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For any 2-distance set X in the n-dimensional binary Hamming spaceHn, let ΓX be the graph with
X as the vertex set and with two vertices adjacent if and only if the distance between them is the
smaller of the two nonzero distances in X. The binary spherical representation number of a graph
Γ, or bsr(Γ), is the least n such that Γ is isomorphic to ΓX , where X is a 2-distance set lying on
a sphere in Hn. It is shown that if Γ is a connected regular graph, then bsr(Γ) ≥ b − m, where b
is the order of Γ and m is the multiplicity of the least eigenvalue of Γ, and the case of equality is
characterized. In particular, if Γ is a connected strongly regular graph, then bsr(Γ) = b − m if and
only if Γ is the block graph of a quasisymmetric 2-design. It is also shown that if a connected regular
graph is cospectral with a line graph and has the same binary spherical representation number as
this line graph, then it is a line graph.

1. Introduction

The subject of this paper is mutual relations between regular and strongly regular graphs,
2-distance sets in binary Hamming spaces, and quasisymmetric 1- and 2-designs.

The following relation between strongly regular graphs and 2-distance sets in
Euclidean spaces is well known (cf. [1, Theorem 2.23]): if m is the multiplicity of the least
eigenvalue of a connected strongly regular graph Γ of order n, then the vertex set of Γ can be
represented as a set of points, lying on a sphere in R

n−m−1, so that there exist positive real numbers
h1 < h2 such that the distance between any two distinct vertices is equal to h1 if they are adjacent as
vertices of Γ and it is equal to h2 otherwise. This result was recently generalized to all connected
regular graphs in [2]. It has also been proved in [2] that, given n andm, such a representation
of a connected regular graph in R

n−m−2 is not possible.
The notion of a 2-distance set representing a graph makes sense for any metric space,

and the spaces of choice in this paper are the binary Hamming spaces. We will show
(Theorem 3.3) that the dimension of a binary Hamming space, in which a connected regular
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graph Γ can be represented, is at least n −m, where n andm have the same meaning as in the
previous paragraph.

It is also well known that the block graph of a quasisymmetric 2-design is strongly
regular. However, many strongly regular graphs are not block graphs, and there is no
good characterization of the graphs that are block graphs of quasisymmetric 2-designs. The
situation changes if we consider the representation of graphs in binary Hamming spaces. We
will show (Theorem 4.6) that a connected strongly regular graph admits a representation in
the binary Hamming space of the minimal dimension n−m if and only if it is the block graph
of a quasisymmetric 2-design.

At the dawn of graph theory there was a short-lived conjecture that a graph is
determined by the spectrum of its adjacency matrix. Of course, it is not true (see a very
interesting discussion in [3]). However, some classes of graphs can be described by their
spectra. In particular, if a connected regular graph has the same spectrum as a line graph, then
it is almost always a line graph itself (all exceptions are known). We will show (Corollary 5.7)
that if a connected regular graph Γ is cospectral with a line graph L(G) of a graph G and,
beside that, the minimal dimension of a binary Hamming space, in which either graph can
be represented, is the same for Γ and L(G), then Γ is a line graph.

2. Preliminaries

All graphs in this paper are finite and simple, and all incidence structures are without
repeated blocks. For a graph Γ, |Γ| denotes the order of Γ, that is, the number of vertices.
If x and y are vertices of a graph Γ, then x ∼ y means that x and y are adjacent, while x/∼y
means that x and y are distinct and nonadjacent. Two graphs are said to be cospectral if their
adjacency matrices have the same characteristic polynomial.

Throughout the paper we use I to denote identity matrices and J to denote square
matrices with every entry equal to 1. The order of I and J will be always apparent from the
context. We denote as 0 and 1 vectors (columns, rows, points) with all entries (coordinates)
equal to 0 or all equal to 1, respectively. In examples throughout the paper we will use digits
and letters to denote elements of a small set and omit braces and commas when a subset of
such a set is presented; for example, we will write 1350b instead of {1, 3, 5, 0, b}.

If n is a positive integer, then [n] denotes the set {1, 2, . . . , n}.

Definition 2.1. The binary Hamming space Hn consists of all n-tuples a = (a1, a2, . . . , an) with
each ai equal to 0 or 1. When it is convenient, one identifies a with the set {i ∈ [n] : ai = 1}.
The distance h(a,b) between a and b = (b1, b2, . . . , bn) ∈ Hn is the number of indices i for
which ai /= bi. The Euclidean norm of a vector x ∈ R

n is denoted as ‖x‖, so, for a,b ∈ Hn,
h(a,b) = ‖a − b‖2.

A set X ⊂ Hn is called a 2-distance set if |{h(a,b) : a,b ∈ X, a/=b}| = 2.
A sphere with center c ∈ Hn and integer radius k, 1 ≤ k ≤ n − 1, is the set of all points

x ∈ Hn such that h(c, x) = k. Any subset of a sphere (of radius k) is called a spherical set (of
radius k).

Remark 2.2. The sphere of radius k inHn, centered at a, coincides (as a set)with the sphere of
radius n − k centered at the opposite point b = 1 − a. This allows us to assume, when needed,
that the radius of a sphere does not exceed n/2. A sphere of radius k in Hn centered at 0,
regarded as a subset of R

n, is the intersection of the unit cube and the hyperplane x1 + x2 +
· · · + xn = k.
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Remark 2.3. For n ≥ 2, the distance between any two points of a spherical set inHn is even.

Definition 2.4. An incidence structure (without repeated blocks) is a pair D = (V,B), where
V is a nonempty finite set (of points) and B is a nonempty set of subsets of V (blocks). The
cardinality of the intersection of two distinct blocks is called an intersection number of D.
An incidence structure is said to be quasisymmetric if it has exactly two distinct intersection
numbers. For a nonnegative integer t, an incidence structureD is called a t-design if all blocks
of D have the same cardinality and every set of t points is contained in the same number of
blocks. A t-design D with an (points versus blocks) incidence matrix N is called nonsquare
if N is not a square matrix, and it is called nonsingular if det(NN�)/= 0. A 2-design is also
called a (v, b, r, k, λ)-design, where v is the number of points, b is the number of blocks, r is
the replication number, that is, the number of blocks containing any given point, k is the block
size, and λ is the number of blocks containing any given pair of points.

With any quasisymmetric incidence structure we associate its block graph.

Definition 2.5. If D is a quasisymmetric incidence structure with intersection numbers α < β,
then the block graph of D is the graph whose vertices are the blocks of D and two vertices are
adjacent if and only if the corresponding blocks meet in β points.

Remark 2.6. If a regular graph, other than a complete graph, is connected, then it has at least
three distinct eigenvalues. It is strongly regular if and only if it has exactly three distinct
eigenvalues. If D is a quasisymmetric 2-design, then it is nonsquare and its block graph is
strongly regular. IfD is a quasisymmetric t-design with block size k and intersection numbers
α < β, then N�N = (k − α)I + (β − α)A + αJ , where N is an incidence matrix of D and A
is an adjacency matrix of the block graph of D. If D is a (v, b, r, k, λ)-design, then NN� =
(r −λ)I +λJ . Therefore, det(NN�) = rk(r −λ)v−1 /= 0, soD is nonsingular. For these and other
basic results on designs and regular graphs, see [1] or [4].

Definition 2.7. Let X = {x1, x2, . . . , xb} be a 2-distance set of cardinality b inHn, and let h1 < h2

be the nonzero distances inX. One denotes as ΓX the graphwhose vertex set isX and the edge
set is the set of all pairs {xi, xj} with h(xi, xj) = h1. For i = 1, 2, . . . , b, let xi = (xi1, xi2, . . . , xin)
and Bi = {j ∈ [n] : xij = 1}, so xi is the characteristic vector of Bi. Let B = {B1, B2, . . . , Bb}. One
denotes as DX the incidence structure ([n],B).

Remark 2.8. If X is a spherical 2-distance set centered at 0, then the incidence structure DX is
a quasisymmetric 0-design and ΓX is its block graph.

Proposition 2.9. Let X be a 2-distance set in Hn, and let h1 < h2 be the nonzero distances in X. If
the graph ΓX is connected, then h2 ≤ 2h1.

Proof. Suppose h2 > 2h1. If x, y, and z are distinct vertices of ΓX such that x ∼ y and x ∼ z,
then the triangle inequality implies that y ∼ z. Therefore, all neighbors of x form a connected
component of ΓX . Since ΓX is not a complete graph, it is not connected; a contradiction.

Definition 2.10. One will say that a spherical 2-distance set X ⊂ Hn represents a graph Γ in Hn

if Γ is isomorphic to ΓX . The least n for which such a set X exists is called the binary spherical
representation number of Γ and is denoted as bsr(Γ).

Proposition 2.11. Every simple graph Γ, except null graphs and complete graphs, admits a spherical
representation in Hn if n is sufficiently large.
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Proof. Let Γ be a noncomplete graph of order b with e ≥ 1 edges, and let N = [nij] be an
incidence matrix of Γ. For i = 1, 2, . . . , b, let Xi = {j ∈ [e] : nij = 1}. Let k = max{|Xi| : 1 ≤
i ≤ b}, and let Y1, Y2, . . . , Yb be pairwise disjoint subsets of {e + 1, e + 2, . . . , e + bk} such that
|Yi| = k − |Xi|. For i = 1, 2, . . . , b, let xi = (xi1, xi2, . . . , xi,e+bk) ∈ He+bk, where xij = 1 if and only
if j ∈ Xi ∪ Yi. Then, for 1 ≤ i < j ≤ b, the distance between points xi and xj is equal to 2(k − 2)
if the ith and jth vertices of Γ are adjacent, and it is equal to 2k otherwise. Since Γ is not a
complete graph, the set {x1, x2, . . . , xb} is a 2-distance set representing Γ in He+bk, and this set
lies on a sphere of radius k centered at 0.

If the graph Γ in the above proof is regular, we do not need to add columns to its
incidence matrix N.

Proposition 2.12. If Γ is a noncomplete regular graph with e ≥ 1 edges, then bsr(Γ) ≤ e.

Theorem 5.1 implies that if Γ is a cycle, then its binary spherical representation number
equals the number of edges.

For any graph G, the line graph of G, denoted as L(G), is the graph whose vertex set is
the edge set of G; two distinct vertices of L(G) are adjacent if and only if the corresponding
edges of G share a vertex. Line graphs are precisely the graphs representable by spherical
2-distance sets of radius 2.

Proposition 2.13. A graph Γ can be represented in Hn by a spherical 2-distance sets of radius 2 if
and only if Γ is isomorphic to the line graph of a graph of order n.

Proof. If Γ = L(G), where G is a graph of order n, then the columns of an incidence matrix of
G form a 2-distance subset ofHn of radius 2 representing Γ. Conversely, let X be a 2-distance
subset of Hn of radius 2 centered at 0 and representing a graph Γ. Let G be a graph whose
incidence matrix coincides with an incidence matrix of DX . Then |G| = n and Γ is isomorphic
to L(G).

Remark 2.14. Let G be a regular graph of degree r, and let X be the set of columns of an
incidence matrix N of G. Then DX is a quasisymmetric 1-design (with block size 2 and
replication number r) and N is its incidence matrix. If r ≥ 3, this design is non-square. The
next result (Proposition 2.3 in [5]) yields a necessary and sufficient condition for this 1-design
to be nonsingular.

Proposition 2.15. IfN is an incidence matrix of a graph Γ of order n and c is the number of connected
components of Γ, then

rank
(
NN�

)
=

⎧
⎨
⎩
n, if Γ is not a bipartite graph,

n − c, if Γ is a bipartite graph.
(2.1)

3. Lower Bounds

The main tool in obtaining a lower bound on bsr(Γ) is the following classical theorem of
distance geometry.



International Journal of Combinatorics 5

Definition 3.1. Let X = {x1, x2, . . . , xb} be a set of b points in R
n. The Schoenberg matrix of X

with respect to a point z ∈ R
n is the matrix Sz(X) = [sij] of order b with

sij = ‖z − xi‖2 +
∥∥z − xj

∥∥2 − ∥∥xi − xj
∥∥2. (3.1)

Theorem 3.2 (see [6, 7]). If X is a finite set in R
n, then, for any z ∈ R

n, the Schoenberg matrix
Sz(X) is positive semidefinite and rank(Sz(X)) ≤ n.

We will now derive a sharp lower bound on the binary spherical representation
number of a connected regular graph.

Theorem 3.3. Let Γ be a connected regular graph, and letm be the multiplicity of the least eigenvalue
of Γ. Then bsr(Γ) ≥ |Γ| − m. Moreover, bsr(Γ) = |Γ| − m if and only if Γ is the block graph of a
nonsquare nonsingular quasisymmetric 1-design.

Proof. Let bsr(Γ) = n, and let Γ be isomorphic to ΓX , whereX is a spherical 2-subset ofHn. Let
h1 < h2 be the nonzero distances inX and k the radius of a sphere inHn containingX. Without
loss of generality, we assume that this sphere is centered at 0. Then z = (k/n, k/n, . . . , k/n)
is the center of an Euclidean sphere containing X. The radius of this sphere is equal to√
k(n − k)/n. Let A be an adjacency matrix of ΓX . Then the matrix

S = Sz(X) = h2I + (h2 − h1)A +
(
2k(n − k)

n
− h2

)
J (3.2)

is the Schoenberg matrix of the set X with respect to z.
Let d be the degree of Γ, ρ0 = d > ρ1 > · · · > ρs = ρ all distinct eigenvalues of A, and

m0 = 1, m1, . . . , ms = m their respective multiplicities. Then the eigenvalues of S are

σ0 =
2|Γ|k(n − k)

n
− dh1 − (|Γ| − d − 1)h2, (3.3)

with 1 as an eigenvector, and, for i = 1, 2, . . . , s,

σi = h2 + (h2 − h1)ρi (3.4)

(with eigenvectors orthogonal to 1). For 0 ≤ i ≤ s, the multiplicity of σi is at least mi. (It is
greater than mi if σi = σ0, i /= 0.)

Theorem 3.2 implies that all eigenvalues of S are nonnegative, so σi > 0 for 1 ≤ i ≤ s−1.
Therefore, rank(S) ≥ ∑s−1

i=1 mi = |Γ| − m − 1. On the other hand, since both X and z lie in the
hyperplane x1 + x2 + · · · + xn = k, Theorem 3.2 implies that rank(S) ≤ n − 1, so n ≥ |Γ| −m.

Suppose now that n = |Γ| − m. Then rank(S) = |Γ| − m − 1, and therefore σs = σ0 = 0.
From σ0 = 0 we derive

2|Γ|k(n − k) = n(dh1 + (|Γ| − d − 1)h2). (3.5)
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The incidence structure DX = ([n],B) has n points, |Γ| blocks, all of cardinality k, and
two intersection numbers, α = k − h2/2 < β = k − h1/2. The graph Γ is the block graph ofDX .
Using h1 = 2(k − β) and h2 = 2(k − α), we transform (3.5) into

(
β − α

)
d = k

( |Γ|k
n

− 1
)
− α(|Γ| − 1). (3.6)

For each i ∈ [n], let ri denote the number of blocks of DX containing i. Fix a block C
and count in two ways pairs (B, i), where B ∈ B, B /=C, and i ∈ C ∩ B:

dβ + (|Γ| − d − 1)α =
∑
i∈C

(ri − 1). (3.7)

Using this equation and (3.6), we derive

∑
i∈C

ri = dβ + (|Γ| − d − 1)α + k =
|Γ|k2

n
. (3.8)

Therefore,

∑
C∈B

∑
i∈C

ri =
|Γ|2k2

n
. (3.9)

Since each i ∈ [n] contributes r2i into the left-hand side of this equation, we obtain that

n∑
i=1

r2i =
|Γ|2k2

n
. (3.10)

On the other hand, counting in two ways pairs (i, B)with B ∈ B and i ∈ B yields

n∑
i=1

ri =
∑
B∈B

|B| = |Γ|k. (3.11)

Thus,

(
1
n

n∑
i=1

ri

)2

=
1
n

n∑
i=1

r2i . (3.12)

Therefore, ri = r = |Γ|k/n for i = 1, 2, . . . , n. Thus, DX is a quasisymmetric 1-design. (Note
that we have derived this result from (3.5) rather than from a stronger equation rank(S) =
|Γ| − m − 1.) Since n < |Γ|, the 1-design DX is non-square, so we have to show that it is
nonsingular.The incidence matrix N of DX satisfies the equation

N�N = (k − α)I +
(
β − α

)
A + αJ. (3.13)
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Therefore, the eigenvalues of N�N are

τ0 = k − α +
(
β − α

)
ρ0 + α|Γ|, τi = k − α +

(
β − α

)
ρi (1 ≤ i ≤ s). (3.14)

Since τ0 > τ1 > · · · > τs and since rank(N�N) ≤ n, we obtain that τs = 0 and τi > 0 for 0 ≤ i ≤
s−1. Since the multiplicity of τs is the same as the multiplicity of ρs, we have rank(N�N) = n.
Therefore, rank(NN�) = n, and then det(NN�)/= 0, that is, DX is nonsingular.

Suppose now that Γ is the block graph of a nonsquare nonsingular quasisymmetric
1-design D with intersection numbers α < β. The design D has less points than blocks, so let
b be the number of blocks and b − m the number of points. We have to show that m is the
multiplicity of the least eigenvalue of Γ and that bsr(Γ) = b −m.

Let N be an incidence matrix of D and X the set of all columns of N regarded as
points in Hb−m. Then X is a 2-distance set and D is DX . The set X lies on a sphere of radius
k centered at 0, where k is the cardinality of each block of D, and the nonzero distances in X
are h1 = 2(k − β) and h2 = 2(k − α).

MatrixN satisfies (3.13)withA being an adjacencymatrix of Γ. Let ρ0 > ρ1 > · · · > ρs be
all distinct eigenvalues of A. Then the eigenvalues ofN�N are given by (3.14). Since N� has
more rows than columns, we have τs = 0. Since det(NN�)/= 0, the sum of the multiplicities
of the nonzero eigenvalues ofN�N is b −m, so the multiplicity of τs is equal tom. Therefore,
the multiplicity of ρs is equal to m, and then bsr(Γ) ≥ b − m. Since X is in Hb−m, we have
bsr(Γ) = b −m.

It has been shown in the course of this proof that if bsr(Γ) = |Γ| −m, then σ0 = 0, which
implies (3.5), and σs = 0, which implies

h2

h1
=

ρ

ρ + 1
. (3.15)

In fact, (3.15)must hold whenever bsr(Γ) < |Γ|, because otherwise rank(A) ≥ |Γ| − 1 and then
bsr(Γ) ≥ |Γ|. If bsr(Γ) = |Γ| and (3.15) does not hold, then σ0 = 0. It has also been shown that
if bsr(Γ) = |Γ| −m, then the replication number of the corresponding 1-design is |Γ|k/(b −m).
We combine these observations in the following two theorems.

Theorem 3.4. Let Γ be a connected regular graph of order b and degree d, and letm be the multiplicity
of the least eigenvalue ρ of Γ. Let bsr(Γ) = b −m, and let Γ be isomorphic to ΓX , where X is a 2-subset
of Hb−m lying on a sphere of radius k centered at 0. Let h1 < h2 be the nonzero distances in X. Then,

(i) 2bk(b −m − k) = (b −m)(dh1 + (b − d − 1)h2);

(ii) h2/h1 = ρ/(ρ + 1);

(iii) DX is a nonsquare nonsingular quasisymmetric 1-design with b −m points, b blocks, block
size k, replication number bk/(b −m), and intersection numbers k − h1/2 and k − h2/2.

Theorem 3.5. Let Γ be a connected regular graph of order b and degree d, and let ρ be the least
eigenvalue of Γ. Let bsr(Γ) = n, and let Γ be isomorphic to ΓX , where X is a 2-subset of Hn lying on
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a sphere of radius k. Let h1 < h2 be the nonzero distances in X:

(i) if 2bk(n − k) = n(dh1 + (b − d − 1)h2), thenDX is a quasisymmetric 1-design;

(ii) if n < b, then h2/h1 = ρ/(ρ + 1);

(iii) if n = b and h2/h1 /= ρ/(ρ + 1), then 2k(b − k) = dh1 + (b − d − 1)h2.

If h2/h1 = ρ/(ρ + 1), then ρ is rational, so (ii) implies that the following useful result.

Corollary 3.6. If the least eigenvalue of a connected regular graph Γ is irrational, then bsr(Γ) ≥ |Γ|.

An infinite family of regular graphs attaining the lower bound of Theorem 3.3 is given
in the following example.

Example 3.7. LetD be a (v, b, r, k, 1)-design with b ≥ v+r and k ≥ 3, and letD′ be an incidence
structure obtained by deleting fromD one point and all blocks containing this point. ThenD′

is a 1-design with v − 1 points, b − r > v − 1 blocks of cardinality k, replication number r − 1,
and intersection numbers 0 and 1. Without loss of generality, we assume that the point set of
D is [v], the deleted point is v, and the deleted blocks are

{1, 2, . . . , k − 1, v}, {k, k + 1, . . . , 2k − 2, v}, . . . , {v − k + 1, v − k + 2, . . . , v}. (3.16)

Let N be the corresponding incidence matrix of D′. Then NN� is an r × r block matrix of
(k − 1) × (k − 1) blocks with all diagonal blocks equal to (r − 1)I and all off-diagonal blocks
equal J . The spectrum of NN� consists of eigenvalues (r − 1)k of multiplicity 1, r − 1 of
multiplicity (k − 2)r, and r − k of multiplicity r − 1. Therefore, det(NN�)/= 0; that is, the
design D′ is nonsingular. The spectrum of N�N is obtained by adjoining the eigenvalue 0 of
multiplicity b−r−v+1 to the spectrum ofNN�. SinceN�N = kI+A, whereA is an adjacency
matrix of the block graph Γ of D′, we determine that the multiplicities of the largest and the
smallest eigenvalues of A are 1 and b − r − v + 1, respectively. Therefore, Γ is a connected
regular graph and bsr(Γ) = v − 1.

4. Strongly Regular Graphs

For strongly regular graphs we first obtain a sharp upper bound for the binary spherical
representation number.

Proposition 4.1. If Γ is a connected strongly regular graph of order n, then bsr(Γ) ≤ n.

Proof. Let Γ be an srg(n, d, λ, μ), and let A be an adjacency matrix of Γ. Then A2 = (d − μ)I +
(λ − μ)A + μJ . Therefore, (A + I)2 = (d − μ + 1)I + (λ − μ + 2)A + μJ . Let X be the set of
rows ofA + I regarded as points inHn. Then the distance between two distinct points of X is
equal to 2(d − λ − 1) if the points correspond to adjacent vertices of Γ; otherwise, it is equal to
2(d − μ + 1). Thus, X is a 2-distance set in Hn, lying on a sphere of radius d + 1 centered at 0,
and, if λ ≥ μ − 1, then Γ is isomorphic to ΓX .

If λ ≤ μ − 1, then let Y be the set of rows of the matrix J − A. The distance between
two distinct points of Y is equal to 2(d − μ) if the points correspond to adjacent vertices of Γ;
otherwise, it is equal to 2(d − λ). Therefore, Y is a 2-distance set in Hn, lying on a sphere of
radius n − d centered at O, and Γ is isomorphic to ΓY .
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This proposition and Corollary 3.6 imply the next result.

Corollary 4.2. If the least eigenvalue of a strongly regular graph Γ of order n is irrational, then
bsr(Γ) = n.

Remark 4.3. The least eigenvalue of a strongly regular graph is irrational if and only if it is an
srg(n, (n− 1)/2, (n− 5)/4, (n− 1)/4), where n ≡ 1 (mod4) is not a square. A graph with these
parameters exists if and only if there exists a conference matrix of order n + 1.

Example 4.4. Let Γ be the complement of the cycle C7. The least eigenvalue of Γ is irrational,
so bsr(Γ) ≥ 7. Suppose bsr(Γ) = 7, and let Γ be isomorphic to ΓX , where X is a 2-subset of H7

with nonzero distances h1 < h2, lying on a sphere of radius k centered at 0. Since h1 and h2

are even, h2 ≤ 7 and h2 ≤ 2h1 (Proposition 2.9), we have h1 = 2, h2 = 4 or h1 = 4, h2 = 6. In
either case, Theorem 3.5(iii) yields an equation without integer solutions. Thus, bsr(Γ) ≥ 8,
so the strong regularity in Proposition 4.1 is essential.

Remark 4.5. There are 167 nonisomorphic strongly regular graphs with parameters
(64, 18, 2, 6) [8]. The least eigenvalue of these graphs is −6 of multiplicity 18. Theorem 3.3 and
Proposition 4.1 imply that if Γ is any of these 167 graphs, then 46 ≤ bsr(Γ) ≤ 64. Therefore,
there are nonisomorphic graphs with these parameters having the same binary spherical
representation number.

Also, there are 41 nonisomorphic strongly regular graphs with parameters (29, 14, 6, 7)
[8]. The least eigenvalue of these graphs is irrational, so by Corollary 4.2 the binary spherical
representation number of all these graphs is 29.

Theorem 3.3 for regular graphs can be rectified if the graph is strongly regular.

Theorem 4.6. Let Γ be a connected strongly regular graph of order b, and letm be the multiplicity of
the least eigenvalue of Γ. Then bsr(Γ) = b −m if and only if Γ is the block graph of a quasisymmetric
2-design.

Proof. If Γ is the block graph of a quasisymmetric 2-design D, then Remark 2.6 and
Theorem 3.3 imply that bsr(Γ) = b −m.

Suppose now that bsr(Γ) = b − m, and let X be a spherical 2-distance subset of Hb−m
representing Γ. Let h1 < h2 be the nonzero distances in X and k the radius of the sphere
centered at 0 and containing X. Every block of the incidence structure DX = ([b − m],B) is
of cardinality k, the intersection numbers of D are α = k − h2/2 < β = k − h1/2, and the
replication number of D is r = bk/(b −m) (Theorem 3.4). The graph Γ is the block graph of
D. Let ρ0 = d > ρ1 > ρ2 be the eigenvalues of Γ. Since Γ is connected, the multiplicity of ρ0 is
1. Since the multiplicity of ρ2 ism, the multiplicity of ρ1 is b −m − 1.

Let A be an adjacency matrix of Γ. Theorem 3.4(ii) implies that (β − α)ρ2 = (1/2)(h1 −
h2)ρ2 = −(k − α). Since Tr(A) = d + (b −m − 1)ρ1 +mρ2 = 0, we use Theorem 3.4(i) to derive
that

(
β − α

)
ρ1 = α − k + r − λ, (4.1)

where λ = r(k − 1)/(b −m − 1). Since k < b −m, we have λ < r.
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Let N be an incidence matrix of DX . Then

N�NJ = NN�J = krJ,

N�N = (k − α)I +
(
β − α

)
A + αJ.

(4.2)

From these equations we determine the eigenvalues ofN�N: τ0 = kr, τ1 = k − α + (β −
α)ρ1 = r−λ, and τ2 = k−α+(β−α)ρ2 = 0. Their respective multiplicities are 1, b−m−1, andm.
Therefore, the eigenvalues ofNN� are τ0 of multiplicity 1 and τ1 of multiplicity b−m−1. Since
NN�J = krJ , the eigenspace E0 of NN� corresponding to the eigenvalue τ0 is generated by
1. Therefore, E1 = E⊥

0 is the eigenspace corresponding to the eigenvalue τ1. On the other hand,
the matrixM = (r − λ)I + λJ has the same eigenvalues with the same respective eigenspaces.
Thus, NN� = M, and therefore DX is a quasisymmetric 2-design with intersection numbers
α and β. The graph Γ is the block graph of this design.

Example 4.7. The Cocktail Party graph CP(n) has 2n vertices split into n pairs with two
vertices adjacent if and only if they are not in the same pair. It is the block graph of a
quasisymmetric 2-design if and only if the design is a Hadamard 3-designwith n+ 1 points (cf.
[4, Theorem 8.2.23]). The least eigenvalue of CP(n) is −2 of multiplicity n−1. By Theorem 4.6,
bsr(CP(n)) ≥ n+1 and bsr(CP(n)) = n+1 if and only there exists a Hadamard matrix of order
n+1. This example shows that it is hard to expect a simple general method for computing the
binary spherical representation number of a strongly regular graph.

5. Line Graphs

In this section we determine the binary spherical representation number for the line graphs
of regular graphs. If N is an incidence matrix of a graph G, then N�N = 2I + A, where A is
an adjacency matrix of the line graph Γ = L(G). Let G be connected and have n vertices and e
edges. If e > n, then the least eigenvalue ofN�N is 0, and therefore the least eigenvalue of Γ is
ρ = −2. Since matrices NN� and N�N have the same positive eigenvalues, Proposition 2.15
implies that the multiplicity of ρ is equal to e−n if the graph G is not bipartite, and it is equal
to e −n+ 1 if G is a connected bipartite graph. If e = n, then G is a cycle, so Γ = Cn is a cycle of
order n too. If n is even, then the least eigenvalue of Cn is −2 of multiplicity 1; if n ≥ 5 is odd,
then the least eigenvalue of Cn is irrational. See [9] for details.

Theorem 5.1. If Γ is the line graph of a connected regular graph of order n ≥ 4, then bsr(Γ) = n.

Proof. Let Γ be the line graph of a connected regular graph G of order n ≥ 4 and degree d.
Then Γ is a connected regular graph of order nd/2 and degree 2d − 2. The columns of an
incidence matrix of G form a spherical 2-distance set inHn representing Γ, so bsr(Γ) ≤ n.

Suppose first that d = 2, that is, G is Cn, and that n is odd. Then the least eigenvalue of
Γ is irrational. Therefore, bsr(Γ) ≥ n by Corollary 3.6, so bsr(Γ) = n.

Suppose now that d ≥ 3 and the graph G is not bipartite. From Proposition 2.15, the
multiplicity of the least eigenvalue of Γ is nd/2−n, and then Theorem 3.3 implies that bsr(Γ) ≥
n, so bsr(Γ) = n.

Suppose finally that G is a bipartite graph (this includes the case G = Cn with even
n). Then the least eigenvalue of Γ is −2 and its multiplicity is nd/2 − n + 1. Therefore, by
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Theorem 3.3, bsr(Γ) ≥ n− 1. Suppose bsr(Γ) = n− 1. Theorem 3.4(ii) implies that h2 = 2h1 and
then the condition (i) of Theorem 3.4 can be rewritten as

nk(n − 1 − k) = h1(n − 1)(n − 2). (5.1)

If n is odd, then (n − 1)(n − 2) and n are relatively prime; if n is even, then (n − 1)(n − 2)/2
and n/2 are relatively prime. In either case, (n − 1)(n − 2)/2 divides k(n − 1 − k). However,
k(n − 1 − k) ≤ (n − 1)2/4 < (n − 1)(n − 2)/2. Therefore, bsr(Γ) = n.

The graph L2(n) is the line graph of the bipartite graph with the bipartition sets
of cardinality n. The following corollary generalizes the well-known result [10] that these
graphs are not block graphs of quasisymmetric 2-designs.

Corollary 5.2. The line graph of a connected regular graph G with more than three vertices is the
block graph of a nonsquare nonsingular quasisymmetric 1-design if and only if G is not a cycle and is
not a bipartite graph.

Remark 5.3. If G is a semiregular connected bipartite graph of order n, then the graph L(G) is
regular and bsr(L(G)) = n or n − 1. We do not know of any example when bsr(L(G)) = n − 1.

There exist regular graphs that are cospectral with a line graph but are not line graphs.
The complete list of such graphs is given in the following theorem.

Theorem 5.4 (see [11]). Let a regular graph Γ be cospectral with the line graph L(G) of a connected
graph G. If Γ is not a line graph, then G is a regular 3-connected graph of order 8 or K3,6 or the
semiregular bipartite graph of order 9 with 12 edges.

Since bsr(L(G)) < 10 for every graph G listed in Theorem 5.4, the next theorem
implies that if a connected regular graph Γ is cospectral with a line graph L(G) and if
bsr(Γ) = bsr(L(G)), then Γ is a line graph. The proof is based on the following theorem
according to Beineke [12].

Theorem 5.5. A graph is a line graph if and only if it does not contain as an induced subgraph any
of the nine graphs of Figure 1.

Theorem 5.6. Let the least eigenvalue of a connected regular graph Γ be equal to −2. If bsr(Γ) < 10,
then Γ is a line graph or the Petersen graph or CP(n) with 4 ≤ n ≤ 7.

Proof. The Petersen graph P is the block graph the quasisymmetric (6, 10, 5, 3, 2)-design, so
bsr(P) = 6. We also have bsr(CP(7)) = 8 (Example 4.7). For n = 4, 5, and 6, CP(n) is an
induced subgraph of CP(8), so bsr(CP(n)) ≤ 8.

Let bsr(Γ) = n ≤ 9, and let a 2-distance set X represent Γ in Hn. Let h1 < h2 be the
nonzero distances in X, and let X lie on a sphere of radius k centered at 0. Let f be an
isomorphism from Γ to ΓX . For each vertex x of Γwe regard f(x) as a k-subset of [n].

Suppose Γ is not a line graph. Since the least eigenvalue of Γ is −2, Theorem 3.4 implies
that h2 = 2h1. Since n ≤ 9, we assume that k ≤ 4. Proposition 2.13 implies that k /= 2, so
k = 3 or 4. By Theorem 5.5, Γ contains one of the nine graphs of Figure 1 as an induced
subgraph. All subgraphs of Γ considered throughout the proof are assumed to be induced
subgraphs.
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Figure 1

Case 1 (h1 = 4. Then h2 = 8, and therefore k = 4). If Γ contains a coclique xyz of size 3, then
|f(x) ∪ f(y) ∪ f(z)| = 12 > n. This rules out subgraphs F1 and F4. If the subgraph induced
by Γ on a set xyz of three vertices has only one edge, then |f(x) ∪ f(y) ∪ f(z)| = 10 > n. This
rules out subgraphs F2, F5, F6, F7, F8, and F9.

Suppose Γ contains F3 as a subgraph. Suppose also that every subgraph of order 3 of Γ
has at least two edges. We assumewithout loss of generality that f(q) = 1234 and f(s) = 5678.
Let x be a vertex of Γ, x /= q and x /= s. Since the subgraph with the vertex set qsx has at least
two edges, x is adjacent to both q and s. Therefore, f(x) is a 4-subset of 12345678 for every
vertex x of Γ. This implies that x is not adjacent to at most one other vertex. Since Γ is regular
and not complete, Γ is a cocktail party graph CP(m). Therefore, m + 1 ≤ bsr(Γ) ≤ 9 and
bsr(Γ)/=m + 1 for m = 8 (Example 4.7). Since CP(2) and CP(3) are line graphs (of C4 and K4,
resp.), we have 4 ≤ n ≤ 7.
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Case 2 (h1 = 2 and k = 3). Suppose Γ contains F1 as a subgraph. We let f(p) = 123, f(q) = 124,
f(r) = 135, and f(s) = 236. Since the degree of q in F1 is 1 and the degree of p is 3, Γ has
vertices q1 and q2 adjacent to q but not to p. Then f(q1) = 146 and f(q2) = 245. Similarly, we
find vertices r1 and r2 adjacent to r but not to p and vertices s1 and s2 adjacent to s but not
to p and assume that f(r1) = 345, f(r2) = 156, f(s1) = 256, and f(s2) = 346. The set U of
the 10 vertices that we have found is the vertex set of a Petersen subgraph of Γ. The set f(U)
consists of ten 3-subsets of 123456, no two of which are disjoint. Therefore, if Γ has a vertex
v /∈ U, then f(v) is disjoint from at least one of the sets f(x), x ∈ U; a contradiction. Thus, Γ
is the Petersen graph.

If Γ contains F2 as a subgraph, we let f(p) = 123 and f(r) = 145. Then f(q), f(s), f(t) ∈
{124, 125, 134, 135}. Since |f(q) ∩ f(s)| = |f(t) ∩ f(s)| = 1, there is no feasible choice for f(s).

If Γ contains F3 as a subgraph, we assume that f(p) = 123, f(q) = 124, and f(s) = 135.
Then f(r), f(t) ∈ {125, 134}, and therefore |f(r) ∩ f(t)|/= 2.

Let Γ contains F4 as a subgraph. Suppose first that f(p) ∩ f(q) ∩ f(s)/= ∅. Then we
assume that f(p) = 123, f(q) = 145, f(s) = 167, f(t) = 124, and f(u) = 136, and there is no
feasible choice for f(r). Suppose now that f(p) ∩ f(q) ∩ f(s) = f(r) ∩ f(q) ∩ f(s) = ∅. We
assume that f(p) = 123, f(q) = 145, and f(s) = 246. Then f(t) = 125 or 134. If f(t) = 125, then
f(u) = 234 and f(r) = 235. Γ has distinct vertices q1 and q2 adjacent to q but not to r, and we
have f(q1) = f(q2) = 156; a contradiction. If f(t) = 134, then f(u) = 126 and f(r) = 136. Γ has
distinct vertices q1 and q2 adjacent to q but not to t, and we have again f(q1) = f(q2) = 156.

If Γ contains F5 as a subgraph, we let f(p) = 123, f(q) = 145, and f(t) = 124. Then
f(r) = 234 or 126, and in either case f(s) = f(u).

If Γ contains F6 as a subgraph, we let f(p) = 123, f(q) = 124, and f(s) = 135. Then we
assume that f(r) = 125. This implies f(u) = 235 and f(t) = 126. Γ has distinct vertices q1 and
q2 adjacent to q but not to r. Then f(q1) = 134 and f(q2) = 234, so both q1 and q2 are adjacent
to p. Since q1/∼u and q2 ∼ u, Γ has three distinct vertices ui adjacent to u but not to p. However,
f(ui) = 245 for all these vertices.

If Γ contains F8 as a subgraph, we let f(p) = 123 and f(q) = 124 and assume that
f(s) = 156 or 345. If f(s) = 156, then f(r) = 135, f(u) = 136, and there is no feasible choice for
f(t). If f(s) = 345, then f(r) = 135, f(u) = 235, and again there is no feasible choice for f(t).

Suppose Γ contains F7 or F9 as a subgraph. We let f(p) = 123, f(q) = 124, and f(t) =
135. Then f(r) = 146 or 245 and f(s) = 156 or 345, respectively. In either case, there is no
feasible choice for f(u).

Case 3 (h1 = 2 and k = 4). Suppose Γ contains F1 as a subgraph. We let f(p) = 1234, f(q) =
1235, f(r) = 1246, and f(s) = 1347. Γ has vertices q1 and q2 adjacent to q but not to p. Then
f(q1) = 1257 and f(q2) = 1356. Similarly, we find vertices r1 and r2 adjacent to r but not to p
and vertices s1 and s2 adjacent to s but not to p and assume that f(r1) = 1267, f(r2) = 1456,
f(s1) = 1367, and f(s2) = 1457. The ten vertices that we have found form a Petersen subgraph
of Γ. If 1 ∈ f(x) for every vertex x of Γ, then we delete 1 from each f(x) and refer to Case
2. Suppose that there is a vertex x with 1 /∈ f(x). Then the 4-set f(x) must meet each of the
sets 234, 235, 246, 347, 257, 356, 267, 456, 367, and 457 in at least two points. Thus, there is no
feasible choice for f(x).

If Γ contains F2 as a subgraph, we let f(p) = 1234, f(q) = 1235, and f(r) = 1256. Then
f(s) = 1246 and there is no feasible choice for f(t).

If Γ contains F3 as a subgraph, we assume that f(p) = 1234, f(q) = 1235, and f(s) =
1246. Then f(r), f(t) ∈ {1236, 1245}, and therefore |f(r) ∩ f(t)| = 2; a contradiction.
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If Γ contains F4 as a subgraph, we let f(p) = 1234, f(t) = 1235, f(u) = 1246, f(r) = 1236,
and f(q) = 1257. Then f(s) = 1456. Let s1 and s2 be vertices of Γ adjacent to s but not to u.
Then f(s1) = 1345 and f(s2) = 1356, and there is no feasible choice for f(v), where v ∼ q and
v/∼t.

If Γ contains F5 as a subgraph, we let f(p) = 1234, f(q) = 1256, and f(t) = 1235. Then
we may assume that either f(s) = 1346 and f(u) = 2346 or f(s) = 1247 and f(u) = 1248. In
either case, there is no feasible choice for f(r).

Suppose Γ contains F6 as a subgraph. We let f(p) = 1234 and f(r) = 1235. Then
f(q), f(s), f(t), f(u) ∈ {1245, 1345, 2345} ∪ {123α : α ≥ 6}. Since the subgraph induced on
qstu is triangle-free, we let f(q) = 1236, f(t) = 1237, f(s) = 1245, and f(u) = 1345. Let q1 and
q2 be distinct vertices of Γ adjacent to q but not to p. Then f(qi) ∈ {1256, 1356, 2356}, so both
q1 and q2 are adjacent to r but not to t. Therefore, Γ has at least four vertices ti adjacent to t
but not to r. However, f(ti) ∈ {1247, 1347, 2347}; a contradiction.

If Γ contains F8 as a subgraph, we let f(p) = 1234, f(q) = 1235, and f(r) = 1246. Then
(f(t), f(u)) ∈ {(1236, 1247), (1245, 1346), (1245, 2346)}, and there is no feasible choice for f(s).

Suppose Γ contains F7 or F9 as a subgraph. We let f(p) = 1234, f(q) = 1235, and
f(t) = 1246. Then f(r) ∈ {1356, 2356}∪{125α : α ≥ 7} and f(s) ∈ {1456, 2456}∪{126α : α ≥ 7},
so we assume that (f(r), f(s)) ∈ {(1257, 1267), (1356, 1456), (2356, 2456)}. In each case, there
is no feasible choice for f(u).

Corollary 5.7. Let Γ be a connected regular graph cospectral with a line graph L(G) of a connected
graph G. If bsr(Γ) = bsr(L(G)), then Γ is a line graph.

Proof. If G is not an exceptional graph from Theorem 5.4, then Γ is a line graph by that
theorem. If G is one of the exceptional graphs, then bsr(L(G)) < 10 and L(G) has more
edges than vertices. Therefore, the least eigenvalue of L(G) is −2. Since the Petersen graph
and graphs CP(n) are not exceptional, Theorem 5.6 implies that Γ is a line graph.

Example 5.8. Let X be the set of all points of H5 with even sum of coordinates. It is a 2-
distance set and ΓX is the complement of the Clebsch graph. The least eigenvalue of ΓX is −2,
and, since it is not a line graph, Theorem 5.6 implies that bsr(ΓX) ≥ 10 (so X is not spherical).
Let Y be the set of all points (y1, y2, . . . , y10) ∈ H10 such that

∑5
i=1 yi is even and yi + yi+5 = 1

for i = 1, 2, 3, 4, 5. Then Y is a spherical 2-distance set and ΓY is isomorphic to ΓX . Thus,
bsr(ΓX) = 10.

Example 5.9. The Shrikhande graph is cospectral with L2(4), and the three Chang graphs are
cospectral with T(8), the line graph ofK8, so we have examples of cospectral strongly regular
graphs with distinct binary spherical representation numbers. It can be shown that the binary
spherical representation number of the Shrikhande graph is 12.
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[6] I. J. Schoenberg, “Remarks to Maurice Fréchets article sur la definition axiomatique dune classe
despace distanciés vectoriellement applicable sur lespace de Hilbert,” Annals of Mathematics, vol. 36,
no. 3, pp. 724–732, 1935.

[7] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford, UK,
1953.

[8] A. E. Brouwer, “Strongly regular graphs,” in The CRCHandbook of Combinatorial Designs, C. J. Colbourn
and J. H. Dinitz, Eds., pp. 852–867, CRC Press, Boca Raton, Fla, USA, 2nd edition.
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