Research Article

On Some Combinatorial Structures Constructed from the Groups $L(3,5), U(5,2)$, and $S(6,2)$

Dean Crnković and Vedrana Mikulić Crnković

Department of Mathematics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia
Correspondence should be addressed to Dean Crnković, deanc@math.uniri.hr
Received 13 January 2011; Revised 30 March 2011; Accepted 26 May 2011
Academic Editor: Christos Koukouvinos
Copyright © 2011 D. Crnković and V. Mikulić Crnković. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We describe a construction of primitive 2-designs and strongly regular graphs from the simple groups $L(3,5), U(5,2)$, and $S(6,2)$. The designs and the graphs are constructed by defining incidence structures on conjugacy classes of maximal subgroups of $L(3,5), U(5,2)$, and $S(6,2)$. In addition, from the group $S(6,2)$, we construct 2-designs with parameters $(28,4,4)$ and $(28,4,1)$ having the full automorphism group isomorphic to $U(3,3): Z_{2}$.

1. Introduction

Questions about combinatorial structures related to finite groups arose naturaly in studying of the groups. Studies on the interplay between finite groups and combinatorial structures have provided many useful and interesting results. From a geometric point of view, the most interesting designs are generally those admitting large automorphism groups. Famous Witt designs constructed from Mathieu groups have been discovered in 1930's (see [1, 2]), and for some further construction of combinatorial structures from finite groups, we refere the reader to [3-5]. A construction of 1-designs and regular graphs from primitive groups is described in [6] and corrected in [7]. The construction employed in this paper is described in [8], as a generalization of the one from $[6,7]$.

An incidence structure is an ordered triple $\Phi=(D, B, O)$ where D and B are nonempty disjoint sets and $\supset \subseteq D \times B$. The elements of the set D are called points, the elements of the set \mathcal{B} are called blocks, and \supset is called an incidence relation. If $|\mathcal{D}|=|\mathcal{B}|$, then the incidence structure is called symmetric. The incidence matrix of an incidence structure is a $b \times v$ matrix [$m_{i j}$] where b and v are the number of blocks and points, respectively, such that $m_{i j}=1$ if the point P_{j} and block x_{i} are incident, and $m_{i j}=0$ otherwise. An isomorphism from one incidence structure to another is a bijective mapping of points to points and blocks to blocks which preserves incidence. An isomorphism from an incidence structure Φ onto itself
is called an automorphism of Φ. The set of all automorphisms forms a group called the full automorphism group of $\not \otimes$ and is denoted by $\operatorname{Aut}(\nexists)$.

A $t-(v, k, \lambda)$ design is a finite incidence structure (D, B, O) satisfying the following requirements:
(1) $|p|=v$,
(2) every element of \mathbb{B} is incident with exactly k elements of D,
(3) every t elements of D are incident with exactly λ elements of \mathcal{B}.

A $2-(v, k, \lambda)$ design is called a block design. A $2-(v, k, \lambda)$ design is called quasisymmetric if the number of points in the intersection of any two blocks takes only two values. If $|\mathcal{D}|=|\mathbb{B}|$, then the design is called symmetric. A symmetric $2-(v, k, 1)$ design is called a projective plane.

An incidence structure has repeated blocks if there are two blocks incident with exactly the same points. An incidence structure that has no repeated blocks is called simple. All designs described in this paper are simple.

Let $\mathcal{G}=(\mathcal{U}, \boldsymbol{\varepsilon}, \supset)$ be a finite incidence structure. \mathcal{G} is a graph if each element of $\mathfrak{\varepsilon}$ is incident with exactly two elements of \mathcal{U}. The elements of \mathcal{U} are called vertices, and the elements of ε are called edges. Two vertices u and v are called adjacent or neighbors if they are incident with the same edge. The number of neighbors of a vertex v is called the degree of v. If all the vertices of the graph \mathcal{G} have the same degree k, then \mathcal{G} is called k-regular. Define a square $\{0,1\}$-matrix $A=\left(a_{u v}\right)$ labelled with the vertices of \mathcal{G} in such a way that $a_{u v}=1$ if and only if the vertices u and v are adjacent. The matrix A is called the adjacency matrix of the graph \mathcal{G}.

A graph \mathcal{G} is called a strongly regular graph with parameters (n, k, λ, μ) and denoted by $\operatorname{SRG}(n, k, \lambda, \mu)$ if \mathcal{G} is k-regular graph with n vertices and if any two adjacent vertices have λ common neighbors and any two nonadjacent vertices have μ common neighbors.

Let x and $y(x<y)$ be the two cardinalities of block intersections in a quasi-symmetric design Φ. The block graph of Φ has as vertices the blocks of Φ and two vertices are adjacent if and only if they intersect in y points. The block graph of a quasi-symmetric $2-(v, k, \lambda)$ design is strongly regular. In a $2-(v, k, 1)$ design which is not a projective plane, two blocks intersect in 0 or 1 points; therefore, the block graph of this design is strongly regular (see [9]).

Let Φ be a symmetric (v, k, λ) design which possesses a symmetric incidence matrix M with 1 everywhere on the diagonal. Then, the matrix $M-I$ is an adjacency matrix of a strongly regular graph \mathcal{G} with parameters $(v, k-1, \lambda-2, \lambda)$ (see [9]) and $\operatorname{Aut}(\mathcal{G}) \leq \operatorname{Aut}(\boldsymbol{\Phi})$.

Let G be a simple group and H be a maximal subgroup of G. The conjugacy class of H is denoted by $\operatorname{ccl}_{G}(H)$. Obviously, $N_{G}(H)=H$, so $\left|\operatorname{ccl}_{G}(H)\right|=[G: H]$. Denote the elements of the conjugacy class $\operatorname{ccl}_{G}(H)$ by $H^{g_{1}}, H^{g_{2}}, \ldots, H^{g_{j}}, j=[G: H]$.

In this paper, we consider block designs constructed from the linear group $L(3,5)$, strongly regular graphs constructed from the unitary group $U(5,2)$, and block designs and strongly regular graphs constructed from the symplectic group $S(6,2)$.
$L(3,5)$ is the simple group of order 372000 , and it has five distinct classes of maximal subgroups: $H_{1} \cong H_{2} \cong\left(Z_{5} \times Z_{5}\right): G L(2,5), H_{3} \cong S_{5}, H_{4} \cong\left(Z_{4} \times Z_{4}\right): S_{3}$, and $H_{5} \cong F_{93}$. We define incidence structures on the elements of conjugacy classes of the maximal subgroups of $L(3,5)$; that is, points and blocks are labelled by elements of conjugacy classes of the maximal subgroups of $L(3,5)$.
$U(5,2)$ is the simple group of order 13685760, and it has six distinct classes of maximal subgroups: $K_{1} \cong\left(E_{64}: Z_{2}\right) \cdot\left(E_{9}: Z_{3}\right) \cdot S L(2,3), K_{2} \cong Z_{3} \times U(4,2), K_{3} \cong\left(E_{16}: E_{16}\right):\left(Z_{3} \times A_{5}\right)$,
$K_{4} \cong E_{81}: S_{5}, K_{5} \cong\left(S_{3} \times\left(E_{9}: Z_{3}\right)\right): S L(2,3)$, and $K_{6} \cong L(2,11)$. We define strongly regular graphs whose vertices are labelled by elements of conjugacy classes of the maximal subgroups of $U(5,2)$.
$S(6,2)$ is the simple group of order 1451520, and it has eight distinct classes of maximal subgroups: $M_{1} \cong U(4,2): Z_{2}, M_{2} \cong S_{8}, M_{3} \cong E_{32}: S_{6}, M_{4} \cong U(3,3): Z_{2}, M_{5} \cong E_{64}: L(3,2)$, $M_{6} \cong\left(\left(E_{16}: Z_{2}\right) \times E_{4}\right):\left(S_{4} \times S_{4}\right), M_{7} \cong S_{3} \times S_{6}$, and $M_{8} \cong L(2,8): Z_{3}$. We define incidence structures on the elements of conjugacy classes of the maximal subgroups of $S(6,2)$ and strongly regular graphs whose vertices are labelled by elements of conjugacy classes of the maximal subgroups of $S(6,2)$.

Generators of groups $L(3,5), U(5,2)$, and $S(6,2)$ and their maximal subgroups are available on the Internet: http:/ /brauer.maths.qmul.ac.uk/Atlas/.

In this paper, we describe a construction of primitive block designs with parameters $(28,12,11),(28,4,5),(28,10,40),(31,6,1),(31,6,100),(31,10,300),(31,15,700),(31,3,25)$, $(31,12,550),(31,15,875),(36,16,12),(36,8,6),(36,12,33),(36,6,8)$, and $(63,31,15)$ and strongly regular graphs with parameters $(63,30,13,15),(120,56,28,24),(135,64,28,24)$, $(165,36,3,9),(176,40,12,8),(297,40,7,5)$, and $(1408,567,246,216)$. The designs and the graphs are constructed by defining incidence structures on conjugacy classes of maximal subgroups of the simple groups $L(3,5), U(5,2)$, and $S(6,2)$. In addition, from the group $S(6,2)$, we construct 2-designs with parameters $(28,4,4)$ and $(28,4,1)$ having the full automorphism group isomorphic to $U(3,3): Z_{2}$.

The graphs described in this paper have been previously known, since they can be constructed as rank 3 graphs. For more details on rank 3 graphs, we refer the reader to [9]. Some of the constructed block designs on 31 points have large number of blocks, and we did not find a record that they have been previously studied, although these designs can be constructed from $\operatorname{PG}(2,5)$. The constructed designs with parameters $(28,12,11),(28,4,5),(36,16,12),(36,8,6)$, and $(63,31,15)$ are isomorphic to the already known designs. However, we did not find an evidence that the constructed designs with parameters $(28,10,40),(36,12,33)$, and $(36,6,8)$ are isomorphic to the already known objects.

The paper is organized as follows: in Section 2, we describe the method of construction of primitive designs and graphs used in this paper, Section 3 describes block designs on 31 points constructed from the group $L(3,5)$, Section 4 gives strongly regular graphs constructed from the group $U(5,2)$, and Section 5 describes the group $S(6,2)$ as block designs and strongly regular graphs. At the end of the paper, we give a list of the constructed designs and strongly regular graphs and their full automorphism groups.

For basic definitions and group theoretical notation, we refer the reader to $[10,11]$.

2. The Construction

The following construction of symmetric 1-designs and regular graphs is presented in $[6,12]$.
Theorem 2.1. Let G be a finite primitive permutation group acting on the set Ω of size n. Let $\alpha \in \Omega$, and let $\Delta \neq\{\alpha\}$ be an orbit of the stabilizer G_{α} of α. If $B=\{\Delta g: g \in G\}$ and, given $\delta \in \Delta$, $\mathcal{E}=\{\{\alpha, \delta\} g: g \in G\}$, then $\mathcal{\Phi}=(\Omega, \mathbb{B})$ forms a symmetric $1-(n,|\Delta|,|\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α}, then $\Gamma(\Omega, \mathcal{\varepsilon})$ is a regular connected graph of valency $|\Delta|, \pm$ is self-dual, and G acts as an automorphism group on each of these structures, primitive on vertices of the graph and on points and blocks of the design.

In [8], we introduced a generalization of the above construction. This generalization, presented below in Theorem 2.2, allows us to construct 1-designs that are not necessarily symmetric and stabilizers of a point and a block are not necessarily conjugate.

Theorem 2.2. Let G be a finite permutation group acting primitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}, \delta \in \Omega_{2}$, and let $\Delta_{2}=\delta G_{\alpha}$ be the G_{α}-orbit of $\delta \in \Omega_{2}$ and $\Delta_{1}=\alpha G_{\delta}$ be the G_{δ}-orbit of $\alpha \in \Omega_{1}$. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\begin{equation*}
\mathcal{B}=\left\{\Delta_{2} g: g \in G\right\}, \tag{2.1}
\end{equation*}
$$

then $\Phi(G, \alpha, \delta)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|,\left|\Delta_{1}\right|\right)$ design with m blocks and G acts as an automorphism group, primitive on points and blocks of the design.

The construction of a design described in Theorem 2.2 can be interpreted in the following way:
(i) the point set is $\Omega_{2}=\delta G$,
(ii) the block set is $\Omega_{1}=\alpha G$,
(iii) the block αg^{\prime} is incident with the set of points $\left\{\delta g: g \in G_{\alpha} g^{\prime}\right\}$.

Let a point $\delta g \in \Omega_{2}$ be incident with a block $\alpha g^{\prime} \in \Omega_{1}$. Then, $g \in G_{\alpha} g^{\prime}$; hence, there exists $\bar{g} \in G_{\alpha}$ such that $g=\bar{g} g^{\prime}$. Therefore,

$$
\begin{align*}
G_{\alpha g^{\prime}} \cap G_{\delta g} & =G_{\alpha g^{\prime}} \cap G_{\delta \bar{g} g^{\prime}}=G_{\alpha}^{g^{\prime}} \cap G_{\delta \bar{g}}^{g^{\prime}}=\left(G_{\alpha} \cap G_{\delta \bar{g}}\right)^{g^{\prime}}=\left(G_{\alpha} \cap G_{\delta}^{\bar{g}}\right)^{g^{\prime}} \\
& =\left(G_{\alpha}^{\bar{g}^{-1}} \cap G_{\delta}\right)^{\bar{g} g^{\prime}}=\left(G_{\alpha} \cap G_{\delta}\right)^{\bar{g} g^{\prime}}=\left(G_{\alpha} \cap G_{\delta}\right)^{g} . \tag{2.2}
\end{align*}
$$

If a point $\delta g \in \Omega_{2}$ is incident with the block $\alpha \in \Omega_{1}$, then $G_{\alpha} \cap G_{\delta g}=\left(G_{\alpha} \cap G_{\delta}\right)^{g}$. If the set $\left\{G_{\alpha} \cap G_{\delta g} \mid g \in G\right\}$ contains $\operatorname{Orb}\left(G_{\alpha}, \Omega_{2}\right) G_{\alpha}$-conjugacy classes, where $\operatorname{Orb}\left(G_{\alpha}, \Omega_{2}\right)$ is the number of G_{α}-orbits on Ω_{2}, then each conjugacy class corresponds to one G_{α}-orbit and the incidence relation in the design $\Phi(G, \alpha, \delta)$ can be defined as follows:
(i) the block αg^{\prime} is incident with the point δg if and only if $G_{\alpha g^{\prime}} \cap G_{\delta g}$ is conjugate to $G_{\alpha} \cap G_{\delta}$.
Similarly, if the set $\left\{G_{\alpha} \cap G_{\delta g} \mid g \in G\right\}$ contains $\operatorname{Orb}\left(G_{\alpha}, \Omega_{2}\right)$ isomorphism classes, then the incidence in the design $\Phi(G, \alpha, \delta)$ can be defined as follows:
(ii) the block αg^{\prime} is incident with the point δg if and only if $G_{\alpha g^{\prime}} \cap G_{\delta g} \cong G_{\alpha} \cap G_{\delta}$.

In the construction of the design $\Phi(G, \alpha, \delta)$ described in Theorem 2.2, instead of taking a single G_{α}-orbit, we can take Δ_{2} to be any union of G_{α}-orbits.

Corollary 2.3. Let G be a finite permutation group acting primitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=\bigcup_{i=1}^{s} \delta_{i} G_{\alpha}$, where $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\begin{equation*}
B=\left\{\Delta_{2} g: g \in G\right\}, \tag{2.3}
\end{equation*}
$$

then $\mathscr{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|, \sum_{i=1}^{s}\left|\alpha G_{\delta_{i}}\right|\right)$ design with m blocks and G acts as an automorphism group, primitive on points and blocks of the design.

Proof. Clearly, the number of points is $v=n$, since the point set is $D=\Omega_{2}$. Further, each element of B consists of $k=\left|\Delta_{2}\right|$ elements of Ω_{2}.

The set Δ_{2} is a union of G_{α}-orbits, so $G_{\alpha} \subseteq G_{\Delta_{2}}$, where $G_{\Delta_{2}}$ is the setwise stabilizer of Δ_{2}. Since G is primitive on Ω_{1}, G_{α} is a maximal subgroup of G, and therefore $G_{\Delta_{2}}=G_{\alpha}$. The number of blocks is

$$
\begin{equation*}
b=\left|\Delta_{2} G\right|=\frac{|G|}{\left|G_{\Delta_{2}}\right|}=\frac{|G|}{\left|G_{\alpha}\right|}=\left|\Omega_{1}\right|=m \tag{2.4}
\end{equation*}
$$

Since G acts transitively on Ω_{1} and Ω_{2}, the constructed structure is a 1-design, hence $b k=v r$, where each point is incident with r blocks. Therefore,

$$
\begin{equation*}
\left|\Omega_{1}\right|\left|\Delta_{2}\right|=\left|\Omega_{2}\right| r \tag{2.5}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\frac{|G|}{\left|G_{\alpha}\right|} \sum_{i=1}^{s} \frac{\left|G_{\alpha}\right|}{\left|\left(G_{\alpha}\right)_{\delta_{i}}\right|}=\frac{|G|}{\left|G_{\delta_{1}}\right|} r . \tag{2.6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
r=\sum_{i=1}^{s} \frac{\left|G_{\delta_{1}}\right|}{\left|\left(G_{\alpha}\right)_{\delta_{i}}\right|}=\sum_{i=1}^{s} \frac{\left|G_{\delta_{i}}\right|}{\left|\left(G_{\delta_{i}}\right)_{\alpha}\right|}=\sum_{i=1}^{s}\left|\alpha G_{\delta_{i}}\right| . \tag{2.7}
\end{equation*}
$$

Remark 2.4. In the construction of graphs described in Theorem 2.1, we can define the set of edges \mathcal{E} as a union $\bigcup_{i=1}^{S}\left\{\left\{\alpha, \delta_{i}\right\} g: g \in G\right\}$.

The construction described in Corollary 2.3 gives us all designs that admit primitive action of the group G on points and blocks.

Corollary 2.5. If the group G acts primitively on the points and the blocks of a 1-design Φ, then Φ can be obtained as described in Corollary 2.3, that is, such that Δ_{2} is a union of G_{α}-orbits.

Proof. Let α be any block of the design Φ. Gacts transitively on the block set \mathcal{B} of the design \mathscr{D}, hence $\mathbb{B}=\alpha G$. Since G acts primitively on B, the stabilizer G_{α} is a maximal subgroup of G. G_{α} fixes α, so α is a union of G_{α}-orbits.

We can obtain a 1-design by defining the incidence in such a way that the point δg is incident with the block αg^{\prime} if and only if

$$
\begin{equation*}
G_{\alpha g^{\prime}} \cap G_{\delta g} \cong G_{i}, \quad i=1, \ldots, k, \tag{2.8}
\end{equation*}
$$

where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{G_{\alpha x} \cap G_{\delta y} \mid x, y \in G\right\}$.

Let G be a simple group and H_{1} and H_{2} be maximal subgroups of G. The stabilizer of any element $H_{i}^{x} \in \operatorname{ccl}_{G}\left(H_{i}\right), i=1,2$, is the maximal subgroup H_{i}^{x}, hence G acts primitively on the class $\operatorname{ccl}_{G}\left(H_{i}\right), i=1,2$, by conjugation and

$$
\begin{align*}
\left|\operatorname{ccl}_{G}\left(H_{1}\right)\right| & =\left[G: H_{1}\right]=m \\
\left|\operatorname{ccl}_{G}\left(H_{2}\right)\right| & =\left[G: H_{2}\right]=n \tag{2.9}
\end{align*}
$$

Corollary 2.3 allows us to define a 1-design on conjugacy classes of the maximal subgroups H_{1} and H_{2} of a simple group G. Let us denote the elements of $\operatorname{ccl}_{G}\left(H_{1}\right)$ by $H_{1}^{g_{1}}$, $H_{1}^{g_{2}}, \ldots, H_{1}^{g_{m}}$ and the elements of $\operatorname{ccl}_{G}\left(H_{2}\right)$ by $H_{2}^{h_{1}}, H_{2}^{h_{2}}, \ldots, H_{2}^{h_{n}}$.

We can construct a 1-design such that
(i) the point set of the design is $\operatorname{ccl}_{G}\left(H_{2}\right)$,
(ii) the block set is $\operatorname{ccl}_{G}\left(H_{1}\right)$,
(iii) the block $H_{1}^{g_{i}}$ is incident with the point $H_{2}^{h_{j}}$ if and only if $H_{2}^{h_{j}} \cap H_{1}^{g_{i}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H_{2}^{x} \cap H_{1}^{y} \mid x, y \in G\right\}$.

Let us denote a 1-design constructed in this way by $\Phi\left(G, H_{2}, H_{1} ; G_{1}, \ldots, G_{k}\right)$.
Similarly, from the conjugacy class of a maximal subgroup H of a simple group G, one can construct regular graph in the following way:
(i) the vertex set of the graph is $\operatorname{ccl}_{G}(H)$,
(ii) the vertex $H^{g_{i}}$ is adjacent to the vertex $H^{g_{i}}$ if and only if $H^{g_{i}} \cap H^{g_{j}} \cong G_{i}, i=1, \ldots, k$, where $\left\{\mathrm{G}_{1}, \ldots, G_{k}\right\} \subset\left\{H^{x} \cap H^{y} \mid x, y \in G\right\}$.

We denote a regular graph constructed in this way by $\mathcal{G}\left(G, H ; G_{1}, \ldots, G_{k}\right)$.
Remark 2.6. Let ϕ be an automorphism of a finite group G. Then, the design $\boldsymbol{\mathcal { D }}\left(\mathrm{G}, H_{2}, H_{1}\right.$; $\left.G_{1}, \ldots, G_{k}\right)$ is isomorphic to $\mathscr{}\left(G,\left(H_{2}\right) \phi,\left(H_{1}\right) \phi ; G_{1}, \ldots, G_{k}\right)$, and the graph $\mathcal{G}\left(G, H ; G_{1}, \ldots\right.$, $\left.G_{k}\right)$ is isomorphic to $\mathcal{G}\left(G,(H) \phi ; G_{1}, \ldots, G_{k}\right)$.

3. Block Designs on 31 Points Constructed from the Group $L(3,5)$

Let G be a group isomorphic to the linear group $L(3,5)$.
Using GAP (see [13]), one can check that $H_{2}^{x} \cap H_{1}^{y} \cong\left(Z_{2} \cdot A_{5}\right): Z_{4}$ or $\left(\left(Z_{5} \times Z_{5}\right) \cdot Z_{5}\right)$: $\left(Z_{4} \times Z_{4}\right)$ for all $x, y \in G$. Further, for every H_{2}^{x},

$$
\begin{equation*}
\left|\left\{H_{1}^{y} \mid y \in G, \quad H_{1}^{y} \cap H_{2}^{x} \cong\left(\left(Z_{5} \times Z_{5}\right) \cdot Z_{5}\right):\left(Z_{4} \times Z_{4}\right)\right\}\right|=6 \tag{3.1}
\end{equation*}
$$

Let us define sets $S_{i}^{(1)}=\left\{H_{2}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{2}\right) \mid H_{1}^{h_{i}} \cap H_{2}^{g_{j}} \cong\left(\left(Z_{5} \times Z_{5}\right) \cdot Z_{5}\right):\left(Z_{4} \times Z_{4}\right)\right\}, 1 \leq i$ ≤ 31. For every $1 \leq i, k \leq 31, i \neq k$, the set $S_{i}^{(1)} \cap S_{k}^{(1)}$ has exactly one element. That proves that the incidence structure $\Phi_{1}=\Phi\left(L(3,5), H_{1}, H_{2} ;\left(\left(Z_{5} \times Z_{5}\right) \cdot Z_{5}\right):\left(Z_{4} \times Z_{4}\right)\right)$ is the unique symmetric $2-(31,6,1)$ design (see [14]), that is, the projective plane $P G(2,5)$. The full automorphism group of the design Φ_{1} has 372000 elements, and it is isomorphic to the group $L(3,5)$.

Let $H_{3} \cong S_{5}$ be a maximal subgroup in G. The conjugacy class $\operatorname{ccl}_{G}\left(H_{3}\right)$ has 3100 elements. One can verify using GAP that $H_{1}^{x} \cap H_{3}^{y}$ is isomorphic to D_{8}, D_{12}, or $Z_{5}: Z_{4}$, for all $x, y \in G$. Using GAP (see [13]), we obtain the following:
(1) $\left|\left\{H_{1}^{h_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong Z_{5}: Z_{4}\right\}\right|=6$, for all $H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right), 1 \leq j \leq 3100$,
(2) $\left|S_{i}^{(2)} \cap S_{k}^{(2)}\right|=100$, for all $i, k \in\{1,2, \ldots, 31\}, i \neq j, S_{i}^{(2)}=\left\{H_{3}^{g_{j}} \operatorname{ccl}_{G}\left(H_{3}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong\right.$ $\left.Z_{5}: Z_{4}\right\}$,
(3) $\left|\left\{H_{1}^{h_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong D_{12}\right\}\right|=10$, for all $H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right), 1 \leq j \leq 3100$,
(4) $\left|S_{i}^{(3)} \cap S_{k}^{(3)}\right|=300$, for all $i, k \in\{1,2, \ldots, 31\}, i \neq j, S_{i}^{(3)}=\left\{H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong\right.$ $\left.D_{12}\right\}$,
(5) $\left|\left\{H_{1}^{h_{i}} \in \operatorname{ccl}_{G}\left(H_{1}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong D_{8}\right\}\right|=15$, for all $H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right), 1 \leq j \leq 3100$,
(6) $\left|S_{i}^{(4)} \cap S_{k}^{(4)}\right|=700$, for all $i, k \in\{1,2, \ldots, 31\}, i \neq j, S_{i}^{(4)}=\left\{H_{3}^{g_{j}} \in \operatorname{ccl}_{G}\left(H_{3}\right) \mid H_{1}^{h_{i}} \cap H_{3}^{g_{j}} \cong\right.$ $\left.D_{8}\right\}$.

It follows from (1) and (2) that the structure $\Phi_{2}=\boldsymbol{\Phi}\left(L(3,5), H_{1}, H_{3} ; Z_{5}: Z_{4}\right)$ is a block design $2-(31,6,100)$. The blocks of Φ_{2} are conics in $\operatorname{PG}(2,5)$.
(3) and (4) imply that the structure $\Phi_{3}=\Phi\left(L(3,5), H_{1}, H_{3} ; D_{12}\right)$ is a block design $2-(31,10,300)$. The blocks of Φ_{3} are interior points of conics in $\operatorname{PG}(2,5)$.

Further, (5) and (6) show that the structure $\Phi_{4}=\Phi\left(L(3,5), H_{1}, H_{3} ; D_{8}\right)$ is a block design $2-(31,15,700)$. The blocks of Φ_{3} are exterior points of conics in $\operatorname{PG}(2,5)$.

The full automorphism group of designs Φ_{2}, Φ_{3}, and Φ_{4} has 372000 elements and is isomorphic to the group $L(3,5)$.

Let $H_{4} \cong\left(Z_{4} \times Z_{4}\right): S_{3}$ be a maximal subgroup in G. The conjugacy class $\operatorname{ccl}_{G}\left(H_{4}\right)$ has 3875 elements. Using GAP (see [13]), one can check that $H_{1}^{x} \cap H_{4}^{y}$ is isomorphic to $S_{3}, Z_{2} \times Z_{4}$, or $\left(Z_{8}: Z_{2}\right): Z_{2}$, for all $x, y \in G$. In the similar way as above, we obtain the following results:
(i) $\left.\boldsymbol{\Phi}_{5}=\boldsymbol{\Phi}\left(L(3,5), H_{1}, H_{4} ;\left(Z_{8}: Z_{2}\right): Z_{2}\right)\right)$ is a $2-(31,3,25)$ design. $\boldsymbol{\Phi}_{5}$ is isomorphic to the design constructed from the symmetric $2-(31,6,1)$ design Φ_{1} in such a way that the blocks are all triples of noncollinear points.
(ii) The incidence structure $\Phi_{6}=\boldsymbol{\Phi}\left(L(3,5), H_{1}, H_{4} ; Z_{2} \times Z_{4}\right)$ is a block design 2 - (31, 12,550). The blocks of Φ_{6} are unions of sides of triangles in $\operatorname{PG}(2,5)$.
(iii) $\Phi_{7}=\Phi\left(L(3,5), H_{1}, H_{4} ; S_{3}\right)$ is a block design $2-(31,15,875)$. The blocks of Φ_{7} are unions of sides of triangles in PG $(2,5)$, including the corners.

The full automorphism group of Φ_{5}, Φ_{6}, and Φ_{7} is isomorphic to $L(3,5)$.
Six designs isomorphic to $\Phi_{2}, \Phi_{3}, \Phi_{4}, \Phi_{5}, \Phi_{6}$, and Φ_{7} can be obtain in the same way as described in this paper using the maximal subgroup H_{2} instead of H_{1}. This is a consequence of the Remark 2.6 and the fact that there exists an automorphism of $L(3,5)$ which fixes $\operatorname{ccl}_{G}\left(H_{3}\right), \operatorname{ccl}_{G}\left(H_{4}\right)$ and $\operatorname{ccl}_{G}\left(H_{5}\right)$, setwise and acts as a transposition which maps $\operatorname{ccl}_{G}\left(H_{1}\right)$ onto $\mathrm{ccl}_{G}\left(\mathrm{H}_{2}\right)$.

We thank an anonymous referee of an earlier version of this paper for suggesting the construction of the designs $\Phi_{2}, \Phi_{3}, \Phi_{4}, \Phi_{6}$, and Φ_{7} from triangles and conics in $\operatorname{PG}(2,5)$.

4. Strongly Regular Graphs Constructed from the Group $U(5,2)$

In this section, we describe structures constructed from a simple group isomorphic to the unitary group $U(5,2)$.

The intersection of two different elements $K_{i}^{x}, K_{i}^{y} \in \operatorname{ccl}_{G}\left(K_{i}\right), i=1,2,3,4$, denoted by $G_{i, i}^{k}$, is isomorphic to
(i) $G_{1,1}^{1} \cong\left(\left(E x_{27}^{+}: Z_{2}\right) \cdot Z_{4}\right): Z_{3}$ or $G_{1,1}^{2} \cong\left(\left(E_{8} \times Z_{4}\right) \cdot E_{8}\right): E_{9}$,
(ii) $G_{2,2}^{1} \cong\left(E_{8}: Z_{12}\right): Z_{6}$ or $G_{2,2}^{2} \cong\left(\left(\left(E x_{27}^{+}: Z_{2}\right) \cdot Z_{4}\right): Z_{3}\right): Z_{3}$,
(iii) $G_{3,3}^{1} \cong A_{5} \times Z_{3}$ or $G_{3,3}^{2} \cong E x_{128}^{-}: E_{9}$,
(iv) $G_{4,4}^{1} \cong D_{6}, G_{4,4}^{2} \cong S_{3} \times S_{3}, G_{4,4}^{3} \cong\left(A_{4}: Z_{2}\right): Z_{3}, G_{4,4}^{4} \cong A_{5}: Z_{2}$, or $G_{4,4}^{5} \cong\left(E x_{27}^{+}\right.$: $\left.Z_{2}\right) \times S_{3}$.

Applying the method described in Section 2, we obtain the following results:
(i) the graph $\mathcal{G}_{1}=\mathcal{G}\left(U(5,2), K_{1} ; G_{1,1}^{1}\right)$ is a strongly regular graph with parameters $(165,36,3,9)$,
(ii) the graph $\mathcal{G}_{2}=\mathcal{G}\left(U(5,2), K_{2} ; G_{2,2}^{2}\right)$ is a strongly regular graph with parameters $(176,40,12,8)$,
(iii) the graph $\mathcal{G}_{3}=\mathcal{G}\left(U(5,2), K_{3} ; G_{3,3}^{2}\right)$ is a strongly regular graph with parameters (297, 40, 7, 5),
(iv) the graph $\mathcal{G}_{4}=\mathcal{G}\left(U(5,2), K_{4} ; G_{4,4^{\prime}}^{2}, G_{4,4}^{3}, G_{4,4}^{4}\right)$ is a strongly regular graph with parameters $(1408,567,246,216)$.
The full automorphism groups of the graphs $\mathcal{G}_{1}, \mathcal{G}_{2}$, and \mathcal{G}_{3} are isomorphic to the group $U(5,2): Z_{2} \cong \operatorname{Aut}(U(5,2))$. $U(5,2)$ is a rank 3 group on 165,176 , and 297 points, and $\mathcal{G}_{1}, \mathcal{G}_{2}$, and \mathcal{G}_{3} are rank 3 graphs of the group $U(5,2)$.

The full automorphism group of the graph \mathcal{G}_{4} is of order 18393661440 and is isomorphic to the group $U(6,2): Z_{2} \cong F i_{21}: Z_{2}$. Although $U(5,2)$ acts as a rank 7 group on 1408 points, the graph \mathcal{G}_{4} can be constructed as a rank 3 graph from the Fischer group $F i_{21}$.

5. Structures Constructed from the Group $S(6,2)$

In this section, we consider the structures constructed from a simple group isomorphic to the symplectic group $S(6,2)$.

The intersection of two different elements $M_{i}^{x} \in \operatorname{ccl}_{G}\left(M_{i}\right)$ and $M_{j}^{y} \in \operatorname{ccl}_{G}\left(M_{j}\right)$, denoted by $G_{i, j}^{k}$, is isomorphic to (we introduce only the intersection of elements of conjugacy classes that give rise to a strongly regular graph or a block design)
(i) $G_{1,3}^{1} \cong E_{16}: S_{5}$ or $G_{1,3}^{2} \cong A_{6}: E_{4}$,
(ii) $G_{1,6}^{1} \cong\left(\left(E_{8} \cdot Z_{12}\right): Z_{6}\right): Z_{2}$ or $G_{1,6}^{2} \cong S_{4} \times D_{8}$,
(iii) $G_{1,7}^{1} \cong E_{27}:\left(D_{8} \times Z_{2}\right)$ or $G_{1,7}^{2} \cong S_{5}: Z_{2}$,
(iv) $G_{2,3}^{1} \cong A_{6}: E_{4}$ or $G_{2,3}^{2} \cong\left(S_{4} \times S_{4}\right): Z_{2}$,
(v) $G_{2,5}^{1} \cong E_{8}: L(2,7)$ or $G_{2,5}^{2} \cong E_{16}: S_{4}$,
(vi) $G_{2,6}^{1} \cong E_{16}: S_{4}$ or $G_{2,6}^{2} \cong S_{4} \times D_{8}$,
(vii) $G_{2,7}^{1} \cong S_{5} \times S_{3}$ or $G_{2,7}^{2} \cong E_{9}:\left(D_{8} \times Z_{2}\right)$,
(viii) $G_{3,3}^{1} \cong E x_{32}^{+}:\left(D_{12} \times Z_{2}\right)$ or $G_{3,3}^{2} \cong S_{6}$,
(ix) $G_{4,4}^{1} \cong\left(E x_{27}^{+}: Z_{2}\right) \cdot Z_{4}$ or $G_{4,4}^{2} \cong\left(Z_{4} \times Z_{4}\right): D_{12}$,
(x) $G_{5,5}^{1} \cong L(2,7), G_{5,5}^{2} \cong E_{16}: D_{12}$, or $G_{5,5}^{3} \cong E x_{32}^{+}:\left(A_{4}: Z_{2}\right)$.

Applying the method described in Section 2, we obtain the following results:
(i) the incidence structure $\Phi_{8}=\Phi\left(S(6,2), M_{1}, M_{3} ; G_{1,3}^{1}\right)$ is a block design with parameters $2-(28,12,11)$,
(ii) the incidence structure $\Phi_{9}=\Phi\left(S(6,2), M_{1}, M_{6} ; G_{1,6}^{1}\right)$ is a block design with parameters $2-(28,4,5)$,
(iii) the incidence structure $\Phi_{10}=\Phi\left(S(6,2), M_{1}, M_{7} ; G_{1,7}^{1}\right)$ is a block design with parameters $2-(28,10,40)$,
(iv) the incidence structure $\Phi_{11}=\Phi\left(S(6,2), M_{2}, M_{3} ; G_{2,3}^{1}\right)$ is a block design with parameters $2-(36,16,12)$,
(v) the incidence structure $\Phi_{12}=\Phi\left(S(6,2), M_{2}, M_{5} ; G_{2,5}^{1}\right)$ is a block design with parameters $2-(36,8,6)$,
(vi) the incidence structure $\Phi_{13}=\Phi\left(S(6,2), M_{2}, M_{6} ; G_{2,6}^{1}\right)$ is a block design with parameters $2-(36,12,33)$,
(vii) the incidence structure $\boldsymbol{\Phi}_{14}=\boldsymbol{\Phi}\left(S(6,2), M_{2}, M_{7} ; G_{2,7}^{1}\right)$ is a block design with parameters $2-(36,6,8)$,
(viii) the incidence structure $\Phi_{15}=\Phi\left(S(6,2), M_{3}, M_{3} ; G_{3,3}^{1}, M_{3}\right)$ is a block design with parameters $2-(63,31,15)$,
(ix) the graph $\mathcal{G}_{5}=\mathcal{G}\left(S(6,2), M_{3} ; G_{3,3}^{1}\right)$ is a strongly regular graph with parameters $(63,30,13,15)$,
(x) the graph $\mathcal{G}_{6}=\mathcal{G}\left(S(6,2), M_{4} ; G_{4,4}^{1}\right)$ is a strongly regular graph with parameters $(120,56,28,24)$,
(xi) the graph $\mathcal{G}_{7}=\mathcal{G}\left(S(6,2), M_{5} ; G_{5,5}^{1}\right)$ is a strongly regular graph with parameters $(135,64,28,32)$.

The full automorphism groups of designs $\Phi_{8}, \Phi_{9}, \Phi_{10}, \Phi_{11}, \Phi_{12}, \Phi_{13}$, and Φ_{14} and the full automorphism group of the graph \mathcal{G}_{5} are isomorphic to $S(6,2)$.

Graphs \mathcal{G}_{6} and \mathcal{G}_{7} have $O_{8}^{+}(2): Z_{2} \cong \operatorname{AutO}_{8}^{+}(2)$ as the full automorphism group. $O_{8}^{+}(2)$ acts as a rank 3 group on 120 and 135 points, and graphs \mathcal{G}_{6} and \mathcal{G}_{7} can be constructed as rank 3 graphs from the orthogonal group $O_{8}^{+}(2)$. On the other hand, the group $S(6,2)$ acts as a rank 3 group on 120 points and as a rank 4 group on 135 points. Therefore, the graph \mathcal{C}_{6} can also be constructed as a rank 3 graph from the $S(6,2)$.

The design Φ_{8} is a quasi-symmetric SDP design isomorphic to the design described in $[15,16]$. Its block graph is isomorphic to the complement of the graph \mathcal{G}_{5}.

Furthermore, from the design $\boldsymbol{\Phi}_{9}$ on 28 points, one can construct two designs on 28 points, one isomorphic to the design Φ_{8} and one isomorphic to the design Φ_{10}. The design on 28 points, whose blocks are unions of three disjoint blocks of the design \oplus_{9} such that stabilizer of that union under the action of the automorphism group $\operatorname{Aut}\left(\Phi_{9}\right)$ is isomorphic to the maximal subgroup M_{3}, is isomorphic to the design Φ_{8}. On the other hand, unions of three blocks intersecting in exactly one point of the design Φ_{9} such that stabilizer of that union under the action of the group $\operatorname{Aut}\left(\Phi_{9}\right)$ is isomorphic to the maximal subgroup M_{7} are blocks of a design isomorphic to the design Φ_{10}.

The design Φ_{11} is also a quasi-symmetric design, isomorphic to the design described in $[15,16]$. Its block graph is isomorphic to the graph \mathcal{G}_{5}.

The ovals (sets of 6 points, no three collinear) of the design \otimes_{12} form a block design with parameters $2-(36,6,8)$ isomorphic to the design Φ_{14}. Furthermore, the group $S(6,2)$

Table 1: Maximal subgroups of the group $L(3,5)$.

Maximal subgroup	Structure	Order	Index
H_{1}	$E_{25}: G L(2,5)$	12000	31
H_{2}	$E_{25}: G L(2,5)$	12000	31
H_{3}	S_{5}	120	3100
H_{4}	$\left(Z_{4} \times Z_{4}\right): S_{3}$	96	3875
H_{5}	F_{93}	93	4000

Table 2: Maximal subgroups of the group $U(5,2)$.

Maximal subgroup	Structure	Order	Index
K_{1}	$\left(E_{64}: Z_{2}\right) \cdot\left(E_{9}: Z_{3}\right) \cdot S L(2,3)$	829444	165
K_{2}	$Z_{3} \times U(4,2)$	46080	176
K_{3}	$\left(E_{16}: E_{16}\right):\left(Z_{3} \times A_{5}\right)$	77760	297
K_{4}	$E_{81}: S_{5}$	9720	1408
K_{5}	$\left(S_{3} \times\left(E_{9}: Z_{3}\right)\right): S L(2,3)$	3888	3520
K_{6}	$L(2,11)$	660	20736

Table 3: Maximal subgroups of the group $S(6,2)$.

Maximal subgroup	Structure	Order	Index
M_{1}	$U(4,2): Z_{2}$	51840	28
M_{2}	S_{8}	40320	36
M_{3}	$E_{32}: S_{6}$	23040	63
M_{4}	$U(3,3): Z_{2}$	12096	120
M_{5}	$E_{64}: L(3,2)$	10752	135
M_{6}	$\left(\left(E_{16}: Z_{2}\right) \times E_{4}\right):\left(S_{4} \times S_{4}\right)$	4608	315
M_{7}	$S_{3} \times S_{6}$	4320	336
M_{8}	$L(2,8): Z_{3}$	504	960

has a subgroup H isomorphic to the group $\operatorname{PG}(2,8)$. The group H acts on the set of all ovals of the design Φ_{12} in four orbits of size 84 and one of these orbits forms the block set of a block design with parameters $2-(36,6,2)$ having $\operatorname{Aut}(\operatorname{PGL}(2,8))$ as the full automorphism group. The design Φ_{12} is isomorphic to the $2-(36,8,6)$ design described in [17].

Unions of four disjoint blocks of the design Φ_{14} such that stabilizer of that union under the action of the automorphism group $\operatorname{Aut}\left(\Phi_{14}\right)$ is isomorphic to the maximal subgroup M_{6} are blocks of a design isomorphic to the complement of the design \oplus_{13}.

The design Φ_{15} is the point-hyperplane design in the projective geometry PG $(6,2)$, and its full automorphism group is isomorphic to $\operatorname{PG}(6,2)$. \oplus_{15} possesses a symmetric incidence matrix with 1 everywhere on the diagonal, and therefore it gives rise to a strongly regular graph with parameters $(63,30,13,15)$ which is isomorphic to the graph \mathcal{G}_{5}.

The graph \mathcal{G}_{7} can also be constructed from the design Φ_{12}. Any two blocks of Φ_{12} intersect in 1,2 , or 4 points. The graph which has as its vertices the blocks of Φ_{12}, two vertices being adjacent if and only if the corresponding blocks intersect in one point, is isomorphic to \mathcal{G}_{7}.

Let $U \cong U(3,3)$ be a subgroup of the group $S(6,2)$ and let $\operatorname{ccl}_{U}\left(M_{1}\right)$ and $\operatorname{ccl}_{U}\left(M_{6}\right)$ be conjugacy classes of maximal subgroups M_{1} and M_{6} under the action of the group U. The intersection of $M_{1}^{g}, g \in U$, and $M_{6}^{h}, h \in U$, is isomorphic either to $G_{1,6}^{1}$ or $G_{1,6}^{2}$.

Table 4: Structures constructed from $L(3,5), U(5,2)$, and $S(6,2)$.

Combinatorial structure	The full automorphism group
2 - (31,6,1) design	$L(3,5)$
2 - $(31,6,100)$ design	$L(3,5)$
2 - (31,10,300) design	$L(3,5)$
2 - (31,15, 700) design	$L(3,5)$
2 - $(31,3,25)$ design	$L(3,5)$
2 - $(31,12,550)$ design	$L(3,5)$
2 - $(31,15,875)$ design	$L(3,5)$
2 - $(28,12,11)$ design	$S(6,2)$
2 - (28,4,5) design	$S(6,2)$
2 - (28,10,40) design	$S(6,2)$
2 - $(36,16,12)$ design	$S(6,2)$
2 - $(36,8,6)$ design	$S(6,2)$
2 - (36,12,33) design	$S(6,2)$
2 - (36,6,8) design	$S(6,2)$
2 - (63,31,15) design	PGL(6,2)
2 - (28,4,4) design	$U(3,3): Z_{2}$
2 - $(28,4,1)$ design	$U(3,3): Z_{2}$
SRG(63, 30, 13, 15)	$S(6,2)$
SRG(120,56, 28, 24$)$	$\mathrm{O}_{8}^{+}(2): \mathrm{Z}_{2}$
SRG(135, $64,28,32)$	$O_{8}^{+}(2): Z_{2}$
SRG(165, 36, 3,9$)$	$U(5,2): Z_{2}$
SRG(176, 40, 12, 8)	$U(5,2): Z_{2}$
SRG(297, 40, 7,5)	$U(5,2): Z_{2}$
SRG(1408,567, 246,216)	$F i_{21}: Z_{2}$

Let $\mathcal{\Phi}^{\prime}$ be an incidence structure whose points are labeled by the elements of the class $\operatorname{ccl}_{U}\left(M_{1}\right)$ and whose blocks are labeled by the elements of the class $\operatorname{ccl}_{U}\left(M_{6}\right)$, point and block being incident if and only if the intersection of corresponding elements of conjugacy classes is isomorphic to the group $G_{1,6}^{1}$. The structure Φ^{\prime} is isomorphic to the block design with parameters $2-(28,4,4)$ having $\operatorname{Aut} U(3,3) \cong U(3,3): Z_{2}$ as the full automorphism group. Further, let $M=M_{6}^{g}, \quad g \notin U$, be an element of the class $\operatorname{ccl}_{S(6,2)}\left(M_{6}\right)$. The incidence structure $\mathscr{\Xi}^{\prime \prime}$ whose points are labeled by the elements of the class $\operatorname{ccl}_{U}\left(M_{1}\right)$ and whose blocks are labeled by the elements of the class $\mathrm{ccl}_{U}(M)$, point and block being incident if and only if the intersection of corresponding elements of conjugacy classes is isomorphic to the group $G_{1,6}^{1}$, is isomorphic to the Hermitian unital with parameters $2-(28,4,1)$ having $\operatorname{Aut} U(3,3)$ as the full automorphism group. We conclude that the designs Φ^{\prime} and $\Phi^{\prime \prime}$ are subdesigns of the design Φ_{9}. One can construct from the group $U(3,3)$ the design $\Phi\left(U(3,3),\left(E_{9}: Z_{3}\right)\right.$: $Z_{8}, Z_{4} \cdot S_{4} ; Z_{3}: Z_{8}$) isomorphic to the design $\mathscr{\Psi}^{\prime \prime}$ (see [15]).

The Hölz design $H(q)$ of order q is a design with parameters $2-\left(q^{3}+1, q+\right.$ $1, q+2)$ which is a union of the Hermitian unital with parameters $2-\left(q^{3}+1, q+1,1\right)$ and a $2-\left(q^{3}+1, q+1, q+1\right)$ design whose blocks are arcs in the unital. To prove that design Φ_{9} is isomorphic to the design $H(3)$, we constructed design $H(3)$, by the method described in [18], as the support design of the dual code of the code spanned by the incidence vectors of the design Ξ_{8}. Constructed design is isomorphic to the design \boxplus_{9}.

From

(i) $\left|\operatorname{ccl}_{S(6,2)} M_{1}\right|=\left|\operatorname{ccl}_{U} M_{1}\right|$,
(ii) $\left|\operatorname{ccl}_{S(6,2)} M_{2}\right|=\left|\operatorname{ccl}_{U} M_{2}\right|$,
(iii) $\left|\operatorname{ccl}_{S(6,2)} M_{3}\right|=\left|\operatorname{ccl}_{U} M_{3}\right|$,
(iv) $\left|\operatorname{ccl}_{S(6,2)} M_{7}\right|=\left|\operatorname{ccl}_{U} \mathrm{M}_{7}\right|$,
one can conclude that, in order to construct designs $\Phi_{8}, \boldsymbol{\Phi}_{10}, \boldsymbol{\Phi}_{11}, \boldsymbol{\Phi}_{14}$ and Φ_{15}, corresponding maximal subgroups need not to be conjugate by the elements of the whole group $S(6,2)$. The conjugation by the elements of the subgroup U is sufficient to obtain the desired structures.

In Table 4 we give a list of the constructed designs and strongly regular graphs and their full automorphism groups. Table 1, Table 2, and Table 3 give a list of maximal subgroups of the groups $L(3,5), U(5,2)$, and $S(6,2)$, respectively.

References

[1] E. Witt, "Die 5-Fach transitiven Gruppen von Mathieu," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 12, pp. 256-264, 1938.
[2] E. Witt, "Über steinersche systeme," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 12, pp. 265-275, 1938.
[3] W. H. Haemers, C. Parker, V. Pless, and V. Tonchev, "A design and a code invariant under the simple group Co_{3}," Journal of Combinatorial Theory. Series A, vol. 62, no. 2, pp. 225-233, 1993.
[4] D. Held, J. H. de Angelis, and M.-O. Pavčević, " $P S p_{4}(3)$ as a symmetric $(36,15,6)$-design," Rendiconti del Seminario Matematico della Università di Padova, vol. 101, pp. 95-98, 1999.
[5] C. Parker and V. D. Tonchev, "Linear codes and doubly transitive symmetric designs," Linear Algebra and its Applications, vol. 226/228, pp. 237-246, 1995.
[6] J. D. Key and J. Moori, "Codes, designs and graphs from the Janko groups J_{1} and J_{2}, " Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 40, pp. 143-159, 2002.
[7] J. D. Key and J. Moori, "Codes, designs and graphs from the Janko groups J_{1} and J_{2}, " Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 64, p. 153, 2002.
[8] D. Crnković and V. Mikulić, "Unitals, projective planes and other combinatorial structures constructed from the unitary groups $U(3, q), q=3,4,5,7,{ }^{\prime \prime}$ Ars Combinatoria. In press.
[9] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and their Links, vol. 22 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, Mass, USA, 1991.
[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, UK, 1985.
[11] D. J. S. Robinson, A Course in the Theory of Groups, vol. 80 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1996.
[12] J. D. Key, J. Moori, and B. G. Rodrigues, "On some designs and codes from primitive representations of some finite simple groups," Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 45, pp. 3-19, 2003.
[13] The GAP Group, "GAP—groups, algorithms, and programming, version 4.4.9," 2006, http://www .gap-system.org/.
[14] R. Mathon and A. Rosa, " $2-(v, k, \lambda)$ designs of small order," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, Eds., pp. 25-58, Chapman \& Hall/CRC, Boca Raton, Fla, USA, 2nd edition, 2007.
[15] D. Crnković, V. Mikulić, and S. Rukavina, "Block designs constructed from the group U(3,3)," Journal of Applied Algebra and Discrete Structures, vol. 2, no. 2, pp. 69-81, 2004.
[16] C. Parker, E. Spence, and V. D. Tonchev, "Designs with the symmetric difference property on 64 points and their groups," Journal of Combinatorial Theory. Series A, vol. 67, no. 1, pp. 23-43, 1994.
[17] M. A. Wertheimer, Designs in quadrics, Ph.D. thesis, University of Pennsylvani, Philadelphia, Pa, USA, 1986.
[18] V. D. Tonchev, "Unitals in the Hölz design on 28 points," Geometriae Dedicata, vol. 38, no. 3, pp. 357363, 1991.

