Research Article

Binary Representations of Regular Graphs

Yury J. Ionin
Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA
Correspondence should be addressed to Yury J. Ionin, yury.ionin@cmich.edu

Received 17 January 2011; Accepted 2 August 2011
Academic Editor: Hajo Broersma
Copyright © 2011 Yury J. Ionin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For any 2-distance set X in the n-dimensional binary Hamming space H_{n}, let Γ_{X} be the graph with X as the vertex set and with two vertices adjacent if and only if the distance between them is the smaller of the two nonzero distances in X. The binary spherical representation number of a graph Γ, or $\operatorname{bsr}(\Gamma)$, is the least n such that Γ is isomorphic to Γ_{X}, where X is a 2-distance set lying on a sphere in H_{n}. It is shown that if Γ is a connected regular graph, then $\operatorname{bsr}(\Gamma) \geq b-m$, where b is the order of Γ and m is the multiplicity of the least eigenvalue of Γ, and the case of equality is characterized. In particular, if Γ is a connected strongly regular graph, then $\operatorname{bsr}(\Gamma)=b-m$ if and only if Γ is the block graph of a quasisymmetric 2-design. It is also shown that if a connected regular graph is cospectral with a line graph and has the same binary spherical representation number as this line graph, then it is a line graph.

1. Introduction

The subject of this paper is mutual relations between regular and strongly regular graphs, 2-distance sets in binary Hamming spaces, and quasisymmetric 1- and 2-designs.

The following relation between strongly regular graphs and 2 -distance sets in Euclidean spaces is well known (cf. [1, Theorem 2.23]): if m is the multiplicity of the least eigenvalue of a connected strongly regular graph Γ of order n, then the vertex set of Γ can be represented as a set of points, lying on a sphere in \mathbb{R}^{n-m-1}, so that there exist positive real numbers $h_{1}<h_{2}$ such that the distance between any two distinct vertices is equal to h_{1} if they are adjacent as vertices of Γ and it is equal to h_{2} otherwise. This result was recently generalized to all connected regular graphs in [2]. It has also been proved in [2] that, given n and m, such a representation of a connected regular graph in \mathbb{R}^{n-m-2} is not possible.

The notion of a 2-distance set representing a graph makes sense for any metric space, and the spaces of choice in this paper are the binary Hamming spaces. We will show (Theorem 3.3) that the dimension of a binary Hamming space, in which a connected regular
graph Γ can be represented, is at least $n-m$, where n and m have the same meaning as in the previous paragraph.

It is also well known that the block graph of a quasisymmetric 2-design is strongly regular. However, many strongly regular graphs are not block graphs, and there is no good characterization of the graphs that are block graphs of quasisymmetric 2-designs. The situation changes if we consider the representation of graphs in binary Hamming spaces. We will show (Theorem 4.6) that a connected strongly regular graph admits a representation in the binary Hamming space of the minimal dimension $n-m$ if and only if it is the block graph of a quasisymmetric 2-design.

At the dawn of graph theory there was a short-lived conjecture that a graph is determined by the spectrum of its adjacency matrix. Of course, it is not true (see a very interesting discussion in [3]). However, some classes of graphs can be described by their spectra. In particular, if a connected regular graph has the same spectrum as a line graph, then it is almost always a line graph itself (all exceptions are known). We will show (Corollary 5.7) that if a connected regular graph Γ is cospectral with a line graph $L(G)$ of a graph G and, beside that, the minimal dimension of a binary Hamming space, in which either graph can be represented, is the same for Γ and $L(G)$, then Γ is a line graph.

2. Preliminaries

All graphs in this paper are finite and simple, and all incidence structures are without repeated blocks. For a graph $\Gamma,|\Gamma|$ denotes the order of Γ, that is, the number of vertices. If x and y are vertices of a graph Γ, then $x \sim y$ means that x and y are adjacent, while $x \nsucc y$ means that x and y are distinct and nonadjacent. Two graphs are said to be cospectral if their adjacency matrices have the same characteristic polynomial.

Throughout the paper we use I to denote identity matrices and J to denote square matrices with every entry equal to 1 . The order of I and J will be always apparent from the context. We denote as $\mathbf{0}$ and $\mathbf{1}$ vectors (columns, rows, points) with all entries (coordinates) equal to 0 or all equal to 1 , respectively. In examples throughout the paper we will use digits and letters to denote elements of a small set and omit braces and commas when a subset of such a set is presented; for example, we will write $1350 b$ instead of $\{1,3,5,0, b\}$.

If n is a positive integer, then $[n]$ denotes the set $\{1,2, \ldots, n\}$.
Definition 2.1. The binary Hamming space H_{n} consists of all n-tuples $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with each a_{i} equal to 0 or 1 . When it is convenient, one identifies a with the set $\left\{i \in[n]: a_{i}=1\right\}$. The distance $h(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in H_{n}$ is the number of indices i for which $a_{i} \neq b_{i}$. The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^{n}$ is denoted as $\|\mathbf{x}\|$, so, for $\mathbf{a}, \mathbf{b} \in H_{n}$, $h(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|^{2}$.

A set $X \subset H_{n}$ is called a 2-distance set if $|\{h(\mathbf{a}, \mathbf{b}): \mathbf{a}, \mathbf{b} \in X, \mathbf{a} \neq \mathbf{b}\}|=2$.
A sphere with center $\mathbf{c} \in H_{n}$ and integer radius $k, 1 \leq k \leq n-1$, is the set of all points $\mathbf{x} \in H_{n}$ such that $h(\mathbf{c}, \mathbf{x})=k$. Any subset of a sphere (of radius k) is called a spherical set (of radius k).

Remark 2.2. The sphere of radius k in H_{n}, centered at a, coincides (as a set) with the sphere of radius $n-k$ centered at the opposite point $\mathbf{b}=\mathbf{1}-\mathbf{a}$. This allows us to assume, when needed, that the radius of a sphere does not exceed $n / 2$. A sphere of radius k in H_{n} centered at 0 , regarded as a subset of \mathbb{R}^{n}, is the intersection of the unit cube and the hyperplane $x_{1}+x_{2}+$ $\cdots+x_{n}=k$.

Remark 2.3. For $n \geq 2$, the distance between any two points of a spherical set in H_{n} is even.
Definition 2.4. An incidence structure (without repeated blocks) is a pair $\mathbf{D}=(V, \mathbb{B})$, where V is a nonempty finite set (of points) and \mathcal{B} is a nonempty set of subsets of V (blocks). The cardinality of the intersection of two distinct blocks is called an intersection number of \mathbf{D}. An incidence structure is said to be quasisymmetric if it has exactly two distinct intersection numbers. For a nonnegative integer t, an incidence structure \mathbf{D} is called a t-design if all blocks of \mathbf{D} have the same cardinality and every set of t points is contained in the same number of blocks. A t-design \mathbf{D} with an (points versus blocks) incidence matrix N is called nonsquare if N is not a square matrix, and it is called nonsingular if $\operatorname{det}\left(N N^{\top}\right) \neq 0$. A 2 -design is also called a (v, b, r, k, λ)-design, where v is the number of points, b is the number of blocks, r is the replication number, that is, the number of blocks containing any given point, k is the block size, and λ is the number of blocks containing any given pair of points.

With any quasisymmetric incidence structure we associate its block graph.
Definition 2.5. If \mathbf{D} is a quasisymmetric incidence structure with intersection numbers $\alpha<\beta$, then the block graph of \mathbf{D} is the graph whose vertices are the blocks of \mathbf{D} and two vertices are adjacent if and only if the corresponding blocks meet in β points.

Remark 2.6. If a regular graph, other than a complete graph, is connected, then it has at least three distinct eigenvalues. It is strongly regular if and only if it has exactly three distinct eigenvalues. If \mathbf{D} is a quasisymmetric 2-design, then it is nonsquare and its block graph is strongly regular. If \mathbf{D} is a quasisymmetric t-design with block size k and intersection numbers $\alpha<\beta$, then $N^{\top} N=(k-\alpha) I+(\beta-\alpha) A+\alpha J$, where N is an incidence matrix of \mathbf{D} and A is an adjacency matrix of the block graph of \mathbf{D}. If \mathbf{D} is a (v, b, r, k, λ)-design, then $N N^{\top}=$ $(r-\lambda) I+\lambda J$. Therefore, $\operatorname{det}\left(N N^{\top}\right)=r k(r-\lambda)^{v-1} \neq 0$, so \mathbf{D} is nonsingular. For these and other basic results on designs and regular graphs, see [1] or [4].

Definition 2.7. Let $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{b}\right\}$ be a 2-distance set of cardinality b in H_{n}, and let $h_{1}<h_{2}$ be the nonzero distances in X. One denotes as Γ_{X} the graph whose vertex set is X and the edge set is the set of all pairs $\left\{\mathbf{x}_{i}, \mathbf{x}_{j}\right\}$ with $h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=h_{1}$. For $i=1,2, \ldots, b$, let $\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ and $B_{i}=\left\{j \in[n]: x_{i j}=1\right\}$, so \mathbf{x}_{i} is the characteristic vector of B_{i}. Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. One denotes as \mathbf{D}_{X} the incidence structure $([n], \mathbb{B})$.

Remark 2.8. If X is a spherical 2-distance set centered at $\mathbf{0}$, then the incidence structure \mathbf{D}_{X} is a quasisymmetric 0-design and Γ_{X} is its block graph.

Proposition 2.9. Let X be a 2-distance set in H_{n}, and let $h_{1}<h_{2}$ be the nonzero distances in X. If the graph Γ_{X} is connected, then $h_{2} \leq 2 h_{1}$.

Proof. Suppose $h_{2}>2 h_{1}$. If x, y, and z are distinct vertices of Γ_{X} such that $x \sim y$ and $x \sim z$, then the triangle inequality implies that $y \sim z$. Therefore, all neighbors of x form a connected component of Γ_{X}. Since Γ_{X} is not a complete graph, it is not connected; a contradiction.

Definition 2.10. One will say that a spherical 2-distance set $X \subset H_{n}$ represents a graph Γ in H_{n} if Γ is isomorphic to Γ_{X}. The least n for which such a set X exists is called the binary spherical representation number of Γ and is denoted as $\operatorname{bsr}(\Gamma)$.

Proposition 2.11. Every simple graph Γ, except null graphs and complete graphs, admits a spherical representation in H_{n} if n is sufficiently large.

Proof. Let Γ be a noncomplete graph of order b with $e \geq 1$ edges, and let $N=\left[n_{i j}\right]$ be an incidence matrix of Γ. For $i=1,2, \ldots, b$, let $X_{i}=\left\{j \in[e]: n_{i j}=1\right\}$. Let $k=\max \left\{\left|X_{i}\right|: 1 \leq\right.$ $i \leq b\}$, and let $Y_{1}, Y_{2}, \ldots, Y_{b}$ be pairwise disjoint subsets of $\{e+1, e+2, \ldots, e+b k\}$ such that $\left|Y_{i}\right|=k-\left|X_{i}\right|$. For $i=1,2, \ldots, b$, let $\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i, e+b k}\right) \in H_{e+b k}$, where $x_{i j}=1$ if and only if $j \in X_{i} \cup Y_{i}$. Then, for $1 \leq i<j \leq b$, the distance between points \mathbf{x}_{i} and \mathbf{x}_{j} is equal to $2(k-2)$ if the i th and j th vertices of Γ are adjacent, and it is equal to $2 k$ otherwise. Since Γ is not a complete graph, the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{b}\right\}$ is a 2-distance set representing Γ in $H_{e+b k}$, and this set lies on a sphere of radius k centered at 0 .

If the graph Γ in the above proof is regular, we do not need to add columns to its incidence matrix N.

Proposition 2.12. If Γ is a noncomplete regular graph with $e \geq 1$ edges, then $\operatorname{bsr}(\Gamma) \leq e$.
Theorem 5.1 implies that if Γ is a cycle, then its binary spherical representation number equals the number of edges.

For any graph G, the line graph of G, denoted as $L(G)$, is the graph whose vertex set is the edge set of G; two distinct vertices of $L(G)$ are adjacent if and only if the corresponding edges of G share a vertex. Line graphs are precisely the graphs representable by spherical 2-distance sets of radius 2 .

Proposition 2.13. A graph Γ can be represented in H_{n} by a spherical 2-distance sets of radius 2 if and only if Γ is isomorphic to the line graph of a graph of order n.

Proof. If $\Gamma=L(G)$, where G is a graph of order n, then the columns of an incidence matrix of G form a 2-distance subset of H_{n} of radius 2 representing Γ. Conversely, let X be a 2-distance subset of H_{n} of radius 2 centered at 0 and representing a graph Γ. Let G be a graph whose incidence matrix coincides with an incidence matrix of \mathbf{D}_{X}. Then $|G|=n$ and Γ is isomorphic to $L(G)$.

Remark 2.14. Let G be a regular graph of degree r, and let X be the set of columns of an incidence matrix N of G. Then D_{X} is a quasisymmetric 1-design (with block size 2 and replication number r) and N is its incidence matrix. If $r \geq 3$, this design is non-square. The next result (Proposition 2.3 in [5]) yields a necessary and sufficient condition for this 1-design to be nonsingular.

Proposition 2.15. If N is an incidence matrix of a graph Γ of order n and c is the number of connected components of Γ, then

$$
\operatorname{rank}\left(N N^{\top}\right)= \begin{cases}n, & \text { if } \Gamma \text { is not a bipartite graph, } \tag{2.1}\\ n-c, & \text { if } \Gamma \text { is a bipartite graph. }\end{cases}
$$

3. Lower Bounds

The main tool in obtaining a lower bound on $\operatorname{bsr}(\Gamma)$ is the following classical theorem of distance geometry.

Definition 3.1. Let $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{b}\right\}$ be a set of b points in \mathbb{R}^{n}. The Schoenberg matrix of X with respect to a point $\mathbf{z} \in \mathbb{R}^{n}$ is the matrix $S_{\mathbf{z}}(X)=\left[s_{i j}\right]$ of order b with

$$
\begin{equation*}
s_{i j}=\left\|\mathbf{z}-\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{z}-\mathbf{x}_{j}\right\|^{2}-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \tag{3.1}
\end{equation*}
$$

Theorem 3.2 (see $[6,7]$). If X is a finite set in \mathbb{R}^{n}, then, for any $\mathbf{z} \in \mathbb{R}^{n}$, the Schoenberg matrix $S_{\mathbf{z}}(X)$ is positive semidefinite and $\operatorname{rank}\left(S_{\mathbf{z}}(X)\right) \leq n$.

We will now derive a sharp lower bound on the binary spherical representation number of a connected regular graph.

Theorem 3.3. Let Γ be a connected regular graph, and let m be the multiplicity of the least eigenvalue of Γ. Then $\operatorname{bsr}(\Gamma) \geq|\Gamma|-m$. Moreover, $\operatorname{bsr}(\Gamma)=|\Gamma|-m$ if and only if Γ is the block graph of a nonsquare nonsingular quasisymmetric 1-design.

Proof. Let $\operatorname{bsr}(\Gamma)=n$, and let Γ be isomorphic to Γ_{X}, where X is a spherical 2-subset of H_{n}. Let $h_{1}<h_{2}$ be the nonzero distances in X and k the radius of a sphere in H_{n} containing X. Without loss of generality, we assume that this sphere is centered at 0 . Then $\mathbf{z}=(k / n, k / n, \ldots, k / n)$ is the center of an Euclidean sphere containing X. The radius of this sphere is equal to $\sqrt{k(n-k) / n}$. Let A be an adjacency matrix of Γ_{X}. Then the matrix

$$
\begin{equation*}
S=S_{\mathbf{z}}(X)=h_{2} I+\left(h_{2}-h_{1}\right) A+\left(\frac{2 k(n-k)}{n}-h_{2}\right) J \tag{3.2}
\end{equation*}
$$

is the Schoenberg matrix of the set X with respect to \mathbf{z}.
Let d be the degree of $\Gamma, \rho_{0}=d>\rho_{1}>\cdots>\rho_{s}=\rho$ all distinct eigenvalues of A, and $m_{0}=1, m_{1}, \ldots, m_{s}=m$ their respective multiplicities. Then the eigenvalues of S are

$$
\begin{equation*}
\sigma_{0}=\frac{2|\Gamma| k(n-k)}{n}-d h_{1}-(|\Gamma|-d-1) h_{2} \tag{3.3}
\end{equation*}
$$

with 1 as an eigenvector, and, for $i=1,2, \ldots, s$,

$$
\begin{equation*}
\sigma_{i}=h_{2}+\left(h_{2}-h_{1}\right) \rho_{i} \tag{3.4}
\end{equation*}
$$

(with eigenvectors orthogonal to $\mathbf{1}$). For $0 \leq i \leq s$, the multiplicity of σ_{i} is at least m_{i}. (It is greater than m_{i} if $\sigma_{i}=\sigma_{0}, i \neq 0$.)

Theorem 3.2 implies that all eigenvalues of S are nonnegative, so $\sigma_{i}>0$ for $1 \leq i \leq s-1$. Therefore, $\operatorname{rank}(S) \geq \sum_{i=1}^{s-1} m_{i}=|\Gamma|-m-1$. On the other hand, since both X and \mathbf{z} lie in the hyperplane $x_{1}+x_{2}+\cdots+x_{n}=k$, Theorem 3.2 implies that $\operatorname{rank}(S) \leq n-1$, so $n \geq|\Gamma|-m$.

Suppose now that $n=|\Gamma|-m$. Then $\operatorname{rank}(S)=|\Gamma|-m-1$, and therefore $\sigma_{s}=\sigma_{0}=0$. From $\sigma_{0}=0$ we derive

$$
\begin{equation*}
2|\Gamma| k(n-k)=n\left(d h_{1}+(|\Gamma|-d-1) h_{2}\right) . \tag{3.5}
\end{equation*}
$$

The incidence structure $\mathbf{D}_{X}=([n], \mathcal{B})$ has n points, $|\Gamma|$ blocks, all of cardinality k, and two intersection numbers, $\alpha=k-h_{2} / 2<\beta=k-h_{1} / 2$. The graph Γ is the block graph of \mathbf{D}_{X}. Using $h_{1}=2(k-\beta)$ and $h_{2}=2(k-\alpha)$, we transform (3.5) into

$$
\begin{equation*}
(\beta-\alpha) d=k\left(\frac{|\Gamma| k}{n}-1\right)-\alpha(|\Gamma|-1) \tag{3.6}
\end{equation*}
$$

For each $i \in[n]$, let r_{i} denote the number of blocks of \mathbf{D}_{X} containing i. Fix a block C and count in two ways pairs (B, i), where $B \in \mathcal{B}, B \neq C$, and $i \in C \cap B$:

$$
\begin{equation*}
d \beta+(|\Gamma|-d-1) \alpha=\sum_{i \in C}\left(r_{i}-1\right) \tag{3.7}
\end{equation*}
$$

Using this equation and (3.6), we derive

$$
\begin{equation*}
\sum_{i \in C} r_{i}=d \beta+(|\Gamma|-d-1) \alpha+k=\frac{|\Gamma| k^{2}}{n} \tag{3.8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{C \in B} \sum_{i \in C} r_{i}=\frac{|\Gamma|^{2} k^{2}}{n} \tag{3.9}
\end{equation*}
$$

Since each $i \in[n]$ contributes r_{i}^{2} into the left-hand side of this equation, we obtain that

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i}^{2}=\frac{|\Gamma|^{2} k^{2}}{n} \tag{3.10}
\end{equation*}
$$

On the other hand, counting in two ways pairs (i, B) with $B \in \mathcal{B}$ and $i \in B$ yields

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i}=\sum_{B \in \mathcal{B}}|B|=|\Gamma| k \tag{3.11}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{i=1}^{n} r_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2} \tag{3.12}
\end{equation*}
$$

Therefore, $r_{i}=r=|\Gamma| k / n$ for $i=1,2, \ldots, n$. Thus, \mathbf{D}_{X} is a quasisymmetric 1-design. (Note that we have derived this result from (3.5) rather than from a stronger equation $\operatorname{rank}(S)=$ $|\Gamma|-m-1$.) Since $n<|\Gamma|$, the 1-design D_{X} is non-square, so we have to show that it is nonsingular. The incidence matrix N of \mathbf{D}_{X} satisfies the equation

$$
\begin{equation*}
N^{\top} N=(k-\alpha) I+(\beta-\alpha) A+\alpha J \tag{3.13}
\end{equation*}
$$

Therefore, the eigenvalues of $N^{\top} N$ are

$$
\begin{equation*}
\tau_{0}=k-\alpha+(\beta-\alpha) \rho_{0}+\alpha|\Gamma|, \quad \tau_{i}=k-\alpha+(\beta-\alpha) \rho_{i} \quad(1 \leq i \leq s) \tag{3.14}
\end{equation*}
$$

Since $\tau_{0}>\tau_{1}>\cdots>\tau_{s}$ and since $\operatorname{rank}\left(N^{\top} N\right) \leq n$, we obtain that $\tau_{s}=0$ and $\tau_{i}>0$ for $0 \leq i \leq$ $s-1$. Since the multiplicity of τ_{s} is the same as the multiplicity of ρ_{s}, we have $\operatorname{rank}\left(N^{\top} N\right)=n$. Therefore, $\operatorname{rank}\left(N N^{\top}\right)=n$, and then $\operatorname{det}\left(N N^{\top}\right) \neq 0$, that is, \mathbf{D}_{X} is nonsingular.

Suppose now that Γ is the block graph of a nonsquare nonsingular quasisymmetric 1-design \mathbf{D} with intersection numbers $\alpha<\beta$. The design \mathbf{D} has less points than blocks, so let b be the number of blocks and $b-m$ the number of points. We have to show that m is the multiplicity of the least eigenvalue of Γ and that $\operatorname{bsr}(\Gamma)=b-m$.

Let N be an incidence matrix of \mathbf{D} and X the set of all columns of N regarded as points in H_{b-m}. Then X is a 2-distance set and \mathbf{D} is \mathbf{D}_{X}. The set X lies on a sphere of radius k centered at 0 , where k is the cardinality of each block of \mathbf{D}, and the nonzero distances in X are $h_{1}=2(k-\beta)$ and $h_{2}=2(k-\alpha)$.

Matrix N satisfies (3.13) with A being an adjacency matrix of Γ. Let $\rho_{0}>\rho_{1}>\cdots>\rho_{s}$ be all distinct eigenvalues of A. Then the eigenvalues of $N^{\top} N$ are given by (3.14). Since N^{\top} has more rows than columns, we have $\tau_{s}=0$. Since $\operatorname{det}\left(N N^{\top}\right) \neq 0$, the sum of the multiplicities of the nonzero eigenvalues of $N^{\top} N$ is $b-m$, so the multiplicity of τ_{s} is equal to m. Therefore, the multiplicity of ρ_{s} is equal to m, and then $\operatorname{bsr}(\Gamma) \geq b-m$. Since X is in H_{b-m}, we have $\operatorname{bsr}(\Gamma)=b-m$.

It has been shown in the course of this proof that if $\operatorname{bsr}(\Gamma)=|\Gamma|-m$, then $\sigma_{0}=0$, which implies (3.5), and $\sigma_{s}=0$, which implies

$$
\begin{equation*}
\frac{h_{2}}{h_{1}}=\frac{\rho}{\rho+1} \tag{3.15}
\end{equation*}
$$

In fact, (3.15) must hold whenever $\operatorname{bsr}(\Gamma)<|\Gamma|$, because otherwise $\operatorname{rank}(A) \geq|\Gamma|-1$ and then $\operatorname{bsr}(\Gamma) \geq|\Gamma|$. If $\operatorname{bsr}(\Gamma)=|\Gamma|$ and (3.15) does not hold, then $\sigma_{0}=0$. It has also been shown that if $\operatorname{bsr}(\Gamma)=|\Gamma|-m$, then the replication number of the corresponding 1-design is $|\Gamma| k /(b-m)$. We combine these observations in the following two theorems.

Theorem 3.4. Let Γ be a connected regular graph of order b and degree d, and let m be the multiplicity of the least eigenvalue ρ of Γ. Let $\operatorname{bsr}(\Gamma)=b-m$, and let Γ be isomorphic to Γ_{X}, where X is a 2-subset of H_{b-m} lying on a sphere of radius k centered at $\mathbf{0}$. Let $h_{1}<h_{2}$ be the nonzero distances in X. Then,
(i) $2 b k(b-m-k)=(b-m)\left(d h_{1}+(b-d-1) h_{2}\right)$;
(ii) $h_{2} / h_{1}=\rho /(\rho+1)$;
(iii) \mathbf{D}_{X} is a nonsquare nonsingular quasisymmetric 1-design with $b-m$ points, b blocks, block size k, replication number $b k /(b-m)$, and intersection numbers $k-h_{1} / 2$ and $k-h_{2} / 2$.

Theorem 3.5. Let Γ be a connected regular graph of order b and degree d, and let ρ be the least eigenvalue of Γ. Let $\operatorname{bsr}(\Gamma)=n$, and let Γ be isomorphic to Γ_{X}, where X is a 2-subset of H_{n} lying on
a sphere of radius k. Let $h_{1}<h_{2}$ be the nonzero distances in X :
(i) if $2 b k(n-k)=n\left(d h_{1}+(b-d-1) h_{2}\right)$, then \mathbf{D}_{X} is a quasisymmetric 1-design;
(ii) if $n<b$, then $h_{2} / h_{1}=\rho /(\rho+1)$;
(iii) if $n=b$ and $h_{2} / h_{1} \neq \rho /(\rho+1)$, then $2 k(b-k)=d h_{1}+(b-d-1) h_{2}$.

If $h_{2} / h_{1}=\rho /(\rho+1)$, then ρ is rational, so (ii) implies that the following useful result.
Corollary 3.6. If the least eigenvalue of a connected regular graph Γ is irrational, then $\operatorname{bsr}(\Gamma) \geq|\Gamma|$.
An infinite family of regular graphs attaining the lower bound of Theorem 3.3 is given in the following example.

Example 3.7. Let \mathbf{D} be a $(v, b, r, k, 1)$-design with $b \geq v+r$ and $k \geq 3$, and let \mathbf{D}^{\prime} be an incidence structure obtained by deleting from \mathbf{D} one point and all blocks containing this point. Then \mathbf{D}^{\prime} is a 1-design with $v-1$ points, $b-r>v-1$ blocks of cardinality k, replication number $r-1$, and intersection numbers 0 and 1 . Without loss of generality, we assume that the point set of \mathbf{D} is $[v]$, the deleted point is v, and the deleted blocks are

$$
\begin{equation*}
\{1,2, \ldots, k-1, v\},\{k, k+1, \ldots, 2 k-2, v\}, \ldots,\{v-k+1, v-k+2, \ldots, v\} . \tag{3.16}
\end{equation*}
$$

Let N be the corresponding incidence matrix of \mathbf{D}^{\prime}. Then $N N^{\top}$ is an $r \times r$ block matrix of $(k-1) \times(k-1)$ blocks with all diagonal blocks equal to $(r-1) I$ and all off-diagonal blocks equal J. The spectrum of $N N^{\top}$ consists of eigenvalues $(r-1) k$ of multiplicity $1, r-1$ of multiplicity $(k-2) r$, and $r-k$ of multiplicity $r-1$. Therefore, $\operatorname{det}\left(N N^{\top}\right) \neq 0$; that is, the design \mathbf{D}^{\prime} is nonsingular. The spectrum of $N^{\top} N$ is obtained by adjoining the eigenvalue 0 of multiplicity $b-r-v+1$ to the spectrum of $N N^{\top}$. Since $N^{\top} N=k I+A$, where A is an adjacency matrix of the block graph Γ of \mathbf{D}^{\prime}, we determine that the multiplicities of the largest and the smallest eigenvalues of A are 1 and $b-r-v+1$, respectively. Therefore, Γ is a connected regular graph and $\operatorname{bsr}(\Gamma)=v-1$.

4. Strongly Regular Graphs

For strongly regular graphs we first obtain a sharp upper bound for the binary spherical representation number.

Proposition 4.1. If Γ is a connected strongly regular graph of order n, then $\operatorname{bsr}(\Gamma) \leq n$.
Proof. Let Γ be an $\operatorname{srg}(n, d, \lambda, \mu)$, and let A be an adjacency matrix of Γ. Then $A^{2}=(d-\mu) I+$ $(\lambda-\mu) A+\mu J$. Therefore, $(A+I)^{2}=(d-\mu+1) I+(\lambda-\mu+2) A+\mu J$. Let X be the set of rows of $A+I$ regarded as points in H_{n}. Then the distance between two distinct points of X is equal to $2(d-\lambda-1)$ if the points correspond to adjacent vertices of Γ; otherwise, it is equal to $2(d-\mu+1)$. Thus, X is a 2-distance set in H_{n}, lying on a sphere of radius $d+1$ centered at 0 , and, if $\lambda \geq \mu-1$, then Γ is isomorphic to Γ_{X}.

If $\lambda \leq \mu-1$, then let Y be the set of rows of the matrix $J-A$. The distance between two distinct points of Y is equal to $2(d-\mu)$ if the points correspond to adjacent vertices of Γ; otherwise, it is equal to $2(d-\lambda)$. Therefore, Y is a 2-distance set in H_{n}, lying on a sphere of radius $n-d$ centered at O, and Γ is isomorphic to Γ_{Y}.

This proposition and Corollary 3.6 imply the next result.
Corollary 4.2. If the least eigenvalue of a strongly regular graph Γ of order n is irrational, then $\operatorname{bsr}(\Gamma)=n$.

Remark 4.3. The least eigenvalue of a strongly regular graph is irrational if and only if it an $\operatorname{srg}(n,(n-1) / 2,(n-5) / 4,(n-1) / 4)$, where $n \equiv 1(\bmod 4)$ is not a square. A graph with these parameters exists if and only if there exists a conference matrix of order $n+1$.

Example 4.4. Let Γ be the complement of the cycle C_{7}. The least eigenvalue of Γ is irrational, so $\operatorname{bsr}(\Gamma) \geq 7$. Suppose $\operatorname{bsr}(\Gamma)=7$, and let Γ be isomorphic to Γ_{X}, where X is a 2 -subset of H_{7} with nonzero distances $h_{1}<h_{2}$, lying on a sphere of radius k centered at 0 . Since h_{1} and h_{2} are even, $h_{2} \leq 7$ and $h_{2} \leq 2 h_{1}$ (Proposition 2.9), we have $h_{1}=2, h_{2}=4$ or $h_{1}=4, h_{2}=6$. In either case, Theorem 3.5(iii) yields an equation without integer solutions. Thus, $\operatorname{bsr}(\Gamma) \geq 8$, so the strong regularity in Proposition 4.1 is essential.

Remark 4.5. There are 167 nonisomorphic strongly regular graphs with parameters $(64,18,2,6)$ [8]. The least eigenvalue of these graphs is -6 of multiplicity 18. Theorem 3.3 and Proposition 4.1 imply that if Γ is any of these 167 graphs, then $46 \leq \operatorname{bsr}(\Gamma) \leq 64$. Therefore, there are nonisomorphic graphs with these parameters having the same binary spherical representation number.

Also, there are 41 nonisomorphic strongly regular graphs with parameters $(29,14,6,7)$ [8]. The least eigenvalue of these graphs is irrational, so by Corollary 4.2 the binary spherical representation number of all these graphs is 29 .

Theorem 3.3 for regular graphs can be rectified if the graph is strongly regular.
Theorem 4.6. Let Γ be a connected strongly regular graph of order b, and let m be the multiplicity of the least eigenvalue of Γ. Then $\operatorname{bsr}(\Gamma)=b-m$ if and only if Γ is the block graph of a quasisymmetric 2-design.

Proof. If Γ is the block graph of a quasisymmetric 2-design D, then Remark 2.6 and Theorem 3.3 imply that $\operatorname{bsr}(\Gamma)=b-m$.

Suppose now that $\operatorname{bsr}(\Gamma)=b-m$, and let X be a spherical 2-distance subset of H_{b-m} representing Γ. Let $h_{1}<h_{2}$ be the nonzero distances in X and k the radius of the sphere centered at $\mathbf{0}$ and containing X. Every block of the incidence structure $\mathbf{D}_{X}=([b-m], \mathcal{B})$ is of cardinality k, the intersection numbers of \mathbf{D} are $\alpha=k-h_{2} / 2<\beta=k-h_{1} / 2$, and the replication number of \mathbf{D} is $r=b k /(b-m)$ (Theorem 3.4). The graph Γ is the block graph of D. Let $\rho_{0}=d>\rho_{1}>\rho_{2}$ be the eigenvalues of Γ. Since Γ is connected, the multiplicity of ρ_{0} is 1. Since the multiplicity of ρ_{2} is m, the multiplicity of ρ_{1} is $b-m-1$.

Let A be an adjacency matrix of Γ. Theorem 3.4(ii) implies that $(\beta-\alpha) \rho_{2}=(1 / 2)\left(h_{1}-\right.$ $\left.h_{2}\right) \rho_{2}=-(k-\alpha)$. Since $\operatorname{Tr}(A)=d+(b-m-1) \rho_{1}+m \rho_{2}=0$, we use Theorem 3.4(i) to derive that

$$
\begin{equation*}
(\beta-\alpha) \rho_{1}=\alpha-k+r-\lambda \tag{4.1}
\end{equation*}
$$

where $\lambda=r(k-1) /(b-m-1)$. Since $k<b-m$, we have $\lambda<r$.

Let N be an incidence matrix of \mathbf{D}_{X}. Then

$$
\begin{gather*}
N^{\top} N J=N N^{\top} J=k r J, \tag{4.2}\\
N^{\top} N=(k-\alpha) I+(\beta-\alpha) A+\alpha J .
\end{gather*}
$$

From these equations we determine the eigenvalues of $N^{\top} N: \tau_{0}=k r, \tau_{1}=k-\alpha+(\beta-$ a) $\rho_{1}=r-\lambda$, and $\tau_{2}=k-\alpha+(\beta-\alpha) \rho_{2}=0$. Their respective multiplicities are $1, b-m-1$, and m. Therefore, the eigenvalues of $N N^{\top}$ are τ_{0} of multiplicity 1 and τ_{1} of multiplicity $b-m-1$. Since $N N^{\top} J=k r J$, the eigenspace E_{0} of $N N^{\top}$ corresponding to the eigenvalue τ_{0} is generated by 1. Therefore, $E_{1}=E_{0}^{\perp}$ is the eigenspace corresponding to the eigenvalue τ_{1}. On the other hand, the matrix $M=(r-\lambda) I+\lambda J$ has the same eigenvalues with the same respective eigenspaces. Thus, $N N^{\top}=M$, and therefore \mathbf{D}_{X} is a quasisymmetric 2-design with intersection numbers α and β. The graph Γ is the block graph of this design.

Example 4.7. The Cocktail Party graph $\mathrm{CP}(n)$ has $2 n$ vertices split into n pairs with two vertices adjacent if and only if they are not in the same pair. It is the block graph of a quasisymmetric 2 -design if and only if the design is a Hadamard 3-design with $n+1$ points (cf. [4, Theorem 8.2.23]). The least eigenvalue of $\mathrm{CP}(n)$ is -2 of multiplicity $n-1$. By Theorem 4.6, $\operatorname{bsr}(\mathrm{CP}(n)) \geq n+1$ and $\operatorname{bsr}(\mathrm{CP}(n))=n+1$ if and only there exists a Hadamard matrix of order $n+1$. This example shows that it is hard to expect a simple general method for computing the binary spherical representation number of a strongly regular graph.

5. Line Graphs

In this section we determine the binary spherical representation number for the line graphs of regular graphs. If N is an incidence matrix of a graph G, then $N^{\top} N=2 I+A$, where A is an adjacency matrix of the line graph $\Gamma=L(G)$. Let G be connected and have n vertices and e edges. If $e>n$, then the least eigenvalue of $N^{\top} N$ is 0 , and therefore the least eigenvalue of Γ is $\rho=-2$. Since matrices $N N^{\top}$ and $N^{\top} N$ have the same positive eigenvalues, Proposition 2.15 implies that the multiplicity of ρ is equal to $e-n$ if the graph G is not bipartite, and it is equal to $e-n+1$ if G is a connected bipartite graph. If $e=n$, then G is a cycle, so $\Gamma=C_{n}$ is a cycle of order n too. If n is even, then the least eigenvalue of C_{n} is -2 of multiplicity 1 ; if $n \geq 5$ is odd, then the least eigenvalue of C_{n} is irrational. See [9] for details.

Theorem 5.1. If Γ is the line graph of a connected regular graph of order $n \geq 4$, then $\operatorname{bsr}(\Gamma)=n$.
Proof. Let Γ be the line graph of a connected regular graph G of order $n \geq 4$ and degree d. Then Γ is a connected regular graph of order $n d / 2$ and degree $2 d-2$. The columns of an incidence matrix of G form a spherical 2-distance set in H_{n} representing Γ, so $\operatorname{bsr}(\Gamma) \leq n$.

Suppose first that $d=2$, that is, G is C_{n}, and that n is odd. Then the least eigenvalue of Γ is irrational. Therefore, $\operatorname{bsr}(\Gamma) \geq n$ by Corollary 3.6 , $\operatorname{so} \operatorname{bsr}(\Gamma)=n$.

Suppose now that $d \geq 3$ and the graph G is not bipartite. From Proposition 2.15 , the multiplicity of the least eigenvalue of Γ is $n d / 2-n$, and then Theorem 3.3 implies that $\operatorname{bsr}(\Gamma) \geq$ n, $\operatorname{so} \operatorname{bsr}(\Gamma)=n$.

Suppose finally that G is a bipartite graph (this includes the case $G=C_{n}$ with even $n)$. Then the least eigenvalue of Γ is -2 and its multiplicity is $n d / 2-n+1$. Therefore, by

Theorem 3.3, $\operatorname{bsr}(\Gamma) \geq n-1$. Suppose $\operatorname{bsr}(\Gamma)=n-1$. Theorem 3.4(ii) implies that $h_{2}=2 h_{1}$ and then the condition (i) of Theorem 3.4 can be rewritten as

$$
\begin{equation*}
n k(n-1-k)=h_{1}(n-1)(n-2) \tag{5.1}
\end{equation*}
$$

If n is odd, then $(n-1)(n-2)$ and n are relatively prime; if n is even, then $(n-1)(n-2) / 2$ and $n / 2$ are relatively prime. In either case, $(n-1)(n-2) / 2$ divides $k(n-1-k)$. However, $k(n-1-k) \leq(n-1)^{2} / 4<(n-1)(n-2) / 2$. Therefore, $\operatorname{bsr}(\Gamma)=n$.

The graph $L_{2}(n)$ is the line graph of the bipartite graph with the bipartition sets of cardinality n. The following corollary generalizes the well-known result [10] that these graphs are not block graphs of quasisymmetric 2-designs.

Corollary 5.2. The line graph of a connected regular graph G with more than three vertices is the block graph of a nonsquare nonsingular quasisymmetric 1-design if and only if G is not a cycle and is not a bipartite graph.

Remark 5.3. If G is a semiregular connected bipartite graph of order n, then the graph $L(G)$ is regular and $\operatorname{bsr}(L(G))=n$ or $n-1$. We do not know of any example when $\operatorname{bsr}(L(G))=n-1$.

There exist regular graphs that are cospectral with a line graph but are not line graphs. The complete list of such graphs is given in the following theorem.

Theorem 5.4 (see [11]). Let a regular graph Γ be cospectral with the line graph $L(G)$ of a connected graph G. If Γ is not a line graph, then G is a regular 3-connected graph of order 8 or $K_{3,6}$ or the semiregular bipartite graph of order 9 with 12 edges.

Since $\operatorname{bsr}(L(G))<10$ for every graph G listed in Theorem 5.4, the next theorem implies that if a connected regular graph Γ is cospectral with a line graph $L(G)$ and if $\operatorname{bsr}(\Gamma)=\operatorname{bsr}(L(G))$, then Γ is a line graph. The proof is based on the following theorem according to Beineke [12].

Theorem 5.5. A graph is a line graph if and only if it does not contain as an induced subgraph any of the nine graphs of Figure 1.

Theorem 5.6. Let the least eigenvalue of a connected regular graph Γ be equal to -2 . If $\operatorname{bsr}(\Gamma)<10$, then Γ is a line graph or the Petersen graph or $C P(n)$ with $4 \leq n \leq 7$.

Proof. The Petersen graph P is the block graph the quasisymmetric $(6,10,5,3,2)$-design, so $\operatorname{bsr}(P)=6$. We also have $\operatorname{bsr}(\mathrm{CP}(7))=8$ (Example 4.7). For $n=4,5$, and $6, \mathrm{CP}(n)$ is an induced subgraph of $\mathrm{CP}(8)$, so $\operatorname{bsr}(\mathrm{CP}(n)) \leq 8$.

Let $\operatorname{bsr}(\Gamma)=n \leq 9$, and let a 2 -distance set X represent Γ in H_{n}. Let $h_{1}<h_{2}$ be the nonzero distances in X, and let X lie on a sphere of radius k centered at 0 . Let f be an isomorphism from Γ to Γ_{X}. For each vertex x of Γ we regard $f(x)$ as a k-subset of $[n]$.

Suppose Γ is not a line graph. Since the least eigenvalue of Γ is -2 , Theorem 3.4 implies that $h_{2}=2 h_{1}$. Since $n \leq 9$, we assume that $k \leq 4$. Proposition 2.13 implies that $k \neq 2$, so $k=3$ or 4 . By Theorem 5.5, Γ contains one of the nine graphs of Figure 1 as an induced subgraph. All subgraphs of Γ considered throughout the proof are assumed to be induced subgraphs.

Figure 1

Case $1\left(h_{1}=4\right.$. Then $h_{2}=8$, and therefore $\left.k=4\right)$. If Γ contains a coclique $x y z$ of size 3 , then $|f(x) \cup f(y) \cup f(z)|=12>n$. This rules out subgraphs F_{1} and F_{4}. If the subgraph induced by Γ on a set $x y z$ of three vertices has only one edge, then $|f(x) \cup f(y) \cup f(z)|=10>n$. This rules out subgraphs $F_{2}, F_{5}, F_{6}, F_{7}, F_{8}$, and F_{9}.

Suppose Γ contains F_{3} as a subgraph. Suppose also that every subgraph of order 3 of Γ has at least two edges. We assume without loss of generality that $f(q)=1234$ and $f(s)=5678$. Let x be a vertex of $\Gamma, x \neq q$ and $x \neq s$. Since the subgraph with the vertex set $q s x$ has at least two edges, x is adjacent to both q and s. Therefore, $f(x)$ is a 4 -subset of 12345678 for every vertex x of Γ. This implies that x is not adjacent to at most one other vertex. Since Γ is regular and not complete, Γ is a cocktail party graph $\mathrm{CP}(m)$. Therefore, $m+1 \leq \operatorname{bsr}(\Gamma) \leq 9$ and $\operatorname{bsr}(\Gamma) \neq m+1$ for $m=8$ (Example 4.7). Since $\mathrm{CP}(2)$ and $\mathrm{CP}(3)$ are line graphs (of C_{4} and K_{4}, resp.), we have $4 \leq n \leq 7$.

Case $2\left(h_{1}=2\right.$ and $\left.k=3\right)$. Suppose Γ contains F_{1} as a subgraph. We let $f(p)=123, f(q)=124$, $f(r)=135$, and $f(s)=236$. Since the degree of q in F_{1} is 1 and the degree of p is $3, \Gamma$ has vertices q_{1} and q_{2} adjacent to q but not to p. Then $f\left(q_{1}\right)=146$ and $f\left(q_{2}\right)=245$. Similarly, we find vertices r_{1} and r_{2} adjacent to r but not to p and vertices s_{1} and s_{2} adjacent to s but not to p and assume that $f\left(r_{1}\right)=345, f\left(r_{2}\right)=156, f\left(s_{1}\right)=256$, and $f\left(s_{2}\right)=346$. The set U of the 10 vertices that we have found is the vertex set of a Petersen subgraph of Γ. The set $f(U)$ consists of ten 3-subsets of 123456, no two of which are disjoint. Therefore, if Γ has a vertex $v \notin U$, then $f(v)$ is disjoint from at least one of the sets $f(x), x \in U$; a contradiction. Thus, Γ is the Petersen graph.

If Γ contains F_{2} as a subgraph, we let $f(p)=123$ and $f(r)=145$. Then $f(q), f(s), f(t) \in$ $\{124,125,134,135\}$. Since $|f(q) \cap f(s)|=|f(t) \cap f(s)|=1$, there is no feasible choice for $f(s)$.

If Γ contains F_{3} as a subgraph, we assume that $f(p)=123, f(q)=124$, and $f(s)=135$. Then $f(r), f(t) \in\{125,134\}$, and therefore $|f(r) \cap f(t)| \neq 2$.

Let Γ contains F_{4} as a subgraph. Suppose first that $f(p) \cap f(q) \cap f(s) \neq \emptyset$. Then we assume that $f(p)=123, f(q)=145, f(s)=167, f(t)=124$, and $f(u)=136$, and there is no feasible choice for $f(r)$. Suppose now that $f(p) \cap f(q) \cap f(s)=f(r) \cap f(q) \cap f(s)=\emptyset$. We assume that $f(p)=123, f(q)=145$, and $f(s)=246$. Then $f(t)=125$ or 134. If $f(t)=125$, then $f(u)=234$ and $f(r)=235$. Γ has distinct vertices q_{1} and q_{2} adjacent to q but not to r, and we have $f\left(q_{1}\right)=f\left(q_{2}\right)=156$; a contradiction. If $f(t)=134$, then $f(u)=126$ and $f(r)=136$. Γ has distinct vertices q_{1} and q_{2} adjacent to q but not to t, and we have again $f\left(q_{1}\right)=f\left(q_{2}\right)=156$.

If Γ contains F_{5} as a subgraph, we let $f(p)=123, f(q)=145$, and $f(t)=124$. Then $f(r)=234$ or 126 , and in either case $f(s)=f(u)$.

If Γ contains F_{6} as a subgraph, we let $f(p)=123, f(q)=124$, and $f(s)=135$. Then we assume that $f(r)=125$. This implies $f(u)=235$ and $f(t)=126$. Γ has distinct vertices q_{1} and q_{2} adjacent to q but not to r. Then $f\left(q_{1}\right)=134$ and $f\left(q_{2}\right)=234$, so both q_{1} and q_{2} are adjacent to p. Since $q_{1} \nsucc u$ and $q_{2} \sim u$, Γ has three distinct vertices u_{i} adjacent to u but not to p. However, $f\left(u_{i}\right)=245$ for all these vertices.

If Γ contains F_{8} as a subgraph, we let $f(p)=123$ and $f(q)=124$ and assume that $f(s)=156$ or 345 . If $f(s)=156$, then $f(r)=135, f(u)=136$, and there is no feasible choice for $f(t)$. If $f(s)=345$, then $f(r)=135, f(u)=235$, and again there is no feasible choice for $f(t)$.

Suppose Γ contains F_{7} or F_{9} as a subgraph. We let $f(p)=123, f(q)=124$, and $f(t)=$ 135. Then $f(r)=146$ or 245 and $f(s)=156$ or 345 , respectively. In either case, there is no feasible choice for $f(u)$.

Case $3\left(h_{1}=2\right.$ and $\left.k=4\right)$. Suppose Γ contains F_{1} as a subgraph. We let $f(p)=1234, f(q)=$ 1235, $f(r)=1246$, and $f(s)=1347$. Γ has vertices q_{1} and q_{2} adjacent to q but not to p. Then $f\left(q_{1}\right)=1257$ and $f\left(q_{2}\right)=1356$. Similarly, we find vertices r_{1} and r_{2} adjacent to r but not to p and vertices s_{1} and s_{2} adjacent to s but not to p and assume that $f\left(r_{1}\right)=1267, f\left(r_{2}\right)=1456$, $f\left(s_{1}\right)=1367$, and $f\left(s_{2}\right)=1457$. The ten vertices that we have found form a Petersen subgraph of Γ. If $1 \in f(x)$ for every vertex x of Γ, then we delete 1 from each $f(x)$ and refer to Case 2. Suppose that there is a vertex x with $1 \notin f(x)$. Then the 4 -set $f(x)$ must meet each of the sets $234,235,246,347,257,356,267,456,367$, and 457 in at least two points. Thus, there is no feasible choice for $f(x)$.

If Γ contains F_{2} as a subgraph, we let $f(p)=1234, f(q)=1235$, and $f(r)=1256$. Then $f(s)=1246$ and there is no feasible choice for $f(t)$.

If Γ contains F_{3} as a subgraph, we assume that $f(p)=1234, f(q)=1235$, and $f(s)=$ 1246. Then $f(r), f(t) \in\{1236,1245\}$, and therefore $|f(r) \cap f(t)|=2$; a contradiction.

If Γ contains F_{4} as a subgraph, we let $f(p)=1234, f(t)=1235, f(u)=1246, f(r)=1236$, and $f(q)=1257$. Then $f(s)=1456$. Let s_{1} and s_{2} be vertices of Γ adjacent to s but not to u. Then $f\left(s_{1}\right)=1345$ and $f\left(s_{2}\right)=1356$, and there is no feasible choice for $f(v)$, where $v \sim q$ and $v \nsim t$.

If Γ contains F_{5} as a subgraph, we let $f(p)=1234, f(q)=1256$, and $f(t)=1235$. Then we may assume that either $f(s)=1346$ and $f(u)=2346$ or $f(s)=1247$ and $f(u)=1248$. In either case, there is no feasible choice for $f(r)$.

Suppose Γ contains F_{6} as a subgraph. We let $f(p)=1234$ and $f(r)=1235$. Then $f(q), f(s), f(t), f(u) \in\{1245,1345,2345\} \cup\{123 \alpha: \alpha \geq 6\}$. Since the subgraph induced on $q s t u$ is triangle-free, we let $f(q)=1236, f(t)=1237, f(s)=1245$, and $f(u)=1345$. Let q_{1} and q_{2} be distinct vertices of Γ adjacent to q but not to p. Then $f\left(q_{i}\right) \in\{1256,1356,2356\}$, so both q_{1} and q_{2} are adjacent to r but not to t. Therefore, Γ has at least four vertices t_{i} adjacent to t but not to r. However, $f\left(t_{i}\right) \in\{1247,1347,2347\}$; a contradiction.

If Γ contains F_{8} as a subgraph, we let $f(p)=1234, f(q)=1235$, and $f(r)=1246$. Then $(f(t), f(u)) \in\{(1236,1247),(1245,1346),(1245,2346)\}$, and there is no feasible choice for $f(s)$.

Suppose Γ contains F_{7} or F_{9} as a subgraph. We let $f(p)=1234, f(q)=1235$, and $f(t)=1246$. Then $f(r) \in\{1356,2356\} \cup\{125 \alpha: \alpha \geq 7\}$ and $f(s) \in\{1456,2456\} \cup\{126 \alpha: \alpha \geq 7\}$, so we assume that $(f(r), f(s)) \in\{(1257,1267),(1356,1456),(2356,2456)\}$. In each case, there is no feasible choice for $f(u)$.

Corollary 5.7. Let Γ be a connected regular graph cospectral with a line graph $L(G)$ of a connected graph G. If $\operatorname{bsr}(\Gamma)=\operatorname{bsr}(L(G))$, then Γ is a line graph.

Proof. If G is not an exceptional graph from Theorem 5.4 , then Γ is a line graph by that theorem. If G is one of the exceptional graphs, then $\operatorname{bsr}(L(G))<10$ and $L(G)$ has more edges than vertices. Therefore, the least eigenvalue of $L(G)$ is -2 . Since the Petersen graph and graphs $\mathrm{CP}(n)$ are not exceptional, Theorem 5.6 implies that Γ is a line graph.

Example 5.8. Let X be the set of all points of H_{5} with even sum of coordinates. It is a 2distance set and Γ_{X} is the complement of the Clebsch graph. The least eigenvalue of Γ_{X} is -2 , and, since it is not a line graph, Theorem 5.6 implies that $\operatorname{bsr}\left(\Gamma_{X}\right) \geq 10$ (so X is not spherical). Let Y be the set of all points $\left(y_{1}, y_{2}, \ldots, y_{10}\right) \in H_{10}$ such that $\sum_{i=1}^{5} y_{i}$ is even and $y_{i}+y_{i+5}=1$ for $i=1,2,3,4,5$. Then Y is a spherical 2 -distance set and Γ_{Y} is isomorphic to Γ_{X}. Thus, $\operatorname{bsr}\left(\Gamma_{X}\right)=10$.

Example 5.9. The Shrikhande graph is cospectral with $L_{2}(4)$, and the three Chang graphs are cospectral with $T(8)$, the line graph of K_{8}, so we have examples of cospectral strongly regular graphs with distinct binary spherical representation numbers. It can be shown that the binary spherical representation number of the Shrikhande graph is 12 .

References

[1] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Links, Cambridge University Press, Cambridge, UK, 1991.
[2] A. Roy, "Minimal Euclidean representations of graphs," Discrete Mathematics, vol. 310, no. 4, pp. 727733, 2010.
[3] E. R. van Dam and W. H. Haemers, "Which graphs are determined by their spectrum?" Linear Algebra and Its Applications, vol. 373, pp. 241-272, 2003.
[4] Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs, Cambridge University Press, Cambridge, UK, 2006.
[5] D. Cvetković, P. Rowlinson, and S. K. Simić, "Signless Laplacians of finite graphs," Linear Algebra and Its Applications, vol. 423, no. 1, pp. 155-171, 2007.
[6] I. J. Schoenberg, "Remarks to Maurice Fréchets article sur la definition axiomatique dune classe despace distanciés vectoriellement applicable sur lespace de Hilbert," Annals of Mathematics, vol. 36, no. 3, pp. 724-732, 1935.
[7] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford, UK, 1953.
[8] A. E. Brouwer, "Strongly regular graphs," in The CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, Eds., pp. 852-867, CRC Press, Boca Raton, Fla, USA, 2nd edition.
[9] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Applications, John Wiley \& Sons, New York, NY, USA, 1998.
[10] J. M. Goethals and J. J. Seidel, "Strongly regular graphs derived from combinatorial designs," Canadian Journal of Mathematics, vol. 22, pp. 597-614, 1970.
[11] D. M. Cvetković, M. Doob, I. Gutman, and A. Torgašev, Recent Results in the Theory of Graph Spectra, vol. 36 of Annals of Discrete Mathematics, North-Holland, Amsterdam, The Netherlands, 1988.
[12] L. W. Beineke, "Characterizations of derived graphs," Journal of Combinatorial Theory, vol. 9, pp. 129135, 1970.

