Research Article

Classification of Normal Sequences

Dragomir Ž. Đoković

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Correspondence should be addressed to Dragomir Ž. Đoković, djokovic@uwaterloo.ca
Received 4 August 2010; Accepted 13 January 2011
Academic Editor: Gerard Jennhwa Chang
Copyright © 2011 Dragomir Ž. Đoković. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Base sequences $\mathrm{BS}(m, n)$ are quadruples $(A ; B ; C ; D)$ of $\{ \pm 1\}$-sequences, with A and B of length m and C and D of length n, such that the sum of their nonperiodic autocorrelation functions is a δ function. Normal sequences $\operatorname{NS}(n)$ are base sequences $(A ; B ; C ; D) \in B S(n, n)$ such that $A=B$. We introduce a definition of equivalence for normal sequences $\mathrm{NS}(n)$ and construct a canonical form. By using this canonical form, we have enumerated the equivalence classes of $\mathrm{NS}(n)$ for $n \leq 40$.

1. Introduction

By a binary respectively ternary sequence we mean a sequence $A=a_{1}, a_{2}, \ldots, a_{m}$ whose terms belong to $\{ \pm 1\}$ respectively $\{0, \pm 1\}$. To such a sequence, we associate the polynomial $A(z)=$ $a_{1}+a_{2} z+\cdots+a_{m} z^{m-1}$. We refer to the Laurent polynomial $N(A)=A(z) A\left(z^{-1}\right)$ as the norm of A. Base sequences $(A ; B ; C ; D)$ are quadruples of binary sequences, with A and B of length m and C and D of length n, and such that

$$
\begin{equation*}
N(A)+N(B)+N(C)+N(D)=2(m+n) \tag{1.1}
\end{equation*}
$$

The set of such sequences will be denoted by BS (m, n).
In this paper, we consider only the case where $m=n$ or $m=n+1$. The base sequences $(A ; B ; C ; D) \in \mathrm{BS}(n, n)$ are normal if $A=B$. We denote by $\mathrm{NS}(n)$ the set of normal sequences of length n, that is, those contained in $\operatorname{BS}(n, n)$. It is well known [1] that for normal sequences $2 n$ must be a sum of three squares. In particular, $\mathrm{NS}(14)$ and $\mathrm{NS}(30)$ are empty. Exhaustive computer searches have shown that NS (n) are empty also for $n=6,17,21,22,23,24$ (see [2]) and $n=27,28,31,33,34, \ldots, 39$ (see [3-6]).

Table 1: Number of equivalence classes of NS(n).

n	Equ	Gol	Spo	n	Equ	Gol	Spo
1	1	1		21			
2	1	1		22			
3	1		1	23			
4	1	1		24			4
5	1		1	25	4		4
6				26	2	2	
7	4		4	27			
8	7	6	1	28			
9	3		3	29	2		
10	5	4	1	30			
11	2		2	31			
12	4		4	32	516	480	
13	3		3	33			
14				34			
15	2		2	35			
16	52	48	4	36			
17				37			
18	1		1	38			
19	1		1	39		304	
20	36	34	2	40	304	304	

The base sequences $(A ; B ; C ; D) \in \mathrm{BS}(n+1, n)$ are near-normal if $b_{i}=(-1)^{i-1} a_{i}$ for all $i \leq n$. For near-normal sequences n must be even or 1 . We denote by $\mathrm{NN}(n)$ the set of nearnormal sequences in $\operatorname{BS}(n+1, n)$.

Normal sequences were introduced by Yang in [1] as a generalization of Golay sequences. Let us recall that Golay sequences $(A ; B)$ are pairs of binary sequences of the same length, n, and such that $N(A)+N(B)=2 n$. We denote by GS (n) the set of Golay sequences of length n. It is known that they exist when $n=2^{a} 10^{b} 26^{c}$ where a, b, c are arbitrary nonnegative integers. There exist two embeddings GS $(n) \rightarrow \mathrm{NS}(n)$: the first defined by $(A ; B) \rightarrow(A ; A ; B ; B)$ and the second by $(A ; B) \rightarrow(B ; B ; A ; A)$. We say that these normal sequences (and those equivalent to them) are of Golay type. For the definition of equivalence of normal sequences see Section 3. However, as observed by Yang, there exist normal sequences which are not of Golay type. We refer to them as sporadic normal sequences. From the computational results reported in this paper (see Table 1) it appears that there may be only finitely many sporadic normal sequences. For example, all 304 equivalence classes in NS(40) are of Golay type. The smallest length for which the existence question of normal sequences is still unresolved is $n=41$.

Base sequences, and their special cases such as normal and near-normal sequences, play an important role in the construction of Hadamard matrices [7, 8]. For instance, the discovery of a Hadamard matrix of order 428 (see [9]) used a BS $(71,36)$, constructed specially for that purpose.

Examples of normal sequences NS(n) have been constructed in [1, 2, 5, 7, 10]. For various applications, it is of interest to classify the normal sequences of small length. Our main goal is to provide such classification for $n \leq 40$. The classification of near-normal
sequences $\mathrm{NN}(n)$ for $n \leq 40$ and base sequences $\mathrm{BS}(n+1, n)$ for $n \leq 30$ has been carried out in our papers $[5,6,11]$ and $[10,12]$, respectively.

We give examples of normal sequences of lengths $n=1, \ldots, 5$:

$$
\begin{array}{rrrr}
A=+; & A=+,+; & A=+,+,-; & A=+,+,-,+; \\
A=+; & A=+,+; & A=+,+,-; & A=+,+,-,+; \\
C=+; & C=+,-; & C=+,+,+; & C=+,+,+,-; \\
D=+; & D=+,-; & D=+,-,+; & D=+,+,+,-; \\
& A=+,+,+,-,+; & \tag{1.2}\\
& A=+,+,+,-,+; \\
& C=+,+,+,-,-; \\
& D=+,-,+,+,-. &
\end{array}
$$

When displaying a binary sequence, we often write + for +1 and - for -1 . We have written the sequence A twice to make the quads visible (see Section 2).

If $(A ; A ; C ; D) \in \mathrm{NS}(n)$ then $(A,+; A,-; C ; D) \in \mathrm{BS}(n+1, n)$. This has been used in our previous papers to view normal sequences $\mathrm{NS}(n)$ as a subset of $\mathrm{BS}(n+1, n)$. For classification purposes it is more convenient to use the definition of $\mathrm{NS}(n)$ as a subset of $\mathrm{BS}(n, n)$, which is closer to Yang's original definition [1].

In Section 2, we recall the basic properties of base sequences $\mathrm{BS}(m, n)$. The quad decomposition and our encoding scheme for $\mathrm{BS}(n+1, n)$ used in our previous papers also work for $\mathrm{NS}(n)$, but not for arbitrary base sequences in $\mathrm{BS}(n, n)$. The quad decomposition of normal sequences $\mathrm{NS}(n)$ is somewhat simpler than that of base sequences $\mathrm{BS}(n+1, n)$. We warn the reader that the encodings for the first two sequences of $(A ; A ; C ; D) \in \mathrm{NS}(n)$ and $(A,+; A,-; C ; D) \in \mathrm{BS}(n+1, n)$ are quite different.

In Section 3, we introduce the elementary transformations of NS(n). We point out that the elementary transformation (E4) is quite nonintuitive. It originated in our paper [5] where we classified near-normal sequences of small length. Subsequently, it has been extended and used to classify (see $[10,12]$) the base sequences $\mathrm{BS}(n+1, n)$ for $n \leq 30$. We use these elementary transformations to define an equivalence relation and equivalence classes in NS (n). We also introduce the canonical form for normal sequences, and, by using it, we were able to compute the representatives of the equivalence classes for $n \leq 40$.

In Section 4, we introduce an abstract group, G_{NS}, of order 512 which acts naturally on all sets NS (n). Its definition depends on the parity of n. The orbits of this group are just the equivalence classes of $\mathrm{NS}(n)$.

In Section 5, we tabulate the results of our computations giving the list of representatives of the equivalence classes of $\mathrm{NS}(n)$ for $n \leq 40$. The representatives are written in the encoded form which is explained in the next section.

The summary is given in Table 1. The column "Equ" gives the number of equivalence classes in NS (n). Note that most of the known normal sequences are of Golay type. The column "Gol" respectively "Spo" gives the number of equivalence classes which are of Golay type respectively sporadic. (Blank entries are zeros.)

2. Quad Decomposition and the Encoding Scheme

Let $A=a_{1}, a_{2}, \ldots, a_{n}$ be an integer sequence of length n. To this sequence, we associate the polynomial

$$
\begin{equation*}
A(x)=a_{1}+a_{2} x+\cdots+a_{n} x^{n-1} \tag{2.1}
\end{equation*}
$$

viewed as an element of the Laurent polynomial ring $\mathbf{Z}\left[x, x^{-1}\right]$ (as usual, \mathbf{Z} denotes the ring of integers). The nonperiodic autocorrelation function N_{A} of A is defined by

$$
\begin{equation*}
N_{A}(i)=\sum_{j \in \mathbf{Z}} a_{j} a_{i+j}, \quad i \in \mathbf{Z}, \tag{2.2}
\end{equation*}
$$

where $a_{k}=0$ for $k<1$ and for $k>n$. Note that $N_{A}(-i)=N_{A}(i)$ for all $i \in \mathbf{Z}$ and $N_{A}(i)=0$ for $i \geq n$. The norm of A is the Laurent polynomial $N(A)=A(x) A\left(x^{-1}\right)$. We have

$$
\begin{equation*}
N(A)=\sum_{i \in \mathbf{Z}} N_{A}(i) x^{i} \tag{2.3}
\end{equation*}
$$

Hence, if $(A ; B ; C ; D) \in \operatorname{BS}(m, n)$ then

$$
\begin{equation*}
N_{A}(i)+N_{B}(i)+N_{C}(i)+N_{D}(i)=0, \quad i \neq 0 \tag{2.4}
\end{equation*}
$$

The negation, $-A$, of A is the sequence

$$
\begin{equation*}
-A=-a_{1},-a_{2}, \ldots,-a_{n} \tag{2.5}
\end{equation*}
$$

The reversed sequence A^{\prime} and the alternated sequence A^{*} of the sequence A are defined by

$$
\begin{align*}
& A^{\prime}=a_{n}, a_{n-1}, \ldots, a_{1} \\
& A^{*}=a_{1},-a_{2}, a_{3},-a_{4}, \ldots,(-1)^{n-1} a_{n} \tag{2.6}
\end{align*}
$$

Observe that $N(-A)=N\left(A^{\prime}\right)=N(A)$ and $N_{A^{*}}(i)=(-1)^{i} N_{A}(i)$ for all $i \in \mathbf{Z}$. By A, B we denote the concatenation of the sequences A and B.

Let $(A ; A ; C ; D) \in \operatorname{NS}(n)$. For convenience, we set $n=2 m(n=2 m+1)$ for n even (odd). We decompose the pair $(C ; D)$ into quads

$$
\left[\begin{array}{ll}
c_{i} & c_{n+1-i} \tag{2.7}\\
d_{i} & d_{n+1-i}
\end{array}\right], \quad i=1,2, \ldots, m
$$

and, if n is odd, the central column $\left[\begin{array}{l}c_{m+1} \\ d_{m+1}\end{array}\right]$. Similar decomposition is valid for the pair $(A ; A)$.

The possibilities for the quads of base sequences $\operatorname{BS}(n+1, n)$ are described in detail in [10]. In the case of normal sequences we have 8 possibilities for the quads of $(C ; D)$:

$$
\begin{array}{ll}
1=\left[\begin{array}{l}
++ \\
+
\end{array}\right], & 2=\left[\begin{array}{l}
+ \\
- \\
-
\end{array}\right],
\end{array} \quad 3=\left[\begin{array}{l}
-+ \\
-
\end{array}\right], \quad 4=\left[\begin{array}{ll}
+ & - \tag{2.8}\\
- & +
\end{array}\right],
$$

but only 4 possibilities, namely, $1,3,6$, and 8 , for the quads of $(A ; A)$. In [10], we referred to these eight quads as BS-quads. The additional eight Golay quads were also needed for the classification of base sequences $\mathrm{BS}(n+1, n)$. Unless stated otherwise, the word "quad" will refer to BS-quads.

We say that a quad is symmetric if its two columns are the same, and otherwise we say that it is skew. The quads $1,2,7,8$ are symmetric and $3,4,5,6$ are skew. We say that two quads have the same symmetry type if they are both symmetric or both skew.

There are 4 possibilities for the central column:

$$
0=\left[\begin{array}{l}
+ \tag{2.9}\\
+
\end{array}\right], \quad 1=\left[\begin{array}{l}
+ \\
-
\end{array}\right], \quad 2=\left[\begin{array}{l}
- \\
+
\end{array}\right], \quad 3=\left[\begin{array}{l}
- \\
-
\end{array}\right] .
$$

We encode the pair $(A ; A)$ by the symbol sequence

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{m}, \text { respectively, } p_{1} p_{2} \cdots p_{m} p_{m+1} \tag{2.10}
\end{equation*}
$$

when n is even respectively odd. Here, p_{i} is the label of the i th quad for $i \leq m$ and p_{m+1} is the label of the central column (when n is odd). Similarly, we encode the pair ($C ; D$) by the symbol sequence

$$
\begin{equation*}
q_{1} q_{2} \cdots q_{m}, \text { respectively, } q_{1} q_{2} \cdots q_{m} q_{m+1} \tag{2.11}
\end{equation*}
$$

For example, the five normal sequences displayed in the introduction are encoded as $(0 ; 0),(1 ; 6),(60 ; 11),(16 ; 61)$, and $(160 ; 640)$, respectively.

3. The Equivalence Relation

We start by defining five types of elementary transformations of normal sequences $(A ; A$; $C ; D) \in \operatorname{NS}(n)$
(E1) Negate both sequences $A ; A$ or one of $C ; D$.
(E2) Reverse both sequences $A ; A$ or one of $C ; D$.
(E3) Interchange the sequences C; D.
(E4) Replace the pair $(C ; D)$ with the pair $(\tilde{C} ; \tilde{D})$ which is defined as follows: if (2.11) is the encoding of $(C ; D)$, then the encoding of $(\tilde{C} ; \tilde{D})$ is $\tau\left(q_{1}\right) \tau\left(q_{2}\right) \cdots \tau\left(q_{m}\right)$ or
$\tau\left(q_{1}\right) \tau\left(q_{2}\right) \cdots \tau\left(q_{m}\right) q_{m+1}$ depending on whether n is even or odd, where τ is the transposition (45). In other words, the encoding of $(\tilde{C} ; \tilde{D})$ is obtained from that of $(C ; D)$ by replacing simultaneously each quad symbol 4 with the symbol 5 , and vice versa. For the proof of the equality $N_{\tilde{C}}+N_{\tilde{D}}=N_{C}+N_{D}$ see [10].
(E5) Alternate all four sequences $A ; A ; C ; D$.
We say that two members of $\operatorname{NS}(n)$ are equivalent if one can be transformed to the other by applying a finite sequence of elementary transformations. One can enumerate the equivalence classes by finding suitable representatives of the classes. For that purpose we introduce the canonical form.

Definition 3.1. Let $S=(A ; A ; C ; D) \in \mathrm{NS}(n)$ and let (2.10) respectively (2.11) be the encoding of the pair $(A ; A)$ respectively $(C ; D)$. We say that S is in canonical form if the following twelve conditions hold.
(i) For n even $p_{1}=1$, and for $n>1$ odd $p_{1} \in\{1,6\}$.
(ii) The first symmetric quad (if any) of $(A ; A)$ is 1 .
(iii) The first skew quad (if any) of $(A ; A)$ is 6 .
(iv) If n is odd and all quads of $(A ; A)$ are skew, then $p_{m+1}=0$.
(v) If n is odd and $i<m$ is the smallest index such that the consecutive quads p_{i} and p_{i+1} have the same symmetry type, then $p_{i+1} \in\{1,6\}$. If there is no such index and p_{m} is symmetric, then $p_{m+1}=0$.
(vi) $q_{1} \in\{1,6\}$ if $n>1$.
(vii) The first symmetric quad (if any) of ($C ; D$) is 1 .
(viii) The first skew quad (if any) of $(C ; D)$ is 6 .
(ix) If i is the least index such that $q_{i} \in\{2,7\}$ then $q_{i}=2$.
(x) If i is the least index such that $q_{i} \in\{4,5\}$ then $q_{i}=4$.
(xi) If n is odd and $q_{i} \neq 2$, for all $i \leq m$, then $q_{m+1} \neq 2$.
(xii) If n is odd and $q_{i} \neq 1$, for all $i \leq m$, then $q_{m+1}=0$.

We can now prove that each equivalence class has a member which is in the canonical form. The uniqueness of this member will be proved in the next section.

Proposition 3.2. Each equivalence class $\mathcal{\subseteq} \subseteq N S(n)$ has at least one member having the canonical form.

Proof. Let $S=(A ; A ; C ; D) \in \mathcal{E}$ be arbitrary and let (2.10) respectively (2.11) be the encoding of $(A ; A)$ respectively $(C ; D)$. By applying the elementary transformations (E1), we can assume that $a_{1}=c_{1}=d_{1}=+1$. If $n=1, S$ is in the canonical form. So, let $n>1$ from now on. Note that now the first quads, p_{1} and q_{1}, necessarily belong to $\{1,6\}$ and that $p_{1} \neq q_{1}$ by (2.4). In the case when n is even and $p_{1}=6$ we apply the elementary transformation (E5). Note that (E5) preserves the quads p_{1} and q_{1}. Thus the conditions (i) and (vi) for the canonical form are satisfied.

The conditions (ii), (iii), and (iv) are pairwise disjoint, so at most one of them may be violated. To satisfy (ii), it suffices (if necessary) to apply to the pair $(A ; A)$ the
transformation (E2). To satisfy (iii) or (iv), it suffices (if necessary) to apply to the pair ($A ; A$) the transformations (E1) and (E2).

For (v), assume that p_{i} and p_{i+1} have the same symmetry type and that i is the smallest such index. Also assume that $p_{i+1} \notin\{1,6\}$, that is, $p_{i+1} \in\{3,8\}$.

We first consider the case where $p_{1}=1$ and p_{i} and p_{i+1} are symmetric. By our assumption, we have $p_{i+1}=8$, and, by the minimality of i, i must be odd. We first apply (E2) to the pair $(A ; A)$ and then apply (E5). The quads p_{j} for $j \leq i$ remain unchanged. On the other hand, (E2) fixes p_{i+1} because it is symmetric, while, (E5) replaces $p_{i+1}=8$ with 1 because $i+1$ is even. We have to make sure that previously established conditions are not spoiled. Only condition (iii) may be affected. If so, we must have $i=1$ and we simply apply (E2) again.

Next, we consider the case where again $p_{1}=1$ while p_{i} and p_{i+1} are now skew. Thus $p_{i+1}=3$ and i is even. We again apply (E2) to the pair $(A ; A)$ and then apply (E5). The quads p_{j} for $j \leq i$ again remain unchanged. On the other hand (E2) replaces $p_{i+1}=3$ with 6 while (E5) fixes it because $i+1$ is odd. Note that in this case none of the conditions (i-iv) and (vi) will be spoiled.

The remaining two cases (where $p_{1}=6$) can be treated in a similar fashion. Now assume that any two consecutive quads p_{i}, p_{i+1} have different symmetry types and that the last quad, p_{m}, is symmetric. Assume also that $p_{m+1} \neq 0$, that is, $p_{m+1}=3$. If $p_{1}=1$ then m is odd and we just apply (E5). Otherwise $p_{1}=6$ and m is even and we apply the elementary transformations (E1) and (E2) to the pair $(A ; A)$ and then apply (E5). After this change, the conditions (i-vi) will be satisfied.

To satisfy (vii), in view of (vi) we may assume that $q_{1}=6$. If the first symmetric quad in $(C ; D)$ is 2 respectively 7 , we reverse and negate C respectively D. If it is 8 , we reverse and negate both C and D. Now, the first symmetric quad will be 1 .

To satisfy (viii), (if necessary) reverse C or D, or both. To satisfy (ix), (if necessary) interchange C and D. To satisfy (x), (if necessary) apply the elementary transformation (E4). Note that in this process we do not violate the previously established properties.

To satisfy (xi), (if necessary) switch C and D and apply (E4) to preserve (x). To satisfy (xii), (if necessary) replace C with $-C^{\prime}$ or D with $-D^{\prime}$, or both.

Hence, S is now in the canonical form.
We end this section by a remark on Golay-type normal sequences. Let $(A ; B) \in$ $\mathrm{GS}(n)$, with $n=2 m>2$. While the Golay sequences $(A ; B)$ and $(B ; A)$ are always considered as equivalent (see [13]) the normal sequences $(A ; A ; B ; B)$ and $(B ; B ; A ; A)$ may be nonequivalent. It is easy to show that, in fact, these two normal sequences are equivalent if and only if the binary sequences A and B^{*} are equivalent, that is, if and only if $B^{*} \in$ $\left\{A ;-A ; A^{\prime} ;-A^{\prime}\right\}$.

The equivalence classes of Golay sequences of length ≤ 40 have been enumerated in [13]. This was accomplished by defining the canonical form and listing the canonical representatives of the equivalence classes. These representatives are written there in encoded form as $\delta_{1} \delta_{2} \cdots \delta_{m}$ obtained by decomposing $(A ; B)$ into m quads. These are Golay quads and should not be confused with the BS-quads defined in Section 2. If $(A ; B) \in G S(n)$ is one of the representatives, it is obvious that $B^{*} \neq-A$ and $B^{*} \neq-A^{\prime}$, and it is easy to see that also $B^{*} \neq A$. Thus. if B^{*} is equivalent to A we must have $B^{*}=A^{\prime}$. Finally, one can show that the equality $B^{*}=A^{\prime}$ holds if and only if $\delta_{i} \equiv i(\bmod 2)$ for each index i. For another meaning of the latter condition see [13, Proposition 5.1]. Thus an equivalence class of Golay sequences GS (n) with
canonical representative $(A ; B)$ provides either one or two equivalence classes of NS (n). The former case occurs if and only if $\delta_{i} \equiv i(\bmod 2)$ for each index i.

By using this criterion, it is straightforward to list the equivalence classes of $\mathrm{NS}(n)$ of Golay type for $n \leq 40$. For instance, if $n=8$ there are five equivalence classes of Golay sequences. Their representatives are (see [13]) $3218,3236,3254,3272$, and 3315 . Only the last representative violates the above condition. Hence, we have exactly $4+2=6$ equivalence classes of Golay type in NS(8).

4. The Symmetry Group of NS (n)

We will construct a group G_{NS} of order 512 which acts on NS (n). Our (redundant) generating set for G_{NS} will consist of 9 involutions. Each of these generators is an elementary transformation, and we use this information to construct G_{NS}, that is, to impose the defining relations. We denote by $S=(A ; A ; C ; D)$ an arbitrary member of NS (n).

To construct $G_{\text {NS }}$, we start with an elementary abelian group E of order 64 with generators v, ρ, and $v_{i}, \rho_{i}, i \in\{3,4\}$. It acts on NS (n) as follows:

$$
\begin{array}{ll}
v S=(-A ;-A ; C ; D), & \rho S=\left(A^{\prime} ; A^{\prime} ; C ; D\right) \\
v_{3} S=(A ; A ;-C ; D), & \rho_{3} S=\left(A ; A ; C^{\prime} ; D\right) \tag{4.1}\\
v_{4} S=(A ; A ; C ;-D), & \rho_{4} S=\left(A ; A ; C ; D^{\prime}\right)
\end{array}
$$

Next, we introduce the involutory generator σ. We declare that σ commutes with v and ρ, and that $\sigma \nu_{3}=\nu_{4} \sigma$ and $\sigma \rho_{3}=\rho_{4} \sigma$. The group $H=\langle E, \sigma\rangle$ is the direct product of two groups: $H_{1}=\langle\nu, \rho\rangle$ of order 4 and $H_{2}=\left\langle\nu_{3}, \rho_{3}, \sigma\right\rangle$ of order 32. The action of E on NS(n) extends to H by defining $\sigma S=(A ; A ; D ; C)$.

We add a new generator θ which commutes elementwise with H_{1}, commutes with $v_{3} \rho_{3}, v_{4} \rho_{4}$, and σ, and satisfies $\theta \rho_{3}=\rho_{4} \theta$. Let us denote this enlarged group by \widetilde{H}. It has the direct product decomposition

$$
\begin{equation*}
\widetilde{H}=\langle H, \theta\rangle=H_{1} \times \widetilde{H}_{2} \tag{4.2}
\end{equation*}
$$

where the second factor is itself a direct product of two copies of the dihedral group D_{8} of order 8:

$$
\begin{equation*}
\widetilde{H}_{2}=\left\langle\rho_{3}, \rho_{4}, \theta\right\rangle \times\left\langle v_{3} \rho_{3}, v_{4} \rho_{4}, \theta \sigma\right\rangle \tag{4.3}
\end{equation*}
$$

The action of H on $\operatorname{NS}(n)$ extends to \widetilde{H} by letting θ act as the elementary transformation (E5).
Finally, we define G_{NS} as the semidirect product of \widetilde{H} and the group of order 2 with generator α. By definition, α commutes with ν, ν_{3}, ν_{4} and satisfies

$$
\begin{align*}
\alpha \rho \alpha & =\rho v^{n-1} \\
\alpha \rho_{j} \alpha & =\rho_{j} v_{j}^{n-1}, \quad j=3,4 \tag{4.4}\\
\alpha \theta \alpha & =\theta \sigma^{n-1}
\end{align*}
$$

The action of \widetilde{H} on NS (n) extends to $G_{\text {NS }}$ by letting α act as the elementary transformation (E5), that is, we have $\alpha S=\left(A^{*} ; B^{*} ; C^{*} ; D^{*}\right)$.

We point out that the definition of the subgroup \widetilde{H} is independent of n and its action on NS (n) has a quadwise character. By this we mean that the value of a particular quad, say p_{i}, of $S \in \operatorname{NS}(n)$ and $h \in \widetilde{H}$ determine uniquely the quad p_{i} of $h S$. In other words, \widetilde{H} acts on the quads and the set of central columns such that the encoding of $h S$ is given by the symbol sequences

$$
\begin{equation*}
h\left(p_{1}\right) h\left(p_{2}\right) \cdots, \quad h\left(q_{1}\right) h\left(q_{2}\right) \cdots \tag{4.5}
\end{equation*}
$$

On the other hand, the definition of the full group G_{NS} depends on the parity of n, and only for n odd it has the quad-wise character.

An important feature of the quad-action of \widetilde{H} is that it preserves the symmetry type of the quads. If n is odd, this is also true for $G_{\text {NS }}$.

The following proposition follows immediately from the construction of G_{NS} and the description of its action on NS (n).

Proposition 4.1. The orbits of $G_{N S}$ in $N S(n)$ are the same as the equivalence classes.
The main tool that one uses to enumerate the equivalence classes of $\mathrm{NS}(n)$ is the following theorem.

Theorem 4.2. For each equivalence class $\mathcal{\varepsilon} \subseteq N S(n)$ there is a unique $S=(A ; A ; C ; D) \in \mathcal{E}$ having the canonical form.

Proof. In view of Proposition 3.2, we just have to prove the uniqueness assertion. Let

$$
\begin{equation*}
S^{(k)}=\left(A^{(k)} ; A^{(k)} ; C^{(k)} ; D^{(k)}\right) \in \varepsilon, \quad(k=1,2) \tag{4.6}
\end{equation*}
$$

be in the canonical form. We have to prove that in fact $S^{(1)}=S^{(2)}$.
By Proposition 4.1, we have $g S^{(1)}=S^{(2)}$ for some $g \in G_{\text {Ns }}$. We can write g as $g=\alpha^{s} h$ where $s \in\{0,1\}$ and $h=h_{1} h_{2}$ with $h_{1} \in H_{1}$ and $h_{2} \in \widetilde{H}_{2}$. Let $p_{1}^{(k)} p_{2}^{(k)} \cdots$ be the encoding of the pair $\left(A^{(k)} ; A^{(k)}\right)$ and $q_{1}^{(k)} q_{2}^{(k)} \cdots$ the encoding of the pair $\left(C^{(k)} ; D^{(k)}\right)$. The symbols (i-xii) will refer to the corresponding conditions of Definition 3.1.

We prove first preliminary claims (a-c).
(a) $p_{1}^{(1)}=p_{1}^{(2)}$ and, consequently, $q_{1}^{(1)}=q_{1}^{(2)}$.

For n even this follows from (i). Let n be odd. When we apply the generator α to any $S \in \operatorname{NS}(n)$, we do not change the first quad of $(A ; A)$. It follows that the quads $p_{1}^{(1)}$ and $p_{1}^{(2)}=g\left(p_{1}^{(1)}\right)=h_{1}\left(p_{1}^{(1)}\right)$ have the same symmetry type. The claim now follows from (i).

Clearly, we are done with the case $n=2$.
If $n=3$ it is easy to see that we must have $p_{1}^{(1)}=p_{1}^{(2)}=6$ and $q_{1}^{(1)}=q_{1}^{(2)}=1$. By (iv), for the central column symbols, we have $p_{2}^{(1)}=p_{2}^{(2)}=0$. Then (2.4) for $i=1$ implies that $q_{2}^{(k)} \in\{1,2\}$ for $k=1,2$. By (xi) we must have $q_{2}^{(1)}=q_{2}^{(2)}=1$. Hence $S^{(1)}=S^{(2)}$ in that case.

Thus from now on we may assume that $n>3$.
(b) If n is even then, $s=0$.

Table 2: Class representatives for $n \leq 15$.

By (i), $p_{1}^{(1)}=p_{1}^{(2)}=1$. Note that the first quads of $(A ; A)$ in S and in αS have different symmetry types for any $S \in \mathcal{E}$. As the quad $h(1)$ is symmetric, the equality $\alpha^{s} h S^{(1)}=S^{(2)}$ forces s to be 0 .

As an immediate consequence of (b), we point out that, if n is even, a quad $p_{i}^{(1)}$ is symmetric iff $p_{i}^{(2)}$ is, and the same is true for the quads $q_{i}^{(1)}$ and $q_{i}^{(2)}$.
(c) $p_{2}^{(1)}=p_{2}^{(2)}$.

We first observe that $p_{2}^{(1)}$ and $p_{2}^{(2)}$ have the same symmetry type. If n is even this follows from (b) since then $g=h$. If n is odd then under the quad action on p_{2}, each of α, v, ρ preserves the symmetry type of p_{2}. Now the assertion (c) follows from (ii) and (iii) if $p_{1}^{(1)}$ and $p_{2}^{(1)}$ have different symmetry types, and from (v) otherwise.

We will now prove that $A^{(1)}=A^{(2)}$.

Table 3: Class representatives for $16 \leq n \leq 29$.

$n=16$			
1	1118636666631811	2	1118663666631181
3	1163186666186311	4	1163338166181163
5	1163661866188836	6	1163813366183688
7	1166183666116381	8	1166368166111863
9	1166631866118136	10	1166816366113618
11	1181633366361888	12	1181666366361118
13	1613168661686131	14	1613383161681613
15	1613616861688386	16	1613831361683868
17	1616138661616831	18	1616386161611683
19	1616386164124328	20	1616613861618316
21	1616613864127156	22	1616861361613168
23	1638133161166813	24	1638166161166183
25	1638833861163816	26	1638866861163186
27	1661136861836886	28	1661163861836116
29	1661836161833883	30	1661863161833113
31	1683131361386868	32	1683383861381616
33	1683616161384242	34	1683616161388383
35	1683868661383131	36	1683886361344313
37	1686161361316168	38	1686386861311686
39	1686613161318313	40	1686838661313831
41	1811633363661888	42	1811666363661118
43	1863113363186688	44	1863338863181166
45	1863661163188833	46	1863886663183311
47	1866116363116618	48	1866368863111866
49	1866631163118133	50	1866883663113381
51	1888636663331811	52	1888663663331181
$n=18$			
1	161633881641242146		
$n=19$			
1	11681863606643551210		
$n=20$			
1	11661318366611686381	2	11668618366611316381
3	11816166336636161188	4	11861616336631616188
5	11868683666631313811	6	11886863666633131811
7	16116631386441827614	8	16133831136168161368
9	16133831866168161331	10	16161386316164224786
11	16163113866161866831	12	16166813866161136831
13	16168313616161386883	14	16168338866161381631
15	16168361136161388368	16	16168386386161383116

Table 3: Continued.

17	16381331386116681316	18	16381331616116681383
19	16388838186183331633	20	16618138816116361666
21	16618631386183311316	22	16618631616183311383
23	16833813136138836868	24	16836113136138166868
25	16838313616138386883	26	16838338866138381631
27	16838361136138388368	28	16838386386138383116
29	16866131136131831368	30	16866131866131831331
31	18631611336318616688	32	18638311336318386688
33	18816166636336161118	34	18861616636331616118
35	18868683366331313881		36
	1616138313163		18886863366333131881
1	1616161383163		6414148485143
2	1616161386163		6414148584143
3	1616168613163		6414148585143
4	161383131316830		6414158585143
	161686161313860		641414841515843
1			641515851514853

Assume first that n is even. Then $p_{1}^{(1)}=p_{1}^{(2)}=1$ by (i), $s=0$ by (b), and the equality $h_{1}\left(p_{1}^{(1)}\right)=p_{1}^{(2)}$ implies that $h_{1}(1)=1$. Thus $h_{1} \in\{1, \rho\}$. Let i be the smallest index (if any) such that the quad $p_{i}^{(1)}$ is skew. Then $p_{i}^{(1)}=p_{i}^{(2)}=6$ by (iii). Hence $h_{1}(6)=6$ and so $h_{1}=1$ and $A^{(1)}=A^{(2)}$ follows. On the other hand, if all quads $p_{i}^{(1)}$ are symmetric, then all these quads are fixed by h_{1} and so $A^{(1)}=A^{(2)}$.

Next assume that n is odd. Then $p_{1}^{(1)}=p_{2}^{(1)} \in\{1,6\}$ by (i). Let $i<m$ be the smallest index (if any) such that the quads $p_{i}^{(1)}$ and $p_{i+1}^{(1)}$ have the same symmetry type.

We first consider the case $p_{1}^{(1)}=1$. Since n is odd, α fixes the quad p_{1}, and so h_{1} must fix the quad 1 . Thus we again have $h_{1} \in\{1, \rho\}$.

If i is even then, by minimality of i, both $p_{i}^{(1)}$ and $p_{i+1}^{(1)}$ are skew. By (v), we have $p_{i+1}^{(1)}=$ $p_{i+1}^{(2)}=6$. Since i is even, α fixes p_{i+1} and so we must have $h_{1}(6)=6$. It follows that $h_{1}=1$. As $i>1$, the quad $p_{2}^{(1)}$ is skew and by (iii) we have $p_{2}^{(1)}=p_{2}^{(2)}=6$. Since α maps p_{2} to its negative, we must have $s=0$. Consequently, $A^{(1)}=A^{(2)}$.

If i is odd then both $p_{i}^{(1)}$ and $p_{i+1}^{(1)}$ are symmetric. By (v) we have $p_{i+1}^{(1)}=p_{i+1}^{(2)}=1$. Since i is odd, α maps p_{i+1} to its negative. Since ρ fixes the symmetric quads, we conclude that $1=g(1)=\alpha^{s} h_{1}(1)=\alpha^{s}(1)$ and so $s=0$. If all quads $p_{i}^{(1)}$ are symmetric, then they are all fixed by g and so $A^{(1)}=A^{(2)}$. Otherwise, let j be the smallest index such that $p_{j}^{(1)}$ is skew. By (iii) we have $p_{j}^{(1)}=p_{j}^{(2)}=6$, and $6=p_{j}^{(2)}=g\left(p_{j}^{(1)}\right)=g(6)=h_{1}(6)$ implies that $h_{1}=1$. Thus $A^{(1)}=A^{(2)}$.

We now consider the case $p_{1}^{(1)}=6$. Since n is odd, α fixes the quad p_{1}, and so h_{1} must fix the quad 6 . Thus we have $h_{1} \in\{1, v \rho\}$.

Table 4: Sporadic classes for $n=32$.

1	11116363663318816666181845542277
2	11116633188163636666455411882727
3	11661863338863186641231814721176
4	11661863661136816641231858635567
5	11668136338836816614328141271167
6	11668136661163186614328185365576
7	16131613616838316168616842525747
8	16161683138613136412651765826487
9	16161683386138386412623728284126
10	16161683613861616412623756567358
11	16163838831638616412214634822843
12	16163861131331686412434384672376
13	16163861868668316412282832157623
14	16166138131368316412565684677623
15	16166138868631686412717132152376
16	16166161168338616412785365172843
17	16168316138686866412348265823512
18	16168316386161616412376243437358
19	16168316613838386412376271714126
20	16381638866813316142241631477413
21	16381638866813316241142632488423
22	16611661136886316142758368527413
23	16611661136886316241857367518423
24	16831616383838616138642142161717
25	16831616616161386138642183575656
26	16833838138631316138421671711253
27	16833838861368686138164234348746
28	16836161138668686138428321218256
29	16836161861331316138834235351743
30	16838383383861386138342816574646
31	16838383616138616138342842831212
32	16861686386861316131613142475752
33	18186336118866666363445518812222
34	18186666366388116363111144552772
35	18631166368166116341268841334537
36	18631166631833886341268814221826

If i is even then, by minimality of i, both $p_{i}^{(1)}$ and $p_{i+1}^{(1)}$ are symmetric. By (v) we have $p_{i+1}^{(1)}=p_{i+1}^{(2)}=1$. Since i is even, α fixes p_{i+1} and so we must have $h_{1}(1)=1$. It follows that $h_{1}=1$. As $i>1$, the quad $p_{2}^{(1)}$ is symmetric and by (ii) we have $p_{2}^{(1)}=p_{2}^{(2)}=1$. Since α maps p_{2} to its negative, we must have $s=0$. Consequently, $A^{(1)}=A^{(2)}$.

If i is odd then both $p_{i}^{(1)}$ and $p_{i+1}^{(1)}$ are skew. By (v) we have $p_{i+1}^{(1)}=p_{i+1}^{(2)}=6$. Since i is odd, α maps p_{i+1} to its negative. Since $v \rho$ fixes the skew quads, we conclude that $6=g(6)=$ $\alpha^{s} h_{1}(6)=\alpha^{s}(6)$ and so $s=0$. If all quads $p_{i}^{(1)}, i \leq m$, are skew, then they are all fixed by g and $p_{m+1}^{(1)}=p_{m+1}^{(2)}=0$ by (iv). Now $0=p_{m+1}^{(2)}=h_{1}\left(p_{m+1}^{(1)}\right)=h_{1}(0)$ entails that $h_{1}=1$ and so $A^{(1)}=A^{(2)}$. Otherwise let j be the smallest index such that $p_{j}^{(1)}$ is symmetric. By (ii) we have $p_{j}^{(1)}=p_{j}^{(2)}=1$, and $1=p_{j}^{(2)}=g\left(p_{j}^{(1)}\right)=h_{1}(1)$ implies that $h_{1}=1$. Thus $A^{(1)}=A^{(2)}$.

It remains to consider the case where any two consecutive quads $p_{i}^{(1)}$ and $p_{i+1}^{(1)}, i<m$, have different symmetry types. Say, the quads $p_{i}^{(1)}, i \leq m$, are skew for even i and symmetric for odd i. By (i) and (iii) we have $p_{1}^{(1)}=p_{1}^{(2)}=1$ and $p_{2}^{(1)}=p_{2}^{(2)}=6$. Then h_{1} must fix the quad 1 , and so $h_{1} \in\{1, \rho\}$. Since $6=p_{2}^{(2)}=g\left(p_{1}^{(2)}\right)=g(6)=\alpha^{s} h_{1}(6)$, we must have $s=0$ and $h_{1}=1$ or $s=1$ and $h_{1}=\rho$. In the former case, we obviously have $A^{(1)}=A^{(2)}$. In the latter case, all quads $p_{i}^{(1)}, i \leq m$, are fixed by g. Moreover, if m is even also the central column p_{m+1} is fixed by g and so $A^{(1)}=A^{(2)}$. On the other hand, if m is odd, then the quad $p_{m}^{(1)}$ is symmetric and the second part of the condition (v) implies that $p_{m+1}^{(1)}=p_{m+1}^{(2)}=0$. Hence again $A^{(1)}=A^{(2)}$.

Similar proof can be used if the quads $p_{i}^{(1)}, i \leq m$, are symmetric for even i and skew for odd i. This completes the proof of the equality $A^{(1)}=A^{(2)}$. The proof of the equality $\left(C^{(1)} ; D^{(1)}\right)=\left(C^{(2)} ; D^{(2)}\right)$ is the same as in [5].

5. Representatives of the Equivalence Classes

We have, computed a set of representatives for the equivalence classes of normal sequences $\operatorname{NS}(n)$ for all $n \leq 40$. Each representative is given in the canonical form which is made compact by using our standard encoding. The encoding is explained in detail in Section 2. This compact notation is used primarily in order to save space, but also to avoid introducing errors during decoding. For each n, the representatives are listed in the lexicographic order of the symbol sequences (2.10) and (2.11).

In Tables 2 and 3, we list the codes for the representatives of the equivalence classes of NS(n) for $n \leq 15$ and $16 \leq n \leq 29$, respectively. As there are 516 and 304 equivalence classes in NS(32) and NS(40), respectively, we list in Table 4 only the 36 representatives of the sporadic classes of NS(32). The cases

$$
\begin{equation*}
n=6,14,17,21, \ldots, 24,27,28,30,31,33,34, \ldots, 39 \tag{5.1}
\end{equation*}
$$

are omitted since then $\operatorname{NS}(n)=\emptyset$. We also omit $n=40$ because in that case there are no sporadic classes. The Golay-type equivalence classes of normal sequences can be easily enumerated (as explained in Section 3) by using the tables of representatives of the equivalence classes of Golay sequences [13].

Note that in the case $n=1$, there are no quads and both zeros in Table 2 represent central columns.

Acknowledgments

The author is grateful to NSERC for the continuing support of his research. This paper was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET; www.sharcnet.ca) and Compute/Calcul Canada.

References

[1] C. H. Yang, "On composition of four-symbol δ-codes and Hadamard matrices," Proceedings of the American Mathematical Society, vol. 107, no. 3, pp. 763-776, 1989.
[2] C. Koukouvinos, S. Kounias, J. Seberry, C. H. Yang, and J. Yang, "On sequences with zero autocorrelation," Designs, Codes and Cryptography, vol. 4, no. 4, pp. 327-340, 1994.
[3] D. Ž. Đoković, "Aperiodic complementary quadruples of binary sequences," Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 27, pp. 3-31, 1998.
[4] D. Z̈. Đoković, "Correction to: Aperiodic complementary quadruples of binary sequences," Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 30, p. 254, 1999.
[5] D. Ž. Đoković, "Classification of near-normal sequences," Discrete Mathematics, Algorithms and Applications, vol. 1, no. 3, pp. 389-399, 2009.
[6] D. Ž. Đoković, "Some new near-normal sequences," International Mathematical Forum, vol. 5, no. 29-32, pp. 1559-1565, 2010.
[7] H. Kharaghani and C. Koukouvinos, "Complementary, base and Turyn sequences," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, Eds., pp. 317-321, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2007.
[8] J. Seberry and M. Yamada, "Hadamard matrices, sequences, and block designs," in Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson, Eds., Wiley-Intersci. Ser. Discrete Math. Optim., pp. 431-560, Wiley, New York, NY, USA, 1992.
[9] H. Kharaghani and B. Tayfeh-Rezaie, "A Hadamard matrix of order 428," Journal of Combinatorial Designs, vol. 13, no. 6, pp. 435-440, 2005.
[10] D. Ž. Đoković, "Classification of base sequences $B S(n+1, n)$," International Journal of Combinatorics, vol. 2010, Article ID 851857, 21 pages, 2010.
[11] D. Ž. Đoković, "Hadamard matrices of small order and Yang conjecture," Journal of Combinatorial Designs, vol. 18, no. 4, pp. 254-259, 2010.
[12] D. Ż. Đoković, "Erratum to "Classification of base sequences $B S(n+1, n)$ "," International Journal of Combinatorics, vol. 2010, Article ID 842636, 2 pages, 2010.
[13] D. Ž. Đoković, "Equivalence classes and representatives of Golay sequences," Discrete Mathematics, vol. 189, no. 1-3, pp. 79-93, 1998.

