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ABSTRACT. For distribution functions {Fn, n > 0}, the relationship between the weak

of Fn to F0 and the convergence of R #(IFn-, FOI), dx to 0 is studiedconvergence

where is a nonnegative, nondecreasing function. Sufficient and, separately,

necessary conditions are given for the latter convergence thereby generalizing the

so-called global limit theorems of Agnew wherein (t) Itl r. The sufficiency results

are shown to be sharp and, as a special case, yield a global version of the central

limit theorem for independent random variables obeying the Liapounov condition.

Moreover, weak convergence of distribution functions is characterized in terms of

their almost everywhere limiting behavior with respect to Lebesgue measure on the

line.
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I. INTRODUCTION.

Let denote the class of all nondecreasing, left continuous functions F defined

on R (-(R) ) such that lim F(x) > 0 and xli+m F(x) < I. A distribution function is a
X+

lim F(x) For F, let C(F) denote themember of satisfying lim F(x) 0 and
x+

continuity set,. of F, that is, C(F) {xcR: F is continuous at x}. A sequence of

distribution functions {Fn, n> I} is said to cony.erge weakly to a function FO,
denoted F w_+ FO if

n

lim F (x) Fo(X) all xeC(Fo). (I.I)

If {Fn, n __> 1} and F0 are distribution functions with Fn FO, then the sequence

{Fn, n _> I} is said to converge completely to F0 and this is denoted by Fn c_+ FO"
For distribution functions {Fn, n >__O}, R.P. Agnew [I] was apparently the first

to study the relationship between

lim F (x) Fo(X) all xR
n

n+
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-= /R tFn (x) -Fo(X)I r dx whereand the convergence to 0 as n of the integrals In
r > O. A theorem whose conclusion is of the form

lim fR 0([Fn(X) F0(x) [) dx 0 (1.3)

where is a nonnegative, nondecreasing function is a so-called global limit theorem

and it clearly supplements a limit theorem whose conclusion is (1.1) (or (1.2))

wherein convergence is pointwise in over C(FO) (or R). Agnew showed that the modes

of convergence (1.2) and In 0 are indeed rather closely related. Specifically, he

proved the following two theorems.

THEOREM A (Agnew [I]). Let {Fn, n > 0} be distribution functions such that

fR x dF (x) 0 f x2 dFn(X) n > 0 (I 4)
n R

If n+=Itm Fn(X) Fo(x), all xR, then for all r > 1/2,

lim IR [Fn(X) F0(x)lr dx O.

The next theorem is a sort of converse to the preceding one. Note that

condition (1.4) is not part of the hypotheses.

THEOREM B (Agnew [I]). Let {Fn, n>O} be distribution functions and suppose

that F0 Is continuous and strictly increasing over R. If for some r > 0

lim IR IFn(X) Fo(X)
r
dx 0,

then

lim sup .IFn(X) Fo(x) O.
n+= xR

Throughout, the symbol dx signifies integration with respect to Lebesgue measure

on R and the abbreviation a.e. stands for almost everywhere with respect to Lebesgue

measure.

In this paper, we will generalize Theorems A and B by providing sufficient

(Theorem I) and, separately, necessary (Theorem 3) conditions for a relation of the

form (1.3). New results concerning weak and uniform convergence of distribution

functions are obtained in the process. The sharpness of Theorem is established via

an example.

Agnew [I] applied Theorem A to the case where F0 is the N(0,1) distribution

function and Fn is the distribution function of Enj=1Xj/Cn, n ....> where {X
n

n > l}

are independent, identically distributed (i.i.d.) random variables with mean O,

variance and obtained what he terms a global version of the central limit theorem

(CLT). This will be discussed and extended in Section 3.

Some global limit theorems were obtained by Kruglov [2] in the cases where

(i) F is the distribution function of the row sum of a double array of rowwise

independent random variables and (ii) Fn is the distribution function of a suitably

normed and centered sum of i.i.d, random variables. Although in the current work
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none of tl]ose results will be applied or extended, the author takes great pleasure to

acknowledge that it is Professor Kruglov’s article which helped him formulate some of

the results herein and taught him some of the general techniques which are employed

to establish them.

2. },kAINSTREAM.

Theorem may now be established. It is a generalizat[on of Theorem A and this

is perhaps most apparent from Corollary 2.

THEOREM I. Let {Fn, n > I} be distribution functions and suppose that there

exists a continuous function g on [0,) satisfying

0 < g(x)/ as 0 < x/ (2.1)

and

sup fR g(Ix[) dFn(X) < . (2.2)
n>l

Let be a nondecreasing function on [0,=) which is continuous at 0 with #(0)> 0,

(x) > O, some x, and such that

Ill,m) (g--x)) dx < , all C > 0. (2.3)

If Fn w_.+ F0 for some F0 then

F c_ F (2 4)
n 0

and

lim fR ,({Vn(X) F0(x) I) dx O. (2.5)

PROOF. Note at the outset that (2.3) and the monotonicity of ensure that

necessarily 0(0) O. It will be shown firstly that g(x)/, as x/,. By hypothesis,

0(xO) > 0 for some x0. Now if g(x)/B < , then

Bx
0Itt,) ,(g-) dx _>/tt,(R)) *(o

which contradicts (2.3). Thus g(x)/.

Next, note that for n > and a > 0

fR g(Ixl)dFn(X) f[Ixl>a] g(Ixl)dFn(X) + f[Ixl<a] g(lxl) dFn(x)

> g(a)f lxI_> l dFn(X)

implying via (2.2) and g(x)/== that

lira sup ftixl>a dFn(X) < lira
a+ n> a+

sup fR g(Ixl)
n>!

O’g(a

whence (see, e.g., Chow and Teicher [3, p. 253]) relation (2.4) obtains.
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It will now be shown that

fR g([x[) dF0(x) < (2.6)

For arbitrary a and b in C(FO) with a < b, it follows from the Helly-Bray lemma (see,

e.g., Chow and Teicher [3, p. 251]) and the monotone convergence theorem that

lim inf fR g(Ixl) dF (x) > lim inf f[a b) g(Ixl) dF (x)
n n

a

f[a,b) glx] dFo(x) fR glxl dF0(x)

and so (2.6) follows recalling (2.2).

Hence, in view of (2.2) and (2.6), a number M < may be chosen so that

fR g(]x[) dFn(X) _< M, n _> 0. (2.7)

Let {Xn, n > 0} be random variables on some probability space (,P) such that the

distribution function of Xn is Fn, n > 0. Using the monotonicity of , the Markov

inequality, and (2.7), it follows that for n >__ and x <__-I

(IFn(X) Fo(x)l _< (P{Xn < x} + P{X0 < x})

Eg(]Xnl + Eg(IXo[) 2H

and that for n > and x >

([Fn(X) F0(x) l) ([I-P{Xn Z x} (I-P{X0 Z x})[)

< (P(g(]Xnl) > g(x)) + e[g(lX0]) > g(x)))

Eg(lXn[) + Eg(IXol)
i ,( g(x) .) i

Hence for n > I,

I[F (x)- I (1),2M Ix] <
n (g(Ixl))’ Ixl >_

which is Lebesgue integrable over R by (2.3). Now ]Fn FO] 0 a.e. in view of

(2.4) (see Theorem 2). Then since is continuous at 0 and (0) 0, (]Fn F]) 0

a.e. and so (2.5) then follows via the Lebesgue dominated convergence theorem. D

The following corollary follows immediately from Theorem I.

COROLLARY I. Let {Fn, n> I} be distribution functions and suppose that there

exists a continuous function g on [0,) satisfying (2.1), (2.2), and

f[l,(R)) (g(x))r
dx < , some r > 0. (2.8)
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for some FOe, then (2.4) obtains and

lim f tF (x)- F (x)[ r
dx 0

n 0

The next corollary was obtained by Nishimura [4] in the case p > I, r I,

Fn(O) O, n >_. O. However, Nishimura’s argument is incomplete in that it was not

shown that

f[o,**) xp dFo(X) < "

COROLLARY 2. Let {Fn, n> I} be distribution functions and suppose that

sup fR xlp dFn(X) < (R), some p > 0.

If F u.+ FO for some FO then (2.4) obtains and for all r > I/p
n

lira fR F (x)- F (x)l =
n O dx O.

n-

(2.9)

(2.10)

PROOF. Let r > I/p and set g(x) xp, x > O. Now (2.9) is tantamount to (2.2)

and moreover (2.8) holds since pr > I. Corollary 2 then follows from Corollary I.

The following example shows that Theorem and Corollary 2 are sharp or best

possible results in the sense that (2.5) (resp. (2.10)) can fail if (2.3) is

dispensed with (resp. if r < I/p).

EXAMPLE. Define distribution functions F0 and Fn, n >_. I, by

Fo(x) and Fn(X) (n-l)/n, 0 < x <_ n
I, x > 0 I, x > n.

Then Fn c_ FO" Set (x) xr, x ._> 0, where r > O. Now if g(x) x, x __> O,

then (2.2) and (2.9) (with p=l) obtain since fR Ixl dFn(X) 1, n I. But if r

then the integral of (2.3) diverges for all C > 0 and both (2.5) and (2.10) fail

since for n >_. I, IFn FOI n-II(0,n] implying

f ,(IFn()  o(x)l) f IFn(X)  o(x)l

n l-r [ **, 0 < r <

1, r I.

On the other hand if r > I, then (2.3) obtains and

fR (ln(x) o(X) dx-- fR Vo(X)l r
dx-- nl-r+ O.

It is well known (see, e.g., Loeve [5, p. 181]) that if {Fn, n >_ l} are

distribution functions and F0E then the weak convergence of Fn to F0 is equivalent

to Fn(x) F0(x) for all x in some dense subset of R. The following theorem, which

will be used to prove a converse to Theorem I, characterizes weak convergence of

distribution functions in terms of their almost everywhere limiting behavior with

respect to Lebesgue measure and may be of independent interest.

THEOREM 2. Let {Fn, n >_. l} be distribution functions and let FO. Then the

following are equivalent:
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(t) F w_+ F
n 0

([i) F F a.e.
n 0

(iii) For every integer subsequeuce n(k)/,

lim inf.,IFnkl- Folv. 0 a.e.
k+m

PROOF. (i) = (ii). This implication is evident since the set of discontinuity

points of FO, being countable, is of Lebesgue measure O.

(ii) =@ (iii). This implication is obvious.

(iii) (i). Assume that (i) fails. It will be shown that (iii) also fails.

Since (i) fails, there exists a point x0 in C(Fo) a subsequence n(k) /, and a

number e > 0 such that either

Fn(k)(xo) F0(xO) > e, all k > (2.11)

or

Fn(k)(xo) Fo(xO) < e, all k_.> I. (2.12)

Since x0 is in C(Fo) there exists 6 > 0 such that IF0(x) Fo(xo) <e/2 for all x

in [x0 6, x0 + 6]. If (2.|I) holds, then for all x in [Xo, x0
+ 6] and all k >

Fn(k)(X) F0(x) >_ Fn(k)(XO) Fo(xO) (F0(x0 + 6) Fo(xo)

implying

> El2 el2

IFn(k)(X) Fo(X) > /2. (2.13)

On the other hand if (2.12) holds, then for all x in [x0 -6, xO] and all k >__

Fn(k)(X) F0(x) Fn(k)(X0) F0(xO) (F0(x0 ) Fo(xo)

and again (2.13) holds. Thus, if (2.11) prevails, then (2.13) ensures that

lim inf .IFn(k) F01. > 0 (2.14)
k+

on [Xo, x0 + 6] whereas if (2.12) prevails, then (2.13) ensures (2.14) on

[x0 6, Xo]. Since [Xo, x0 + ] and [x0 6, Xo] each have positive Lebesgue

measure, (2.14) guarantees the failure of (iii).

Eisenberg and Shixin [6] obtained necessary and sufficient conditions for

uniform convergence of distribution functions thereby strengthening a result of Dyson

[7] (see, also, Kawata [8, p. 349]) which asserts that if characteristic functions

converge uniformly (necessarily to a characteristic function ), then the
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corre-;londing distribution f,t,lctions converge ttn[formty to the distribution ft,,iction

corresponding to .
COROLLARY 3. Let {Fn, ,_> O} be distribution functions and for each n _> O, let

un denote the Lebesgue-Stieltjes measure determined by Fn and let @n denote the

corresponding characteristic function. Then the following are equivalent:

(i) Vn(X) Fo(x) and Fn(X+) F0(x+), all xR, where

Fn(x+) lira F (y) n > O.
n

y}x

(ii) tim sup IVn(X) F0(x)l, 0.
n+ xeR

(iii) Condition (iii) of Theorem 2 a,d lira Z (On({X}) o({X} >)2 O.
n+ xR

(iv) Condition (iii) .)t Theorem 2 a,d lira sup "ln([XI) o({X} )I’ O.
n+ xR

(v) Condition (iii))f Theorem 2 a,,d lira un({}) U0({x}), all ER.

(vi) Condition (iii) ,f Theorem 2 a,d

lira lira - fl_T T) -ln(t) @0 (t)12 dt 0.

PROOF. (i) = (ii). Ths implication is proved in Chow and Teicher [3, p.260].

(ii) = (iii) and (ii) (vi). These implications follow from Theorem 2 and

the Eisenberg-Shixin theorem [6].

(iii) (iv) and (iv) (v). These implications are obvious.

(vi) ==> (ii). This impl[cation follows from Theorem 2, the Lvy continuity

theorem, and the Eisenberg-Shixin theorem [6].

(v) (i). This implication follows from Theorem 2 and the fact (proved by

Eisenberg [9]) that

F c__+ FO and lira ({x}) ({x}) all xER =.> (i).
n n 0

n/

(2.15)

REMARK. Eisenberg’s proof of (2.15) uses Theorem 8.1.3 of Chow and Teicher [3,

p. 255 ].

The next theorem generalizes Theorem B and is a version of a converse to Theorem

I. Note, however, that there are no assumptions concerning a function g as in

Theorem I.

THEOREM 3. Let {Fn, n> I} be distribution functions and let # be a

nondecreasing function defined on [0,I] with (0) > 0 and (x) > 0 for 0 < x < I. If

for some F0

lira fR +([Fn(X) F0(x){) dx 0, (2.16)
n+

then

Moreover,
Fn c_+ F0" (2.17)

lira sup ’.IF (x) Fo(X) 0 2 18)n
n/ xR
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lira ({x}) I ({}) all R (2 19)
n 0

whre Un is the Lebesgue-StiItjes measure deter,ined by Fn, n > O.

PROOF. Note at the outset that (2.16) and the monotonicity of # ensure that

necessarily 4(0) O. It follows immediately fro,, Theorem 2 and Corollary 3 that

(2.17) guarantees the equivalence between (2.18) and (2.19). It will be shown

firstly that

V w_ FO" (2.20)
n

Let n(k)/. In view of Theorem 2, it suffices to show that

lim inf .[Fn(k) FO{. 0 a.e. (2.21)

Now by Fatou’s lemma and (2. ]6),

j’ z.,. .n: ,(iFn()(:) mo(X) i) dx < ].,,, rm <(OF.(k
k+ k+(R)

(x) FO(x)l dx 0

whence

lira inf (IFn(k). F0i). 0 a.e.
k+

which, taking cognizance of the conditions on , implies (2.21) thereby proving

(2.20).

It remains to show that F0 is a distribution function. Otherwise, either

lim Fo(x) > 0 or lim Fo(x < I. Now if lim Fo(x) > 0 then
X+--oo X-Io X+-’

.q > 0 Vn _> 2[Xn < 0 Vx _< Xn, ,IFn(X) Fo(X)l_ _> e

and hence ,(IFn(x) Fo(x) I) >,() > o implying fR *(IFn (x) FO()I) dx and

contradicting (2.16). The case lim Fo(X) < is handled similarly.

REMARK. It is well known (see, e.g., Chow and Teicher [3, p. 260]) that (2.17)

and F0 continuous imply (2.18). Alternatively, it is easy to directly verify that

(2.17) and F0 continuous imply (2.19).

3. GLOBAL VERSIONS OF THE CENTRAL LIMIT THEOREM.

Throughout this section, let {Xn, n I} be independent random variables defined

on a probability space (,,P) and suppose that EXn O, 0 < EX < , n I. rite

;=I Xj 82 n denote the distribution functio ofSn n j=l
EX n I, and let F

n

Sn/Sn, n I, and denote that of the N(0,1) distribution. Now it is well known

that if {Xn, n

__
I} are also identically distributed, then they obey the CLT

d_+ N(0,1), (3 1)Sn/Sn
that is,

F c__+ (3 2)n

which is indeed tantamount to

lim sup IF (x) (x) 0
n

n+ xR
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since # is continuous. By alptying Theorem A, Agnew [I] shows under the same

,assumptions of i.i.d. [Xn, n _3 I} that

lim fR ]Fn(X) (x)[ r
dx 0 (3.3)

for all > I/2. Agnew refers to this as a global versioo of the CLT.

This result was generalized by Esseen [I0] to the case where the random

variables {Xn, n > I} can have different di:;trbutions provided that they obey the

CLT (3.1). Specifically, Eseen proved that if (3.1) prevails, then (3.3) holds for

all r > 1/2. It may be noted that Agnew’s global version of the CLT and Esseen’s

generalizatio, of it can also be obtained directly from Corollary 2 (with p 2)

since

S 2

x ,IF (x) sup L(#) < **.sup f R nn> n> ,

Moreover, if {Xn, n I} obeys the classical Lindeberg condition (which is stronger

than (3.1)), then, for all r > I/2, (3.3) followq readily from Lemma 4 of Embrechts

and Maejima [11] which gives a nonuniform bound on the error in the CLT.

In Theorem 4 below, conditions are given which ensure (3.3) for particular

values of r in (0, I/2]. Of course, the smaller the value of r > O, the stronger is

(3.3). The proof of Theorem 4 utilizes a famous theorem of Bernstein [12] asserting

that if {Xn, n > I} obeys the Liapounov condition

n
r. EIXj p o(s n) (3.4)

for some p > 2, then

(3.5)

An alternative proof of Bernstein’s theorem, using characteristic functions, was

discovered by Brown [13].

When 2 < p < 3, Theorem 4 can be obtained from an inequality of Bikyalis [14]

which also appears in Petrov [15, p. 132]. Theorem 4 was proved by Bhattacharya [16]

in the case p > 3 and EX2n I, n > I. Moreover, Theorem 4 can also be proved using
v

Bernstein’s theorem and an i,equality of Kolodyazn3rl [17]. This inequality may also

be found in Petrov [15, Theorem 9, p. 121].

THEOREM 4. If {Xn, n >__ I} obeys the Liapounov condition (3.4) for some p > 2,

then the global version (3.3) of the CLT obtains for all r > I/p.

PROOF. It is well known (see, e.g., Chow and Teicher [3, p. 293]) that (3.4)

with p > 2 ensures (3.2). Now (3.5) obtains by Bernstein’s theorem and hence

S
p

 lnl <-.
n sn> n> n

The conclusion then follows immediately from Corollary 2.

The next corollary has, in essence, been obtained by de Acosta and Gin [18].

if EIXII p < for some p > 3, the corollary follows readily from anFurthermore,

inequality of Osipov [19] which also appears in Petrov [15, Theorem 13, p. 125].
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COROLLARY 4. Let {Xn, n> I} be i.i.d, random variables with EX 0,

0 < EIXII p < for some p >_.2 and let Fn denote the distribution function of

n Xj/(nmX)I/2E.= n I. Then (3.3) obtains for all r > I/p. Moreover, if

1 p < for all p > 0 then (3 3) obtains for all r > 0.E X!
PROOF. To prove the first assertion, let r > I/p. If p 2, then (3.3) holds

by the Agnew global CLT [I] or by Corollary 2 as already discussed, whence it will be

assumed that p > 2. Since condition (3.4) is then automatic, (3.3) follows directly

from Theorem 4. To prove the last assertion, let r > O, choose p> 2 large enough so

that r > I/p, and simply apply the portion of the corollary already proved. D

ACKNOWLEDGEMENTS. The author expresses great appreciation to Professor Bennett

Eisenberg of Lehigh University for informing him that (2.15) is true and in fact

proving it. The author also thanks Professor Walter Smith of the University of North

Carolina for some helpful comments on an earlier draft of this paper.

REFERENCES

I. AGNEW, R.P. Global Versions of the Central Limit Theorem, Proc. Nat. Acad. Sci.
U.S.A. 40 (1954), 800-804.

2. KRUGLOV, V.M. Convergence of Numeric Characteristics of Sums of Independent
Random Variables and Global Theorems, In Proceedings of the Second Japan-
USSR Smposium on Probabilt Theor (Kyoto, Japan, August 2-9, 1972; Ed. G.
Maruyama and Yu. V. Prokhorov), Lecture Notes in Math. 255-286,
Springer-Verlag, Berlin, 1973.

3. CHOW, Y.S. and TEICHER, H. Probabilit Theory: Inde
Martingales, Springer’erlag, New York, 1978.

4. NISHIMURA S. An Inequality for a Metric in a Random Collision Process. .J. Appl.
Probab. 12 (1975), 239-247.

5. LoEvE, M. Probability Theory, Vol. I, 4th ed., Springer-Verlag, New York, 1977.

6. EISENBERG, B. and SHIXIN, G. Uniform Convergence of Distribution Functions,
Proc. Amer. Math. Soc. 88 (1983), 145-146.

7. DYSON, F.J. Fourier Transformations of Distribution Functions, Canad. J. Math.
5 (1953), 554-558.

8. KAWATA, T. Fourier Analsis in Probability Theory, Academic Press, New York,
1972.

9. EISENBERG, B. Private communication (1985).

I0. ESSEEN, C.G. On Mean Central Limit Theorems, Kungl. Tekn. gsk. Handl.
Stockholm (Trans. Roy. Inst. Tech. Stockholm) No. 121 (1958), 1-31.

II. EMBRECHTS, P. and MAEJIMA, M. The Central Limit Theorem for Summability Methods
of I.I.D. Random Variables, Z. Wahrsch. verw. Gebiete 68 (1984), 191-204.

12. BERNSTEIN, S.N. Quelques Remarques Sur le Theoreme Limite Liapounoff, C.R.
(Doklad Acad. Sci. URSS (N.S.) 24 (1939), 3-8.

13. BROWN, B.M. Characteristic Functions, Moments, and the Central Limit Theorem,
Ann. Math. Statist. 41 (1970), 658-664.

14. BIKYALIS, A. Estimates of the Remainder Term in the Central Limit Theorem,
Litovsk. Mat. Sb. 6 (1966), 323-346 (in Russian).

15. PETROV, V.V. Sums of Independent Rangm Variabls, Springer-Verlag, New York,
1975.

16. BHATTACHARYA, R.N. On Errors of Normal Approximation, Ann.Probab. 3 (1975),
815-828.

v v
17. KOLODYAZNYI, S.F. A Generalization of a Theorem of Esseen, Vestnik Leningrad.

Univ. 23, No. 13, (1968), 28-33. (English translation in Vestnik Leningrad.
Univ. Math. l, No. 3, (1974), 189-195).

18. DE ACOSTA, A. and GIN, E. Convergence of Moments and Related Functionals in the
General Central Limit Theorem in Banach Spaces, Z. Wahrsch. verw. Gebiete
48 (1979), 213-231.

19. OSIPOV, L.V. Asymptotic Expansions in the Central Limit Theorem. Vestnik
Leningrad. Univ. No. 19, (1967), 45-62 (in Russian).


