_{2} P_{3} P_{j}$. Because $P_{2} P_{j}$ and $P_{3} P_{j}$ are of length a or b by (5.1), we have $P_{2} P_{j}=P_{3} P_{j}$. When we consider $\Delta P_{4} P_{5} P_{j}$ similarly, we have $P_{4} P_{j}=P_{5} P_{j}$. Thus three points P_{7}, P_{8} and P_{9} are on the hyperplane perpendicularly bisecting $P_{2} P_{3}$, the hyperplane perpendicularly bisecting $P_{4} P_{5}$, and the 2-dimensional sphere S_{2}. For the intersection of them, there are two cases:
(α) because two hyperplanes are same, the intersection is a circle.
(β) two points.
In the case (α), because P_{2}, \ldots, P_{5} are on the 2 -dimensional sphere S_{1}, the segment $P_{2} P_{3}$ and the segment $P_{4} P_{5}$ are mutually parallel. Then there is a plane that contains P_{2}, \ldots, P_{5}. So they are on a circle; the condition (X) holds.

In the case (β), we cannot put one of P_{7}, P_{8}, and P_{9}. This is a contradiction.
Case 2. $P_{2} P_{3}=c$ and $P_{2} P_{4}=d(d \neq a, d \neq b$, but we can admit $c=d)$.
We can repeat the same discussion. (But the case (α) does not exist, only the case (β) exists.)

Hence we suppose that there is exactly one pair $P_{2} P_{3}$ which is distinct from a and b in V_{1}. When we consider $\Delta P_{2} P_{3} P_{k}$ for $k=1,4, \ldots, 9,11, P_{2} P_{k}=P_{3} P_{k}$ holds by the configuration hypothesis. Thus eight points $P_{1}, P_{4}, \ldots, P_{9}$ and P_{11} are on the hyperplane perpendicularly bisecting $P_{2} P_{3}$. This hyperplane is a 3-dimensional Euclidean space. Moreover $\left\{P_{1}, P_{4}, \ldots, P_{9}, P_{11}\right\}$ is a 2-distance set with the distances a and b. But we know that there exists no n-point 2-distance set in \mathbb{R}^{3} for $n \geq 7$. This is a contradiction.

We consider the case (ii). If we repeat this discussion similarly, then we can see that the condition (X) holds.

6. Case (C) in Lemma 3.1

We consider the case (C) in Lemma 3.1. We see that seven points in an 11-point isosceles set are distributed on a 3-dimensioal sphere, another at least two points are distributed on another 3-dimensioal sphere, where these are concentric spheres. The center of the spheres is in it.

Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} satisfies the case (C). P_{1} will denote the common center of the two spheres, which we will call S_{1} (on which P_{2}, \ldots, P_{8} are), S_{2} (on which P_{9} and P_{10} are), radii a, b, respectively.

Lemma 6.1. The condition (X) holds for any 11-point isosceles set D in which the type of P_{1} satisfies the case (C) in Lemma 3.1.

Proof. The 10-point set $\left\{P_{1}, \ldots, P_{10}\right\}$ is not a 2-distance set, because P_{1} is of type $(7,2)$ in it, not of type $(6,3)$ in the Petersen graph. Hence it is an s-distance set $(s \geq 3)$, there exists a pair of
points in $\left\{P_{2}, \ldots, P_{10}\right\}$ whose distance is c, that is, distinct from a and b. If $P_{i} P_{j}=c$ holds for some $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$, then $\Delta P_{1} P_{i} P_{j}$ is scalene. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in S_{1}, P_{j} \in S_{2} \tag{6.1}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 3-dimensional sphere.
We suppose that c is the distance between a pair of distinct points on S_{2}, that is, $P_{9} P_{10}=$ c. For $P_{i} \in S_{1}$ we consider $\Delta P_{i} P_{9} P_{10}$. Since $P_{i} P_{9}$ and $P_{i} P_{10}$ are of length a or b by (6.1), we have $P_{i} P_{9}=P_{i} P_{10}$. Thus seven points P_{2}, \ldots, P_{8} are on the hyperplane perpendicularly bisecting $P_{9} P_{10}$ and the 3-dimensional sphere S_{1}. The intersection of them is a 2-dimensional sphere. By Proposition 3.8, the condition (X) holds.

Thus we suppose that c is the distance between a pair of distinct points on S_{1}. By Proposition 3.5, seven points P_{2}, \ldots, P_{8} are on one of two disjoint 2-dimensional spheres S_{11} and S_{12}, where P_{i} on S_{11} satisfies $P_{i} P_{9}=a$ and P_{j} on S_{12} satisfies $P_{j} P_{9}=b$ (consider $\Delta P_{1} P_{k} P_{9}$ for $k=2, \ldots, 8)$.

If $P_{i} P_{j}=c$ holds for some $P_{i} \in S_{11}$ and $P_{j} \in S_{12}$, then $\Delta P_{i} P_{j} P_{9}$ is scalene. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in S_{11}, P_{j} \in S_{12} \tag{6.2}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 2-dimensional sphere.
If more than or equal to six points lie on one sphere, then the condition (X) holds by Proposition 3.8. So we consider the following cases:
(i) Five points lie on one sphere; the other two points lie on the other sphere.
(ii) Four points lie on one sphere; the other three points lie on the other sphere.

We consider the case (i). We may suppose that P_{2}, \ldots, P_{6} are on S_{11} and P_{7}, P_{8} are on S_{12}.

We suppose that c is the distance between a pair of distinct points on S_{12}, that is, $P_{7} P_{8}=c$. We consider $\Delta P_{i} P_{7} P_{8}$ for $P_{i} \in S_{11}$. By (6.2), we have $P_{i} P_{7}=P_{i} P_{8}$. Thus five points P_{2}, \ldots, P_{6} are on the hyperplane perpendicularly bisecting $P_{7} P_{8}$ and the 2-dimensional sphere S_{11}. The intersection of them is a circle. Hence the condition (X) holds.

On the other hand, we suppose that c is the distance between a pair of distinct points on S_{11}. Without loss of generality we may assume $P_{2} P_{3}=c$.

Next we suppose that there exist more than or equal to two pairs of points on S_{11} whose distances are distinct from a and b. One is $P_{2} P_{3}=c$. We have two cases as the second pair whose distance is distinct from a and b.

Case 1. $P_{2} P_{3}=c$ and $P_{4} P_{5}=d(d \neq a, d \neq b$, but we can admit $c=d)$.
Let $P_{j} \in S_{12} \cup S_{2}$ and consider $\Delta P_{2} P_{3} P_{j}$. By (6.1) and (6.2), we have $P_{2} P_{j}=P_{3} P_{j}$. When we consider $\Delta P_{4} P_{5} P_{j}$ similarly, we have $P_{4} P_{j}=P_{5} P_{j}$. For P_{1} we have $P_{1} P_{2}=P_{1} P_{3}$ and $P_{1} P_{4}=$ $P_{1} P_{5}$. Thus five point $P_{1}, P_{7}, P_{8}, P_{9}$, and P_{10} are on the hyperplane perpendicularly bisecting $P_{2} P_{3}$ and the hyperplane perpendicularly bisecting $P_{4} P_{5}$. For the intersection of them, there are two cases:
(α) since two hyperplanes are same, the intersection is a 3-dimensional Euclidean space;
(β) a 2-dimensional Euclidean space.

In the case (α), since P_{2}, \ldots, P_{5} are on the 2-dimensional sphere S_{11}, the segment $P_{2} P_{3}$ and the segment $P_{4} P_{5}$ are mutually parallel. Then there is a plane that contains P_{2}, \ldots, P_{5}. So they are on a circle; the condition (X) holds.

In the case $(\beta),\left\{P_{1}, P_{7}, P_{8}, P_{9}, P_{10}\right\}$ is a 5 -point isosceles set in \mathbb{R}^{2}. We know that there exist three 5-point isosceles sets in \mathbb{R}^{2} up to isomorphisms. They are four points of a square and its center, five points of a regular pentagon, and four points of a regular pentagon and its center. So four points in $\left\{P_{1}, P_{7}, P_{8}, P_{9}, P_{10}\right\}$ lie on a circle; the condition (X) holds.

Case 2. $P_{2} P_{3}=c$ and $P_{2} P_{4}=d(d \neq a, d \neq b$, but we can admit $c=d)$.
We can repeat the same discussion. (But the case (α) does not exist, only the case (β) exists.)

Hence we suppose that there is exactly one pair $P_{2} P_{3}$ whose distance is distinct from a and b in $\left\{P_{1}, \ldots, P_{10}\right\}$. When we consider $\Delta P_{2} P_{3} P_{k}$ for $k=1,4, \ldots, 10, P_{2} P_{k}=P_{3} P_{k}$ holds by the configuration hypothesis. Thus eight points $P_{1}, P_{4}, \ldots, P_{9}$, and P_{10} are on the hyperplane perpendicularly bisecting $P_{2} P_{3}$. This hyperplane is a 3-dimensional Euclidean space. Moreover $\left\{P_{1}, P_{4}, \ldots, P_{10}\right\}$ is a 2-distance set with the distances a and b. But there exists no n-point 2-distance set in \mathbb{R}^{3} for $n \geq 7$. This is a contradiction.

We consider the case (ii). If we repeat this discussion similarly, then we see that the condition (X) holds.

7. Case (D) in Lemma 3.1

Lemma 7.1. The condition (X) holds for any 11-point isosceles set in which the type of P_{1} satisfies the case (D) in Lemma 3.1.

Proof. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set. When the type of P_{1} is $(6,4)$ or $(6,3,1), P_{1}$ will denote the common center of the two spheres, which we will call S_{1} (on which P_{2}, \ldots, P_{7} are), S_{2} (on which P_{8}, P_{9}, and P_{10} are).

Let $D^{\prime}=\left\{P_{1}, \ldots, P_{10}\right\} . D^{\prime}$ can be the 2-distance set X^{\prime} mentioned in Section 2. Since X^{\prime} contains a square, the condition (X) holds.

Hence we may suppose that D^{\prime} is an s-distance set $(s \geq 3)$. In this case, we can show that the condition (X) holds by repeating the similar discussion as the proof of Lemma 6.1.

When the type of P_{1} is $(5,5)$ or $(5,4,1)$, we can show that the condition (X) holds by repeating the similar discussion as the proof of Lemma 6.1.

8. Case (E) in Lemma 3.1

We consider the case (E) in Lemma 3.1. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} is $(7,1,1,1)$. We may assume that $P_{1} P_{2}=P_{1} P_{3}=\cdots=P_{1} P_{8}=a$, $P_{1} P_{9}=b, P_{1} P_{10}=c$, and $P_{1} P_{11}=d$. Let $X_{1}=\left\{P_{1}, \ldots, P_{8}, P_{9}\right\}, X_{2}=\left\{P_{1}, \ldots, P_{8}, P_{10}\right\}$, and $X_{3}=\left\{P_{1}, \ldots, P_{8}, P_{11}\right\}$.

Proposition 8.1. For X_{1}, \ldots, X_{3} above, if 2-distance sets exist, then the number of them is at most one.

Proof. We suppose that X_{1} and X_{2} are 2-distance sets. We may prove that this leads a contradiction.

We have $A\left(X_{1}\right)=\{a, b\}$ and $A\left(X_{2}\right)=\{a, c\}$ by the hypothesis above. For $i, j=$ $2, \ldots, 8(i \neq j), P_{i} P_{j}$ must be a, b, or c.

If $P_{i} P_{j}=b$, then $A\left(X_{2}\right) \neq\{a, c\}$ for X_{2}. If $P_{i} P_{j}=c$, then $A\left(X_{1}\right) \neq\{a, b\}$ for X_{1}. So we have $P_{i} P_{j}=a$. Hence $A\left(\left\{P_{1}, \ldots, P_{8}\right\}\right)=\{a\},\left\{P_{1}, \ldots, P_{8}\right\}$ is a 1-distance set. But there is no 8-point 1-distance set in \mathbb{R}^{4}. This is a contradiction.

Therefore the number of 2-distance sets is at most one.
Lemma 8.2. The condition (X) holds for any 11-point isosceles set D in which the type of P_{1} is (7,1,1,1).

Proof. By Proposition 8.1, at least two sets of X_{1}, \ldots, X_{3} are s-distance sets ($s \geq 3$). We may suppose X_{1} and X_{2} are s-distance sets. Espesially we notice that X_{1} is an s-distance set. Thus there is a distance apart of a pair of points in X_{1} which is distinct from a and b. This is one of c, d, and e, where e is distinct from a, b, c, and d. We may assume that it is c.

Let S be the sphere centered at P_{1} with radius a and $V=X_{1} \cap S=\left\{P_{2}, \ldots, P_{8}\right\}$. By Proposition 3.5, seven points P_{2}, \ldots, P_{8} are on one of two disjoint 2-dimensional spheres S_{1} and S_{2}, where P_{i} on S_{1} satisfies $P_{i} P_{9}=a$ and P_{j} on S_{2} satisfies $P_{j} P_{9}=b$ (consider $\Delta P_{1} P_{k} P_{9}$ for $k=2, \ldots, 8)$.

We remark that there is the distance c in V. If $P_{i} P_{j}=c$ holds for some $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$, then $\Delta P_{i} P_{j} P_{9}$ is scalene. Thus $P_{i} P_{j}=a$ or b for any $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$. So c is the distance between a pair of distinct points on the same 2-dimensional sphere.

If more than or equal to six points lie on one sphere, then the condition (X) holds by Proposition 3.8. So we consider the following cases:
(I) Five points lie on one sphere; the other two points lie on the other sphere.
(II) Four points lie on one sphere; the other three points lie on the other sphere.

We consider the case (I). We may suppose that P_{2}, \ldots, P_{6} are on S_{1} and P_{7}, P_{8} are on S_{2}.
If c is the distance between a pair of distinct points on S_{2}, then we can show that the condition (X) holds by the similar discussion as the proof of Lemma 5.1.

Thus we suppose that c is the distance between a pair of distinct points on S_{1}. Without loss of generality we may assume $P_{2} P_{3}=c$. For P_{2}, \ldots, P_{6} on S_{1}, we consider 5-point graphs in Table 2 again. Edges in a graph represent the distance, that is, distinct from a and b. We regard the others, (i.e., transparent edges) as the distances a and b. Here we need not consider the graph which has no edge, because we suppose that there is at least one pair whose distance is distinct from a and b.

We observe the cases (i)-(iv) in the proof of Proposition 4.3 similarly. In any case, we can show that the condition (X) holds.

In the case (II), we can apply the similar discussion as the proof of Lemma 5.1. If we apply it, then we see that the condition (X) holds.

9. Case (F) in Lemma 3.1

We consider the case (F) in Lemma 3.1. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} is $(6,2,2)$. We may assume that $P_{1} P_{2}=P_{1} P_{3}=\cdots=P_{1} P_{7}=a, P_{1} P_{8}=$ $P_{1} P_{9}=b$, and $P_{1} P_{10}=P_{1} P_{11}=c$. Let $X_{1}=\left\{P_{1}, \ldots, P_{7}, P_{8}, P_{9}\right\}$ and $X_{2}=\left\{P_{1}, \ldots, P_{7}, P_{10}, P_{11}\right\}$.

Proposition 9.1. For X_{1} and X_{2} above, at least one of them is an s-distance set $(s \geq 3)$.
Proof. We can show that the condition (X) holds by repeating the similar discussion as the proof of Proposition 8.1.

Lemma 9.2. The condition (X) holds for any 11-point isosceles set D in which the type of P_{1} is $(6,2,2)$.
Proof. By Proposition 9.1, at least one of X_{1} and X_{2} is an s-distance set $(s \geq 3)$. We may suppose X_{1} is an s-distance set.
P_{1} will denote the common center of the two spheres, which we will call S_{1} (on which P_{2}, \ldots, P_{7} are), S_{2} (on which P_{8} and P_{9} are), radii a, b, respectively.

There is a distance apart of a pair of points in $\left\{P_{2}, \ldots, P_{9}\right\}$ which is distinct from a and b. This is c or d, where d is distinct from a, b, and c. We may assume that it is c. If $P_{i} P_{j}=c$ holds for some $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$, then $\Delta P_{1} P_{i} P_{j}$ is scalene. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in S_{1}, P_{j} \in S_{2} \tag{9.1}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 3-dimensional sphere.
If c is the distance between a pair of distinct points on S_{2}, then we can show that the condition (X) holds by the similar discussion as the proof of Lemma 6.1.

Thus we suppose that c is the distance between a pair of distinct points on S_{1}. By Proposition 3.5 , six points P_{2}, \ldots, P_{7} are on one of two disjoint 2-dimensional spheres S_{11} and S_{12}, where P_{i} on S_{11} satisfies $P_{i} P_{9}=a$ and P_{j} on S_{12} satisfies $P_{j} P_{9}=b$ (consider $\Delta P_{1} P_{k} P_{9}$ for $k=2, \ldots, 7)$.

If $P_{i} P_{j}=c$ holds for some $P_{i} \in S_{11}$ and $P_{j} \in S_{12}$, then $\Delta P_{i} P_{j} P_{9}$ is scalene. Thus

$$
\begin{equation*}
P_{i} P_{j}=a \text { or } b \quad \text { for any } P_{i} \in S_{11}, P_{j} \in S_{12} \tag{9.2}
\end{equation*}
$$

So c is the distance between a pair of distinct points on the same 2-dimensional sphere.
If six points lie on one sphere, then the condition (X) holds by Proposition 3.8. So we consider the following cases:
(I) Five points lie on one sphere; the other one point lies on the other sphere.
(II) Four points lie on one sphere; the other two points lie on the other sphere.
(III) Three points lie on one sphere, the other three points lie on the other sphere.

As for the case (I), we can apply the similar discussion as the proof of the case (I) of Lemma 8.2. Thus the condition (X) holds in the case (I).

In the case (II), we can apply the similar discussion as the proof of Lemma 6.1 in Case (C). If we apply it, then we see that the condition (X) holds.

We consider the case (III). We suppose that P_{2}, \ldots, P_{4} are on S_{11} and P_{5}, \ldots, P_{7} are on S_{12}.

We may suppose that c is the distance between a pair of distinct points on S_{12}. Without loss of generality we may assume $P_{6} P_{7}=c$. Next we suppose that there exist more than or equal to two pairs of points on S_{12} whose distances are distinct from a and b. One is $P_{6} P_{7}=c$. Without loss of generality the second is $P_{5} P_{7}=e(e \neq a, e \neq b$, but we can admit $c=e)$.

Let $P_{i} \in S_{11} \cup S_{2}$ and consider $\Delta P_{6} P_{7} P_{i}$. By (9.1) and (9.2), we have $P_{6} P_{i}=P_{7} P_{i}$. When we consider $\Delta P_{5} P_{7} P_{i}$ similarly, we have $P_{5} P_{i}=P_{7} P_{i}$. For P_{1} we have $P_{1} P_{6}=P_{1} P_{7}$ and $P_{1} P_{5}=P_{1} P_{7}$. Thus six points $P_{1}, P_{2}, P_{3}, P_{4}, P_{8}$, and P_{9} are on the hyperplane perpendicularly bisecting $P_{6} P_{7}$ and the hyperplane perpendicularly bisecting $P_{5} P_{7}$. The intersection of them is a 2-dimensional Euclidean space. Then $\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{8}, P_{9}\right\}$ is a 6-point isosceles set in \mathbb{R}^{2}. There exist a unique 6-point isosceles set in \mathbb{R}^{2} up to isomorphisms and it contains four points on a circle. Thus the condition (X) holds.

Hence we suppose that there is exactly one pair $P_{6} P_{7}$ whose distance is distinct from a and b on S_{12}. If we repeat the similar discussion above, then there is also at most one pair whose distance is distinct from a and b on S_{11}. Without loss of generality this is $P_{2} P_{3}$.

When we consider $\Delta P_{6} P_{7} P_{k}$ for $k=1, \ldots, 5,8,9, P_{6} P_{k}=P_{7} P_{k}$ holds by (9.1), (9.2), and the configuration hypothesis. Thus seven points $P_{1}, \ldots, P_{5}, P_{8}$, and P_{9} are on the hyperplane perpendicularly bisecting $P_{6} P_{7}$. This hyperplane is a 3-dimensional Euclidean space. Particularly $\left\{P_{1}, P_{3}, P_{4}, P_{5}, P_{8}, P_{9}\right\}$ is a 6-point 2-distance set in \mathbb{R}^{3} with distances a and b. There exist exactly six 6 -point 2-distance sets in \mathbb{R}^{3}. Any set contains four points lying on a circle. Hence the condition (X) holds.

Therefore if the type of P_{1} is $(6,2,2)$, then the condition (X) holds.

10. Case (G) in Lemma 3.1

We consider the case (G) in Lemma 3.1. Let $P=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} is $(6,2,1,1)$. We may assume that $P_{1} P_{2}=P_{1} P_{3}=\cdots=P_{1} P_{7}=a$, $P_{1} P_{8}=P_{1} P_{9}=b, P_{1} P_{10}=c$, and $P_{1} P_{11}=d$. Let $X_{1}=\left\{P_{1}, \ldots, P_{7}, P_{8}, P_{9}\right\}, X_{2}=\left\{P_{1}, \ldots, P_{7}, P_{10}\right\}$, and $X_{3}=\left\{P_{1}, \ldots, P_{7}, P_{11}\right\}$.

Proposition 10.1. For X_{1}, \ldots, X_{3} above, if 2-distance sets exist, then the number of them is at most one.

Proof. We can show this proposition by repeating the similar discussion as Proposition 8.1.

Lemma 10.2. The condition (X) holds for any 11-point isosceles set D in which the type of P_{1} is (6,2,1,1).

Proof. By Proposition 10.1, at least two sets of X_{1}, \ldots, X_{3} are s-distance sets ($s \geq 3$). If X_{1} is an s-distance set, then we can show that the condition (X) holds by repeating the similar discussion as Lemma 9.2. Hence we may assume that X_{1} is a 2-distance set and that X_{2} and X_{3} are s-distance sets. Since $\left|A\left(\left\{P_{2}, \ldots, P_{7}\right\}\right)\right| \geq 2$ and X_{1} is a 2-distance set with distances a and b, it holds that

$$
\begin{equation*}
A\left(\left\{P_{2}, \ldots, P_{7}\right\}\right)=\{a, b\} . \tag{10.1}
\end{equation*}
$$

Thus b is the third distance in X_{2} and X_{3}.

Let S be the sphere centered at P_{1} with radius a. By Proposition 3.5 , six points P_{2}, \ldots, P_{7} are on one of two disjoint 2-dimensional spheres S_{1} and S_{2}, where P_{i} on S_{1} satisfies $P_{i} P_{10}=a$ and P_{j} on S_{2} satisfies $P_{j} P_{10}=c\left(\right.$ consider $\Delta P_{1} P_{k} P_{10}$ for $\left.k=2, \ldots, 7\right)$.

We remark that there is the distance b in $\left\{P_{2}, \ldots, P_{7}\right\}$. If $P_{i} P_{j}=b$ holds for some $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$, then $\Delta P_{i} P_{j} P_{10}$ is scalene. Thus $P_{i} P_{j}=a$ or c for any $P_{i} \in S_{1}$ and $P_{j} \in S_{2}$. Combining this and (10.1), the following condition holds:

$$
\begin{equation*}
P_{i} P_{j}=a \quad \text { for any } P_{i} \in S_{1}, P_{j} \in S_{2} \tag{10.2}
\end{equation*}
$$

So b is the distance between a pair of distinct points on the same 2-dimensional sphere.
If six points lie on one sphere, then the condition (X) holds by Proposition 3.8. So we consider the following cases.
(I) Five points lie on one sphere; the other one point lies on the other sphere.
(II) Four points lie on one sphere; the other two points lie on the other sphere.
(III) Three points lie on one sphere, the other three points lie on the other sphere.

As for the case (I), we can apply the similar discussion as the proof of the case (I) of Lemma 8.2. Thus the condition (X) holds in the case (I).

In the case (II), we can apply the similar discussion as the proof of Lemma 6.1. If we apply it, then we see that the condition (X) holds.

We consider the case (III). We suppose that P_{2}, \ldots, P_{4} are on S_{1} and P_{5}, \ldots, P_{7} are on S_{2}.

We may suppose that b is the distance between a pair of distinct points on S_{2}. Without loss of generality we may assume $P_{6} P_{7}=b$. Next we suppose that there exist more than or equal to two pairs of points on S_{2} whose distances are b. In this assumption, we can apply the similar discussion as the proof of the case (III) of Lemma 9.2. If we apply it, then we see that the condition (X) holds.

Hence we suppose that there is exactly one pair $P_{6} P_{7}$ whose distance is b on S_{2}. If we repeat the similar discussion above, then there is also at most one pair whose distance is b on S_{1}. Without loss of generality this is $P_{2} P_{3}$.

When we consider $\Delta P_{6} P_{7} P_{k}$ for $k=2, \ldots, 5, P_{6} P_{k}=P_{7} P_{k}$ holds by (10.2) and the configuration hypothesis. Thus P_{2}, \ldots, P_{5} are on the hyperplane perpendicularly bisecting $P_{6} P_{7}$ and on S. The intersection of them is a 2-dimensional sphere. By (10.1), (10.2), and the assumption, $P_{2} P_{i}=P_{3} P_{i}=P_{4} P_{i}=P_{5} P_{i}=a$ for $i=1,6,7$. Thus P_{1}, P_{6}, and P_{7} are equidistant from P_{2}, \ldots, P_{5} on a 2-dimensional sphere. If P_{2}, \ldots, P_{5} are on a plane, then they are on a circle; the condition (X) holds. On the other hand, if P_{2}, \ldots, P_{5} are not on a plane, then P_{1}, P_{6}, and P_{7} are on a line. By Corollary 3.7, this is a contradiction.

Therefore if the type of P_{1} is $(6,2,1,1)$, then the condition (X) holds.

11. Case (H) in Lemma 3.1

We consider the case (H) in Lemma 3.1. Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set in which the type of P_{1} is $(6,1,1,1,1)$. We may assume that $P_{1} P_{2}=P_{1} P_{3}=\cdots=P_{1} P_{7}=a, P_{1} P_{8}=b$, $P_{1} P_{9}=c, P_{1} P_{10}=d$, and $P_{1} P_{11}=e$.

We consider the sum of all vertex-numbers in D. Since P_{1} has the largest vertex-number in $D, V\left(P_{1}\right)+\cdots+V\left(P_{11}\right) \leq 11 \times\left\{\binom{6}{2}+\binom{1}{2}+\binom{1}{2}+\binom{1}{2}+\binom{1}{2}\right\}=165$. On the other hand,
$V\left(P_{1}\right)+\cdots+V\left(P_{11}\right) \geq 165$ by (3.1). Thus $V\left(P_{1}\right)+\cdots+V\left(P_{11}\right)=165$. Let α be the number of regular triangles in D. Then $\alpha=0$ holds by (3.2). Moreover $V\left(P_{i}\right)=15$ holds for any $P_{i} \in D$; the type of P_{i} is $(6,1,1,1,1)$.

Lemma 11.1. There is no 11-point isosceles set in which the type of P_{1} is $(6,1,1,1,1)$.
Proof. We notice that the type of P_{2} is $(6,1,1,1,1)$. So the distance a corresponds to 6 or 1 of type $(6,1,1,1,1)$. If a corresponds to 6 , then at least one of $P_{2} P_{3}, \ldots, P_{2} P_{7}$ is a. We may suppose that $P_{2} P_{3}=a$. Then $\Delta P_{1} P_{2} P_{3}$ is a regular triangle with the distance a. This contradicts $\alpha=$ 0 . Thus a corresponds to 1 . Then $P_{2} P_{8}=b, P_{2} P_{9}=c, P_{2} P_{10}=d$, and $P_{2} P_{11}=e$ hold by considering $\Delta P_{1} P_{2} P_{i}$ for $i=8, \ldots, 11$. This means that one of b, c, d, and e corresponds to 6 of type $(6,1,1,1,1)$. We may assume that this is b. Then $P_{2} P_{3}=\cdots=P_{2} P_{8}=b$.

Next we notice that the type of P_{3} is $(6,1,1,1,1)$. We see that a corresponds to 1 of type $(6,1,1,1,1)$ by repeating the discussion for P_{2}. Thus $P_{3} P_{8}=b, P_{3} P_{9}=c, P_{3} P_{10}=d$, and $P_{3} P_{11}=e$ hold by considering $\Delta P_{1} P_{3} P_{i}$ for $i=8, \ldots, 11, b$ corresponds to 6 of type $(6,1,1,1,1)$. Then $P_{2} P_{3}=P_{3} P_{4}=\cdots=P_{3} P_{8}=b$. But $\Delta P_{2} P_{3} P_{4}$ is a regular triangle with the distance b. This contradicts $\alpha=0$.

Therefore there is no 11 -point isosceles set in which the type of P_{1} is $(6,1,1,1,1)$.
Therefore combining Lemmas 3.1, 4.8, 5.1, 6.1, 7.1, 8.2, 9.2, 10.2, and 11.1, we have Lemma 3.2.

By Lemma 3.2, at least four points, say P_{1}, \ldots, P_{4}, in P lie on a circle. We keep to this notation of suffixes in what follows. Lemma 11.2 can be proved by the same method given in the proof of Lemma 18 in Croft [3].

Lemma 11.2. $P_{1}, P_{2}, P_{3}, P_{4}$ are either all the vertices of a square, or four of the vertices of a regular pentagon.

From now on, we observe two cases in Lemma 11.2 respectively.

12. Observation of 11-Point Isosceles Sets in \mathbb{R}^{4} Containing Four Points of a Regular Pentagon

Proposition 12.1. Suppose an n-point isosceles set $D=\left\{P_{1}, \ldots, P_{n}\right\}$ contains four vertices of a regular pentagon, $P_{1}, P_{2}, P_{3}, P_{4}$ (in order, with the "gap" between P_{4} and P_{1}). We may suppose that $P_{1}=((-1-\sqrt{5}) / 4, \sqrt{(10+2 \sqrt{5})} / 4,0,0), P_{2}=(-1 / 2,0,0,0), P_{3}=(1 / 2,0,0,0), P_{4}=((1+$ $\sqrt{5}) / 4, \sqrt{(10+2 \sqrt{5})} / 4,0,0)$. (The mid-point of $P_{2} P_{3}$ is the origin. Each side of this regular pentagon is 1.)

Then the only other possible coordinates for the remaining points are as follows:
(i) $(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, z, w)$, where z and w are arbitrary,
(ii) $T=(0,(5+3 \sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0,0)$, the remaining vertex of the pentagon, or
(iii) $(0,(1-\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, z, w)$, where z and w satisfy $z^{2}+w^{2}=$ $(\sqrt{(10+2 \sqrt{5})} / 2 \sqrt{5})^{2}$.
Proof. We expand the proof of Lemma 22 in Croft [3] into \mathbb{R}^{4}, then we obtain this proposition.

Table 3: The distribution of the remaining points.

	The number of points satisfying (i)	(ii)	The number of points satisfying (iii)
$\langle 1\rangle$	6	T	0
$\langle 2\rangle$	6		1
$\langle 3\rangle$	5		2
$\langle 4\rangle$	4		3
$\langle 5\rangle$	3	4	
$\langle 6\rangle$	2		5

Proposition 12.2. Let Q be a point satisfying (iii) in the previous proposition. Then no n-point isosceles set can contain $P_{1}, P_{2}, P_{3}, P_{4}, T$, and Q.

Proof. It holds that $Q T=\sqrt{(10+2 \sqrt{5})} / 2$. Then $\Delta P_{1} Q T$ is scalene with $1,(1+\sqrt{5}) / 2$, $\sqrt{(10+2 \sqrt{5})} / 2$. This is contrary to the configuration hypothesis.

Therefore no n-point isosceles set can contain $P_{1}, P_{2}, P_{3}, P_{4}, T$, and Q.
We observe the detail for $n=11$ in Proposition 12.1. The space which satisfies the case (i) in Proposition 12.1 is a plane and that satisfying the case (iii) in Proposition 12.1 is a circle. The maximum cardinality of isosceles sets in \mathbb{R}^{2} is 6 and we see that that on a circle is 5 . We consider them and Proposition 12.2. If an 11-point isosceles set exists, then it satisfies one row of Table 3.

Proposition 12.3. Any 11-point isosceles set in \mathbb{R}^{4} satisfying $\langle 1\rangle$ in Table 3 is isomorphic to Y in Theorem 1.1.

Proof. Any 11-point isosceles set $P=\left\{P_{1}, \ldots, P_{11}\right\}$ in \mathbb{R}^{4} satisfying $\langle 1\rangle$ in Table 3 contains all the vertices of a regular pentagon. And the other six points are in a 2-dimensional Euclidean space. Then they are all the vertices of a regular pentagon and its center. Hence we can fix $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}=T$, and $P_{6}=(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0,0)$, we consider the configuration of the other five points which form a regular pentagon in the 2-dimensional Euclidean space $x=0, y=(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$.

Let $P_{i}=(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, z, w)$ for $i \in\{7, \ldots, 11\}$. We consider $\Delta P_{5} P_{6} P_{i}$, we have $\left(P_{5} P_{6}\right)^{2}=((1+\sqrt{5}) / \sqrt{(10+2 \sqrt{5})})^{2},\left(P_{6} P_{i}\right)^{2}=z^{2}+w^{2}(>0)$, and $\left(P_{5} P_{i}\right)^{2}=\left(P_{5} P_{6}\right)^{2}+$ $\left(P_{6} P_{i}\right)^{2}$. Since $P_{5} P_{i}>P_{5} P_{6}$ and $P_{5} P_{i}>P_{6} P_{i}, P_{5} P_{6}=P_{6} P_{i}$ holds by the configuration hypothesis. Thus P_{7}, \ldots, P_{11} which form a regular pentagon are on the circle satisfying $z^{2}+w^{2}=((1+$ $\sqrt{5}) / \sqrt{(10+2 \sqrt{5})})^{2}$. This 11-point isosceles set D is isomorphic to Y in Theorem 1.1.

Next we observe $\langle 5\rangle$ and $\langle 6\rangle$ in Table 3. For any 11-point isosceles set $D=\left\{P_{1}, \ldots, P_{11}\right\}$ in \mathbb{R}^{4} satisfying $\langle 5\rangle$ or $\langle 6\rangle$ in Table 3, the other seven points P_{5}, \ldots, P_{11} are in the 3-dimensional Euclidean space $x=0$, and four points in $\left\{P_{5}, \ldots, P_{11}\right\}$ are on a circle. We may assume that they are P_{5}, \ldots, P_{8}. Then they are all the vertices of a square, or four points of a regular pentagon. Moreover we may assume that P_{10} and P_{11} are in the 2-dimensional Euclidean space $x=0, y=(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$.

The following two propositions in \mathbb{R}^{3} are useful for us. We quote them from Kido [11] (or Croft [3]).

Proposition 12.4. Let four points $P_{1}, P_{2}, P_{3}, P_{4}$ of an n-point isosceles set in \mathbb{R}^{3} form a square. We may suppose that $P_{1}=(-1 / 2,-1 / 2,0), P_{2}=(1 / 2,-1 / 2,0), P_{3}=(1 / 2,1 / 2,0), P_{4}=$ $(-1 / 2,1 / 2,0)$. And let the center $(0,0,0)$ be O, and let the plane that contains the square be Π.

Then the only other possible situations for the remaining points are:
(i) on the vertical line L through O, or
(ii) at some of Q_{1}, \ldots, Q_{8}, where

$$
\begin{array}{ll}
Q_{1}=\left(0,-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), & Q_{2}=\left(\frac{1}{2}, 0, \frac{\sqrt{3}}{2}\right), \\
Q_{3}=\left(0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right), & Q_{4}=\left(-\frac{1}{2}, 0, \frac{\sqrt{3}}{2}\right), \\
Q_{5}=\left(0,-\frac{1}{2},-\frac{\sqrt{3}}{2}\right), & Q_{6}=\left(\frac{1}{2}, 0,-\frac{\sqrt{3}}{2}\right), \tag{12.1}\\
Q_{7}=\left(0, \frac{1}{2},-\frac{\sqrt{3}}{2}\right), & Q_{8}=\left(-\frac{1}{2}, 0,-\frac{\sqrt{3}}{2}\right) .
\end{array}
$$

(The square $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, and $Q_{5}, Q_{6}, Q_{7}, Q_{8}$ both have sides of length $\sqrt{2} / 2$.)

Proposition 12.5. Suppose an n-point isosceles set in \mathbb{R}^{3} contains four vertices of a regular pentagon, $P_{1}, P_{2}, P_{3}, P_{4}$ (in order, with the "gap" between P_{4} and P_{1}), lying in a horizontal plane. Then the only other possible situations for the remaining points are:
(i) at T the remaining vertex of the pentagon; or
(ii) at two points Q_{1}, Q_{2}, which are the only points Q such that $\Delta Q P_{4} P_{1}$ and $\Delta Q P_{2} P_{3}$ are both equilaternal; or
(iii) on the vertical line L through the center of the pentagon.

Proposition 12.6. Any 11-point isosceles set in \mathbb{R}^{4} satisfies neither $\langle 5\rangle$ nor $\langle 6\rangle$ in Table 3.
Proof. We consider when P_{5}, \ldots, P_{8} form a square. If each side of the square $P_{1} P_{2} P_{3} P_{4}$ in Proposition 12.4 is $\sqrt{(10+2 \sqrt{5})} / 2 \sqrt{5} \times \sqrt{2}=\sqrt{(5+\sqrt{5})} / \sqrt{5}$, then we can change them into P_{5}, \ldots, P_{8}. Now P_{10} and P_{11} are in $x=0, y=(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$. By Proposition 12.4, we see that there is exactly one point $(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0,0)$ in $x=0, y=(3+$ $\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$. Thus we cannot put one of P_{10} and P_{11}. This is a contradiction.

On the other hand, we consider when P_{5}, \ldots, P_{8} form four points of a regular pentagon. Here P_{10} and P_{11} are in $x=0, y=(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$. By Proposition 12.5 , we see that
there is exactly one point $(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0,0)$ in $x=0, y=(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}$. Thus we cannot put one of P_{10} and P_{11}. This is a contradiction.

Therefore any 11-point isosceles set in \mathbb{R}^{4} satisfies neither $\langle 5\rangle$ nor $\langle 6\rangle$ in Table 3.
The last cases are $\langle 2\rangle-\langle 4\rangle$ in Table 3. For any 11-point isosceles set $D=\left\{P_{1}, \ldots, P_{11}\right\}$ in \mathbb{R}^{4} satisfying one of $\langle 2\rangle-\langle 4\rangle$ in Table 3, we may assume that P_{5} satisfies (iii) in Proposition 12.1 and that P_{8}, \ldots, P_{11} satisfy (i) in Proposition 12.1. We may suppose that $P_{5}=(0,(1-\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0, \sqrt{(10+2 \sqrt{5})} / 2 \sqrt{5})$ because of symmetry. We remark that P_{5}, \ldots, P_{11} are in the 3-dimensional Euclidean space $x=0$.

Proposition 12.7. Suppose that an 11-point isosceles set $D=\left\{P_{1}, \ldots, P_{11}\right\}$ in \mathbb{R}^{4} satisfying one of $\langle 2\rangle-\langle 4\rangle$ in Table 3, then the possible situations for P_{8}, \ldots, P_{11} are the following:
(I) on the line L which satisfies $w=\sqrt{(10+2 \sqrt{5})} / 4 \sqrt{5}$,
(II) $R_{1}=(0,(3+\sqrt{5}) / 2 \sqrt{(10+2 \sqrt{5})}, 0,(1 / 20)(-5 \sqrt{10+2 \sqrt{5}}+\sqrt{50+10 \sqrt{5}})$, or
(III) $R_{2}=(0,(3+\sqrt{5}) / 2 \sqrt{10+2 \sqrt{5}}, 0,(1 / 20)(5 \sqrt{10+2 \sqrt{5}}+\sqrt{50+10 \sqrt{5}})$.

Proof. For $i=8, \ldots, 11$, let $P_{i}=(0,(3+\sqrt{5}) / 2 \sqrt{10+2 \sqrt{5}}, z, w)$. We consider $\Delta P_{2} P_{5} P_{i}$. Because $P_{2} P_{5}=1$, one of the following (a-1)-(a-3) must hold to satisfy the configuration hypothesis:
$(\mathrm{a}-1) z^{2}+w^{2}=(5-\sqrt{5}) / 10$ when $P_{2} P_{i}=1$,
$(\mathrm{a}-2)((1+\sqrt{5}) / \sqrt{(10+2 \sqrt{5})})^{2}+z^{2}+(w-\sqrt{(10+2 \sqrt{5})} / 2 \sqrt{5})^{2}=1$ when $P_{5} P_{i}=1$,
$(\mathrm{a}-3) w=\sqrt{(10+2 \sqrt{5})} / 4 \sqrt{5}$ when $P_{2} P_{i}=P_{5} P_{i}$.
On the other hand, we consider $\Delta P_{1} P_{5} P_{i}$. Since $P_{1} P_{5}=(1+\sqrt{5}) / 2$, one of the following (b-1)-(b-3) must hold to satisfy the configuration hypothesis:
$(\mathrm{b}-1) z^{2}+w^{2}=(5+2 \sqrt{5}) / 5$ when $P_{1} P_{i}=(1+\sqrt{5}) / 2$,
(b-2) $((1+\sqrt{5}) / \sqrt{(10+2 \sqrt{5})})^{2}+z^{2}+(w-\sqrt{(10+2 \sqrt{5})} / 2 \sqrt{5})^{2}=(3+\sqrt{5}) / 2$ when $P_{5} P_{i}=$ $(1+\sqrt{5}) / 2$,
(b-3) $w=\sqrt{(10+2 \sqrt{5})} / 4 \sqrt{5}$ when $P_{1} P_{i}=P_{5} P_{i}$.
Hence combining one of $(a-1)-(a-3)$ and one of $(b-1)-(b-3)$, we see that the possible situations for P_{i} must be in the list of the proposition.

Proposition 12.8. Any 11-point isosceles set in \mathbb{R}^{4} cannot satisfy one of $\langle 2\rangle-\langle 4\rangle$ in Table 3.
Proof. The previous proposition implies that P_{8}, \ldots, P_{11} satisfy one of the following conditions:
(i) four points on L,
(ii) three points on L and the other is one of R_{1} and R_{2},
(iii) two points on L and the others are R_{1} and R_{2}.

In the case (i), we cannot take four points on a line. This is a contradiction. In the case (ii), three collinear points are contained. By Corollary 3.7, this is a contradiction.

Table 4: The distribution of the remaining points.

	The number of points satisfying (i)	The number of points satisfying (ii)
$\langle 1\rangle$	0	7
$\langle 2\rangle$	1	6
$\langle 3\rangle$	2	5
$\langle 4\rangle$	3	4
$\langle 5\rangle$	4	3
$\langle 6\rangle$	5	2
$\langle 7\rangle$	6	1

In the case (iii), $\Delta P_{5} R_{1} R_{2}$ is scalene with $1,(1+\sqrt{5}) / 2, \sqrt{1+((1+\sqrt{5}) / 2)^{2}}$. This is contrary to the configuration hypothesis.

Therefore any 11-point isosceles set in \mathbb{R}^{4} cannot satisfy one of $\langle 2\rangle-\langle 4\rangle$ in Table 3.
Thus we have the following lemma.
Lemma 12.9. There exists a unique 11-point isosceles set in \mathbb{R}^{4} containing four vertices of a regular pentagon. This is Y in Theorem 1.1.

13. Observation of 11-Point Isosceles Sets in \mathbb{R}^{4} Containing a Square

Proposition 13.1. Let $P_{1}, P_{2}, P_{3}, P_{4}$ in an n-point isosceles set $D=\left\{P_{1}, \ldots, P_{n}\right\}$ form a square. We may suppose that $P_{1}=(-1 / 2,-1 / 2,0,0), P_{2}=(1 / 2,-1 / 2,0,0), P_{3}=(1 / 2,1 / 2,0,0), P_{4}=$ $(-1 / 2,1 / 2,0,0)$.

Then the only other possible coordinates for the remaining points are
(i) $(0,0, z, w)$, where z and w are arbitrary, or
(ii) one of $(0,-1 / 2, z, w),(1 / 2,0, z, w),(0,1 / 2, z, w)$, and $(-1 / 2,0, z, w)$, where z and w satisfy $z^{2}+w^{2}=3 / 4$.

Proof. We expand the proof of Lemma 19 in Croft [3] into \mathbb{R}^{4}, then we obtain this proposition.

We observe the detail for $n=11$ in Proposition 13.1. The space which satisfies the case (i) in Proposition 13.1 is a plane. The maximum cardinality of isosceles sets in \mathbb{R}^{2} is 6 . Hence if an 11-point isosceles set exists, then it satisfies one row of Table 4.

We observe $\langle 1\rangle-\langle 3\rangle$ in Table 4 . We see that another point P_{i} of an 11-point isosceles set $D=\left\{P_{1}, \ldots, P_{11}\right\}$ which satisfies (ii) in Proposition 13.1 is on one of four circles.

Let S_{1} be $x=0, y=-1 / 2, z^{2}+w^{2}=3 / 4, S_{2}$ be $x=1 / 2, y=0, z^{2}+w^{2}=3 / 4, S_{3}$ be $x=0, y=1 / 2, z^{2}+w^{2}=3 / 4$, and S_{4} be $x=-1 / 2, y=0, z^{2}+w^{2}=3 / 4$. We remark that S_{1} and S_{3} are the subsets of the 3-dimensional Euclidean space $x=0$, and S_{2} and S_{4} are the subsets of the 3-dimensional Euclidean space $y=0$.

When D satisfies one of $\langle 1\rangle-\langle 3\rangle$ in Table 4, the remaining at least five points are distributed on some of S_{1}, \ldots, S_{4}. If they are distributed on one circle, then they form a regular pentagon. By Lemma 12.9, such any 11-point isosceles set is isomorphic to Y in Theorem 1.1.

Hence we may suppose that they are distributed on more than or equal to two circles. We may assume that we choose S_{1} as the first circle because of symmetry. Now we separate the choice of the second circle into two cases whether S_{i} is the subset of the 3-dimensional Euclidean space $x=0$ or not for $i=2,3,4$. So one is S_{3}, the other is S_{2} or S_{4}.

Proposition 13.2. One considers the first case above. One fixes a point P_{i} on S_{1}. Then the possible situations for the points on S_{3} are at most three. Moreover the distance between a pair of distinct points from these three points must be 1 or $2 \sqrt{6} / 3$.

Proof. We may assume that $P_{i}=(0,-1 / 2, \sqrt{3} / 2,0)$ because S_{1} and S_{3} are on the 3-dimensional Euclidean space $x=0$ and we have only to investigate the relation between the points on S_{1} and those on S_{3}. Let $P_{j}=(0,1 / 2, z, w)$ on S_{3}, where $z^{2}+w^{2}=3 / 4$. We consider $\Delta P_{1} P_{i} P_{j}$. Since $P_{1} P_{i}=1$ and $P_{1} P_{j}=\sqrt{2}$, we have $P_{i} P_{j}=1$ or $\sqrt{2}$. When $P_{i} P_{j}=1, P_{j}$ is $(0,1 / 2, \sqrt{3} / 2,0)$. When $P_{i} P_{j}=\sqrt{2}, P_{j}$ is $(0,1 / 2, \sqrt{3} / 6, \sqrt{6} / 3)$ or $(0,1 / 2, \sqrt{3} / 6,-\sqrt{6} / 3)$.

Therefore the possible situations for P_{j} are at most three. Moreover we see easily that the distance between a pair of distinct points from these three points must be 1 or $2 \sqrt{6} / 3$.

We consider the other case. We may suppose that the choice of the second circle is S_{2} because of symmetry.

Proposition 13.3. One considers that the choice of the second circle is S_{2}. One fixes a point $P_{i}=$ $\left(0,-1 / 2, z_{i}, w_{i}\right)$ on S_{1}, where $z_{i}^{2}+w_{i}^{2}=3 / 4$. Then the possible situations for the points on S_{2} are at most two. And the distance between the two points must be one of $\sqrt{3}, \sqrt{15} / 3,(\sqrt{5}+1) / 2$, and $(\sqrt{5}-1) / 2$.

Proof. Let $P_{j}=(1 / 2,0, z, w)$ on S_{2}, where $z^{2}+w^{2}=3 / 4$. We consider $\Delta P_{1} P_{i} P_{j}$. Since $P_{1} P_{i}=1$ and $P_{1} P_{j}=\sqrt{2}$, we have $P_{i} P_{j}=1$ or $\sqrt{2}$. Then $\left(z-z_{i}\right)^{2}+\left(w-w_{i}\right)^{2}=1 / 2$ or $\left(z-z_{i}\right)^{2}+\left(w-w_{i}\right)^{2}=$ $3 / 2$ holds. From them, we have $z_{i} z+w_{i} w-1 / 2=0$ or $z_{i} z+w_{i} w=0$. And z and w satisfy $z^{2}+w^{2}=3 / 4$. Hence the possible situations for P_{j} are at most four.

Since $(1 / 2,0,0,0)$ is on $z_{i} z+w_{i} w=0$, the distance between $(1 / 2,0,0,0)$ and $z_{i} z+$ $w_{i} w-1 / 2=0$ is $|-1 / 2| / \sqrt{z_{i}^{2}+w_{i}^{2}}=1 / 2 / \sqrt{3} / 2=\sqrt{3} / 3$ in spite of the way to fix P_{i}. So let $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ be the four possible points for P_{j}, the distances between Q-points are in Figure 5 in spite of the way to fix P_{i}. Looking at Figure 5, all triangles that we choose from Q-points are scalene.

Therefore if we fix a point P_{i} on S_{1}, then the possible situations for the points on S_{2} are at most two. Moreover we see easily that the distance between the two points must be one of $\sqrt{3}, \sqrt{15} / 3,(\sqrt{5}+1) / 2$, and $(\sqrt{5}-1) / 2$ by Figure 5 .

For the supposition of Proposition 13.3, moreover we suppose that there is a point on S_{4}, too. Then the distance between two points on S_{2} must be 1 or $2 \sqrt{6} / 3$ by an analogue of Proposition 13.2, we take at most one point on S_{2}. Thus we see that we cannot take five points satisfying (ii) in Proposition 13.1, we have the following proposition.

Proposition 13.4. Any 11-point isosceles set in \mathbb{R}^{4} cannot satisfy one of $\langle 1\rangle-\langle 3\rangle$ in Table 4.
Next we observe $\langle 5\rangle-\langle 7\rangle$ in Table 4 . Let $P=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set. We suppose that P_{5} is on some of S_{1}, \ldots, S_{4} and that P_{8}, \ldots, P_{11} are on the plane $x=y=0$. We may assume that P_{5} is on S_{1} because of symmetry. So P_{5} is one of

Figure 5
$\left(0,-1 / 2, a, \sqrt{3 / 4-a^{2}}\right)$ and $\left(0,-1 / 2, a,-\sqrt{3 / 4-a^{2}}\right)$, where $-\sqrt{3} / 2 \leq a \leq \sqrt{3} / 2$. We can choose that $P_{5}=\left(0,-1 / 2, a, \sqrt{3 / 4-a^{2}}\right)$. (For the latter we can repeat the similar discussion.)

Proposition 13.5. If an 11-point isosceles set $D=\left\{P_{1}, \ldots, P_{11}\right\}$ contains a square satisfying one of $\langle 5\rangle-\langle 7\rangle$ in Table 4, then the possible situations for P_{8}, \ldots, P_{11} are as follows:
(I) on the line L which satisfies $a z+w \sqrt{3 / 4-a^{2}}=1 / 4$, or
(II) at some of R_{1}, \ldots, R_{4}, where

$$
\begin{gather*}
R_{1}=\left(0,0, \frac{-2 a-\sqrt{5\left(3-4 a^{2}\right)}}{6}, \frac{2 \sqrt{5} a-\sqrt{3-4 a^{2}}}{6}\right) \\
R_{2}=\left(0,0, \frac{-2 a+\sqrt{5\left(3-4 a^{2}\right)}}{6}, \frac{-2 \sqrt{5} a-\sqrt{3-4 a^{2}}}{6}\right) \tag{13.1}\\
R_{3}=\left(0,0, \frac{2 a-\sqrt{3-4 a^{2}}}{2}, \frac{2 a+\sqrt{3-4 a^{2}}}{2}\right) \\
R_{4}=\left(0,0, \frac{2 a+\sqrt{3-4 a^{2}}}{2}, \frac{-2 a+\sqrt{3-4 a^{2}}}{2}\right)
\end{gather*}
$$

Proof. For $i=8, \ldots, 11$, let $P_{i}=(0,0, z, w)$. We consider $\Delta P_{1} P_{5} P_{i}$. Because $P_{1} P_{5}=1$, one of the following (a-1)-(a-3) must hold to satisfy the configuration hypothesis:
$(\mathrm{a}-1) z^{2}+w^{2}=1 / 2$ when $P_{1} P_{i}=1$,
(a-2) $(z-a)^{2}+\left(w-\sqrt{3 / 4-a^{2}}\right)^{2}=3 / 4$ when $P_{5} P_{i}=1$,
(a-3) $a z+w \sqrt{3 / 4-a^{2}}=1 / 4$ when $P_{1} P_{i}=P_{5} P_{i}$.

On the other hand, we consider $\Delta P_{3} P_{5} P_{i}$. Since $P_{3} P_{5}=\sqrt{2}$, one of the following (b-1)-(b-3) must hold to satisfy the configuration hypothesis:
(b-1) $z^{2}+w^{2}=3 / 2$ when $P_{3} P_{i}=\sqrt{2}$,
(b-2) $(z-a)^{2}+\left(w-\sqrt{3 / 4-a^{2}}\right)^{2}=7 / 4$ when $P_{5} P_{i}=\sqrt{2}$,
(b-3) $a z+w \sqrt{3 / 4-a^{2}}=1 / 4$ when $P_{3} P_{i}=P_{5} P_{i}$.
Hence conbining one of $(a-1)-(a-3)$ and one of $(b-1)-(b-3)$, we see that the possible situations for P_{i} must be in the list of the proposition.

Proposition 13.6. Any 11-point isoseles set in \mathbb{R}^{4} cannot satisfy one of $\langle 5\rangle-\langle 7\rangle$ in Table 4.
Proof. By Proposition 13.5, four points P_{8}, \ldots, P_{11} are in the list of the proposition. We observe (II) in Proposition 13.5. Because $R_{1} R_{2}=\sqrt{15} / 3, R_{1} R_{3}=R_{2} R_{4}=\sqrt{(5-\sqrt{5}) / 2}, R_{1} R_{4}=R_{2} R_{3}=$ $\sqrt{(5+\sqrt{5}) / 2}$, and $R_{3} R_{4}=\sqrt{3}$, any triangle selected from R-points is scalene. So we choose at most two R-points. On the other hand, we observe (I) in Proposition 13.5. Since L is a line, we choose at most three points on L. By Corollary 3.7, we cannot choose three points. So we choose at most two points on L. Hence we must choose two R-points and two points on L for P_{8}, \ldots, P_{11}. Let P_{8}, P_{9} be two R-points and P_{10}, P_{11} be two points on L. For each choice of two R-points, we see that the possible situations for P_{10} and P_{11} are five by considering $\Delta P_{8} P_{9} P_{10}$ and $\Delta P_{8} P_{9} P_{11}$ and the calculations.

The number of the choices of P_{8} and P_{9} is $\binom{4}{2}=6$ and the number of the choices of P_{10} and P_{11} is $\binom{5}{2}=10$. Thus the number of the choices of P_{8}, \ldots, P_{11} is $6 \times 10=60$. We have only to check 60 cases whether $P_{1}, \ldots, P_{5}, P_{8}, \ldots, P_{11}$ form an isosceles set or not. But for all cases we see that they contain a scalene by the calculations.

Therefore any 11-point isoseles set cannot satisfy one of $\langle 5\rangle-\langle 7\rangle$ in Table 4.
Finally we observe $\langle 4\rangle$ in Table 4 . Let $D=\left\{P_{1}, \ldots, P_{11}\right\}$ be an 11-point isosceles set. Four points P_{5}, \ldots, P_{8} lie on some of S_{1}, \ldots, S_{4}. We may assume that one point $P_{5}=$ $(0,-1 / 2, \sqrt{3} / 2,0)$ because of symmetry. P_{9}, \ldots, P_{11} are in the plane $x=y=0$.

Proposition 13.7. If there exists an 11-point isosceles set in \mathbb{R}^{4} satisfying $\langle 4\rangle$ in Table 4 , then it is isomorphic to X or Y in Theorem 1.1.

Proof. If P_{5}, \ldots, P_{8} are distributed on S_{1}, then they are all points of a square or four points of a regular pentagon.

We consider when P_{5}, \ldots, P_{8} form a square. If each side of the square $P_{1} P_{2} P_{3} P_{4}$ in Proposition 12.4 is $\sqrt{3} / 2 \times \sqrt{2}=\sqrt{6} / 2$, then we can change them into P_{5}, \ldots, P_{8} in the 3dimensional Euclidean space $x=0$. Now the other points P_{9}, P_{10}, P_{11} are in the 2-dimensional Euclidean space $x=y=0$. By Proposition 12.4 , we see that there is exactly one point $(0,0,0,0)$ in $x=y=0$. Thus we cannot take three points in $x=y=0$. This is a contradiction. Hence P_{5}, \ldots, P_{8} do not form a square.

If P_{5}, \ldots, P_{8} form four points of a regular pentagon, then such any 11-point isosceles set is isomorphic to Y in Theorem 1.1 by Lemma 12.9.

Hence they are distributed on more than or equal to two circles. By the proof of Proposition 13.2, the number of the possible points on S_{3} for P_{6}, P_{7}, P_{8} is at most three. They are $U_{1}=(0,1 / 2, \sqrt{3} / 2,0), U_{2}=(0,1 / 2, \sqrt{3} / 6, \sqrt{6} / 3)$, and $U_{3}=(0,1 / 2, \sqrt{3} / 6,-\sqrt{6} / 3)$. By the proof of Proposition 13.3, the number of the possible points on S_{2} for P_{6}, P_{7}, P_{8} is at most four.

They are $U_{4}=(1 / 2,0, \sqrt{3} / 3, \sqrt{15} / 6), U_{5}=(1 / 2,0, \sqrt{3} / 3,-\sqrt{15} / 6), U_{6}=(1 / 2,0,0, \sqrt{3} / 2)$, and $U_{7}=(1 / 2,0,0,-\sqrt{3} / 2)$. Similarly the number of the possible points on S_{4} for P_{6}, P_{7}, P_{8} is at most four by the proof of Proposition 13.3. They are $U_{8}=(-1 / 2,0, \sqrt{3} / 3, \sqrt{15} / 6)$, $U_{9}=(-1 / 2,0, \sqrt{3} / 3,-\sqrt{15} / 6), U_{10}=(-1 / 2,0,0, \sqrt{3} / 2)$, and $U_{11}=(-1 / 2,0,0,-\sqrt{3} / 2)$.

If we apply Proposition 13.5 to P_{5}, then P_{9}, P_{10}, and P_{11} in the plane $x=y=0$ must satisfy one of the following situations:
(I) on the line which satisfies $z=\frac{\sqrt{3}}{6}$,
(II) at some of $\left(0,0,-\frac{\sqrt{3}}{6}, \frac{\sqrt{15}}{6}\right),\left(0,0,-\frac{\sqrt{3}}{6},-\frac{\sqrt{15}}{6}\right)$,

$$
\begin{equation*}
\left(0,0, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right),\left(0,0, \frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right) . \tag{13.2}
\end{equation*}
$$

We apply Proposition 13.5 and its analogue to U-points, we have only to check whether there exist three points in $x=y=0$ which satisfy (13.2) or not. When we take U_{1}, U_{4}, and U_{8}, there exist three points $(0,0, \sqrt{3} / 6, \sqrt{15} / 30),(0,0,-\sqrt{3} / 6, \sqrt{15} / 6)$, and $(0,0$, $\sqrt{3} / 6,-\sqrt{15} / 6)$ satisfying (13.2). Then $\left\{P_{1}, \ldots, P_{5}, U_{1}, U_{4}, U_{8},(0,0, \sqrt{3} / 6, \sqrt{15} / 30),(0,0\right.$, $-\sqrt{3} / 6, \sqrt{15} / 6),(0,0, \sqrt{3} / 6,-\sqrt{15} / 6)\}$ is an 11-point isosceles set which is isomorphic to X in Theorem 1.1. Similarly when we take U_{1}, U_{5}, and U_{9}, there exist three points $(0,0, \sqrt{3} / 6,-\sqrt{15} / 30),(0,0,-\sqrt{3} / 6,-\sqrt{15} / 6)$, and $(0,0, \sqrt{3} / 6, \sqrt{15} / 6)$ satisfying (13.2). Then $\left\{P_{1}, \ldots, P_{5}, U_{1}, U_{5}, U_{9},(0,0, \sqrt{3} / 6,-\sqrt{15} / 30),(0,0,-\sqrt{3} / 6,-\sqrt{15} / 6),(0,0, \sqrt{3} / 6, \sqrt{15} / 6)\right\}$ is an 11-point isosceles set which is isomorphic to X in Theorem 1.1, too. In the other cases, three points satisfying (13.2) do not exist.

On the other hand, if we apply the proofs of Propositions 13.2 and 13.3 to U-points, then there are some possible points on S_{1} except for P_{5}. We apply Proposition 13.5 and its analogue to them. But three points satisfying (13.2) do not exist. Hence we cannot take points on S_{1} except for P_{5}.

Therefore if there exists an 11-point isosceles set in \mathbb{R}^{4} satisfying $\langle 4\rangle$ in Table 4 , then it is isomorphic to X or Y in Theorem 1.1.

We remark that Y in Theorem 1.1 does not contain a square. Thus we have the following lemma.

Lemma 13.8. There exists a unique 11-point isosceles set in \mathbb{R}^{4} containing a square. This is X in Theorem 1.1.

14. Completion of the Proofs of Theorem 1.1 and Corollary 1.2

First, Lemma 3.1 holds if an 11-point isosceles set exists. In any case of Lemma 3.1, if there exists an 11-point isosceles set, then the condition (X) holds by Lemmas 4.8, 5.1, 6.1, 7.1, 8.2, 9.2, 10.2, and 11.1.

When the condition (X) holds, four points that lie on a circle are either all the vertices of a square, or four of the vertices of a regular pentagon by Lemma 11.2. If they are four of the vertices of a regular pentagon, then Lemma 12.9 implies that there exists a unique 11-point
isosceles set Y. On the other hand, if they are all the vertices of a square, then there exists a unique 11-point isosceles set X by Lemma 13.8.

Therefore there are exactly two 11-point isosceles sets X and Y in \mathbb{R}^{4} up to isomorphisms. Moreover we see that there is no 12 -point isosceles set in \mathbb{R}^{4} by the calculation, and he maximum cardinality of isosceles sets in \mathbb{R}^{4} is 11 .

References

[1] S. J. Einhorn and I. J. Schoenberg, "On euclidean sets having only two distances between points. I," vol. 28, pp. 479-488, 1966.
[2] Paul Erdös and L. M. Kelly, "Elementary problems and solutions: solutions: E735," The American Mathematical Monthly, vol. 54, no. 4, pp. 227-229, 1947.
[3] H. T. Croft, "9-point and 7-point configurations in 3-space," Proceedings of the London Mathematical Society. Third Series, vol. 12, pp. 400-424, 1962, Corrigendum. ibid. vol. 13, p. 384, 1963.
[4] P. Lisoněk, "New maximal two-distance sets," Journal of Combinatorial Theory. Series A, vol. 77, no. 2, pp. 318-338, 1997.
[5] E. Bannai and E. Bannai, Algebraic Combinatorics on Spheres, Springer, Tokyo, Japan, 1999.
[6] D. G. Larman, C. A. Rogers, and J. J. Seidel, "On two-distance sets in Euclidean space," The Bulletin of the London Mathematical Society, vol. 9, no. 3, pp. 261-267, 1977.
[7] E. Bannai, E. Bannai, and D. Stanton, "An upper bound for the cardinality of an s-distance subset in real Euclidean space. II," Combinatorica, vol. 3, no. 2, pp. 147-152, 1983.
[8] A. Blockhuis, Few-distance sets, Ph.D. thesis, Eindhoven Univ. of Technology, 1983.
[9] M. Shinohara, "Classification of three-distance sets in two dimensional Euclidean space," European Journal of Combinatorics, vol. 25, no. 7, pp. 1039-1058, 2004.
[10] M. Shinohara, "Uniqueness of maximum three-distance sets in the three-dimensional Euclidean space," preprint.
[11] H. Kido, "Classification of isosceles eight-point sets in three-dimensional Euclidean space," European Journal of Combinatorics, vol. 27, no. 3, pp. 329-341, 2006.
[12] P. Erdös and M. Golomb, "Advanced problems and solutions: solutions: 4254," The American Mathematical Monthly, vol. 55, no. 8, pp. 513-514, 1948.
[13] P. Fishburn, "Isosceles planar subsets," Discrete \& Computational Geometry, vol. 19, no. 3, pp. 391-398, 1998.
[14] S. J. Einhorn and I. J. Schoenberg, "On euclidean sets having only two distances between points. II," vol. 28, pp. 489-504, 1966.

