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ABSTRACT. In this paper coupled systems of second order differential-difference

equations are considered. By means of the concept of co-solution of certain algebraic

equations associated to the problem, an analytical solution of initial value problems

for coupled systems of second order differential-difference equations is constructed.
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l. INTRODUCTION.

Coupled systems of differential-difference equations are frequent in physics,

engineering, economics and biology [I] In this paper we consider second order sys-

tems of differential-difference equations of the type

X"(t)+AlX’(t)+A2X’(t-w)+BoX(t)=F(t), t>w
(1.1)

X(t):G(t), Ow

where AI,A2 and Bo are matrices in nxn, G(t) is a continuously differentiable n
valued function in [O,w] F(t) is a continuous n valued function in [w, ) and the

unknown X(t) takes values in n.
Systems of the type (i.i) have been studied using the Laplace transform [i]

however suchanapproach has some computational drawbacks. First of all, it involves an

the problem dimension derived from the change z=[Xrx. and the considera-increase of

tion of the transformed equivalent problem

where

Z’( t)+Z( t )+6Z(t-w): t ), t>w

[G(t)], O_<t=<wZ(t)=
[G,(t)j

o] o 1I Bo AI A2 (t

see Ill ,p.164. The main inconvenience of the Laplace transform approach is that

the expression of the solution is given in terms of the exact roots of the trans-

cendental equation
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det (s+)+exp(-sw)6)=O

see [I],p.166 and Theorem 6.5 of [I], Since the exact computation of these rootsis

not available in practice, the Laplace transform method is not interesting from the

computational point of view, and it motivates the search of an alternative.

The aim of this paper is to construct the exact solution of problem (i.i) in an

explicit way, avoiding the increase of the problem dimension and the determination of

roots of transcendental equations. The method proposed here is based on the concept

of co-solution of the associated algebraic matrix equation

Z2+AIZ+B --0 (1.2)
o

recently given in [2]. The paper is organized as follows. In Section 2, and for the

sake of clarity in the presentation, we adapt some results of [2] related to problem

(1.1). We introduce an integral operator and we prove some of its properties that

will be used in Section 3 in order to construct the solution of problem (l.1).

If A is a matrix in nxm we denote by AT the transpose matrix of A. The set of

all repeated variations of two elements taken of r elements in r elements will be de-

noted by Q2,r"
2. ALGEBRAIC PRELIMINARIES AND PROPERTIES OF AN INTEGRAL OPERATOR.

We begin this section by introducing the concept of co-solution of the equation

(1.2), recently given in [2] which allows us to solve initial value problems for

second order differential equations without considering an extended first order system.

DEFINITION 2.1 [2] ). We say that (X,T) is a (n,q) co-solution of the algebraic

equation (1.2) if XEnxq, X#O, TEqxq and KT2+AIKT+BoX=O.
DEFINITION 2.2 [2] ). Let (Xi,Ti) be a (n,mi) co-solution of equation (1.2).

We say that {(Xi,Ti), k} is a k-complete set of co-solutions of (1.2) if ml+m2+
+...+mk=2n and the block matrix W defined by

w:[Xl X2 Xk ] (2.1)

[XIT1 X2T2 XkTk
is invertible in 2nx2n.

The next result shows the existence of k-complete sets of co-solutions of (1.2),

for some appropriated value of k, and it permits the construction of such sets of co-

solutions.

C=0

_
] and let M=(Mij) an invertible matrix in nx2THEOREM i [2 ]) Let Bo

such that Mi3nxmj, i 2, iSjk, ml+m2+,..+mk=2n, such that for some block diagonal

matrix J=diag(JI, Jk) one satisfies MJ=CM. Then equation (1.2) admits a k-com-

plete set of co-solutions given by (MIj,Jj), for ljSk.

COROLLARY [2] ). Let (MIj,Jj) ljk be a k-complete set of co-solutions

of equation (1.2), then the general solution of the system

is given by

X"(t)+AiX" (t)+BoX(t)=O
k
I Mljexp(tJjX(t)=j=1

)Dj (2.2)
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where D. is an arbitrary vector in mj for l.<j.<k

Now we are looking for the general solution of the system

X"(t)+AIX" (t)+BoX(t)=P(t), (2.3)

where P(t) is a continuous function. Let us consider the k-complete set of co-solu-

tions given by corollary i, and let us denote

T
mjxnV=W-I= Vll V12 Vlk V.. i2, ljk

V21 V22 V2kJ lj

From [2] it follows that the general solution of (2.3) is given by

k

X(t)= j=iZM13.exp(tJj )mj (t),

(2.4)

(2.5)

Dj(t)=Dj +texp(-uJ’jwj)V2jP(u)du (2.6)

where Dj. is an arbitrary vector in mj for l-<j<-k. For fixed initial conditions X(w)

=Co, X’(w)=CI, with Co,C1 vectors in n, the vectors Dj, l.<j.<k, are determined by the

equations

k k

I Mljexp(wJj)DCo
j=l J’ CI= jZ=IMIjJjexp(wJj)Dj (2.7)

and since M2j=MIjJj, see [2], from (2.7) it follows that

Diag(exp(-wJj); l-<j.<k) M
-I

el
k

REMARK i. It is interesting to recall that the Jordan canonical form of any

matrix may be efficiently computed using MACSYMA [ ,so taking into account Theorem

i, the construction of a k-complete set of co-solutions for equation (1.2) is an easy

matter. On the other hand, we recall that the exponential exp(tJj) of a Jordan block

Jj, has a well known expression in terms of Jj, see [4 ] ,p.66.

Now we introduce an integral operator that will play an important role in the

following.

DEFINITION 2.3. Let {(Mlj,Jj); ljk} be the k-complete set of co-solutions of

(1.2) provided by Theorem I. Let h and p be positive integers with hp, and tpw,

where w is a positive real number. If H is continuous n valued and defined on [w,)
we define the operator by the expression

[p,h,t,j, H(Uh+d-W(d+n))
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t

exp(-uhJj)V2jH(Uh-nW)duh if p=h
hw

gexp(-UpJ.)V2jj
"ip-l’ip-2’ )eQ2, P-I’P- Lip_2,P_2 .L,h H(Uhd-W(d+n))%,

(2.9)

if p>h

where n--O,l; h<.q<-p-l; l<-i <.2,
q

k Uq+l+d-(d+l)w
L
l,q =A2 Z M ((Uq+l+d-(d+l) )]qw exp(-UqJj dUq

jq=l jqJjqep w)Jjq q)V2jq
k

L2, Z M V2q=A2 jqjq--i jq

(2.o)

and d is the number of factors of the type L2 which appear on the left of each factor

of the type L or H(Uh+d-W(d+n)) before the appearance of a new factor LI.

a)

EXAMPLES
t

[3,2, t, j ,H(U2+d-dW)] I exp(-u3Jj)V2j Z n. H(U2+d-dW)du3--
3w (i2)EQ2,I

,2

t k u3-w

t k
I MI 2H(u3-w)du3I3weXp(-u3Jj)V2jA2 J2=l j2V2j

b)
t

[1,l,t,j,H(Ul+d-dW)]=I exp(-ulJj)V2jH(Ul )dul
w

=I Z :,2Lil H(UDd-(d+l)w) du3c) [3,1,5w, j, H(U2d-(d+l)w) 3wp(j)V2j (’il)eQ2,

j k 3- k
J exp(( -w)JexP(-j)V2jA2 j2g--1MIJ2 J2 u3 J2 12w exp(-2Jj2)V2J2A2 Jl--It"MI:J.jljlep((u2-w)J’l

l u2-Wexp(-ulJj )V2j
w

H(Ul-W)dUldU2du3 +

?" J2 Jj2exp((u3-w)Jj2 exp(-u2JJ2)V2J2A2 F. . V2 H(u2-2w du2du3 +(-u3Jj)V2jA2
j2--I 2w jl=1 Jl Jl

Sw k k

exp(-u3Jj)V2jA2 Z M V
2 Z_l M iH(u3-3w)du33w J2=I 132 j2A2 Jl- jlV2j
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Now we prove two lemmas that will be used in the following section to construct

the solution of problem (i.I).

LEMMA i. If t>.(m+l)w and h<.p=<m, then for n=O,l, it follows that

[p+l,h,t,j,H(Uh+d_(d+n)w)]= [p+l,h,(m+l)w,j,H(Uh+d-(d+n)w)] +

kt

k
d [p,h,t,Jm,H(Uh+d-(d+n)w)] )t__z_w] dz+ I MlJmeXp((z-w)Jjm) d--(

jm-_

PROOF. From definition 2.3 it follows that

(2.)

[p+l ,h, t, j ,H(Uh+d-(d+n)w)]
t

I(p+lexp(_Up+iJj)V2j l L L ...L,h H(Uh+d-(d+n)w)dUp+lip,p ip_1 ,p-I(p’p-i )EQ2,p+l-h

(m+l> r. L.
Ip,p(p+l

exp(-up+IJj)v2j
(ip, )gQ2,p+l-h ..L,h H(Uhd-(d+n)w) dUp+ +

+It exp(-u_. ,J .)V. X L.
J(m+l)w P+ j z3 (ip )eQ2,p+l_h lp,p

L. H(Uh+d-(d+n)w) dUp+lh,h

1 ,p
(p+l)w

exp(-Up+iJj)V2j X L.

(lp )eQ2, p+l-h
p L,hH(Uh+d-(d+n)w) dUp+ +

+it
k iz-exp(-zJ.)V . Y’ Jm exp((z-w)Jjm) exp(-u J.. )V.

m+l)w 3 zj Jm=l pw P Jm ZJm

Z
(ip_ )eQ2,p_h

t k

p_l,P_l...L,h H(uo_(d+n)w)dudz+ exp(-zJ)VA Z M.. exp((z-w)J
v "(m+l)w Jm=l ljm Jm

l L. ,p_l...L,h H(Uh+d_(d+n)w)) dUp) dzd( (-U/jm)V2Jm (ip-1 ’)gQ2,p-h xp-1 t--z-wdt

Hence we obtain the right hand side of (2.11) and the proof of the lemma is concluded.

LEMMA 2. If t>=(m+l)w, h<=p<.m and n=O,l, it follows that

m+l
Z (-i)p-I [P,h,t,j,H(Uh+d-(d+n)w)] (2.12)

p=h

m I
t

y. (_l)P-i [p,h,(m+l)w,H(Uh+d_(d+n)w)] exp(-zJ

p=h (m+l)w J
V2 j

k m

{(_l)hH(z_nw)+k2[j 1Mlj:jm exp((z_w)jjm) I (_I)P-1 )[p,h,z_W, Jm,H(Uh+d-(d+n)w] + (2.13)

k m

+ j=l MljmeXp((z-w)JJm) F. (-1)P-1 d ((I) [p,h,t, Jm’ H(Uh+d-(d+n)w)] )t--z-w ] dz

p=h dt
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PROOF. From definition 2.3 and lemma I, it follows that

m+l
Z (-l)P-I [p,h,t,j,H(Uh+d_(d+n)w)]
p=h

(-i)h-1 O[h,h,t,j, H(Uh+d-(d+n)w ] +
m

p=h+l
(-I)P-I O[p,h,t,j,H(Uh+d_(d+n)w)] +

+ (-l)m [m+l,h,t,j,H(Uh+d_(d+n)w

m-I it k
+ p=h7" (-I)p (m+lexp(-zj)V23A2 {jm=17" MlJmJJmeXP((z-w)Jjm)[p,h,z-W,Jm, H(Uh+d-(d+n)w)] +

k
7. M1%exp((z-w)Jjm) d( 0 [p,h,t,Jm,H(Uh+d-(d+n)w)] )t=z-w dz +

exp(-zJ .)v
(ml-1)w ] 23 =l%JjmeXP((Z-W)Jjm O[m’h’z-W’Jm’H(Uh+d-(d+nlw)] +

k
+ 7. MI exp((z-w)J )d-( [m,h,t,Jm,H(Uh+d-(d+n)w)] )t=z-w ] dz=

jm=
t t k

=(-l)h-i [)(m+l)wexP(-Z/")V/4(z-nw)dz-13z3 (m+l)wexp(-zJ’)V323 ._lJmJJmexP((Z-W)_

m k
X (-I)p-I [p,h,z-w,H(u..-(d+n)w)] + 7. _. exp((z-w.
p=h

n--- Jm=lOm Jm

(-I)p-I d( [P,h,t,Jm, H(Uh+d-(d+n)w)] t=z-w
dz

Hence the proof of lemma 2 is established.

3. CONSTRUCTION OF THE SOLUTION.

In this section we provide an analytical expression for the solution of problem

(i.i) by means of a constructive way. Note that for t>w the system (I.i) may be

written in the form

X"(t)+AIX" (t)+BoX(t)--F(t)-A2X" (t-w), t>w (3.1)

where X(t)=G(t) for O-<w. From(2.5)-(2.8), thesolution of (3.1) on the interval

[w,2w] is given by (2.5) where Di(t) takes the form

t

Dj(t)--Dj(w) +I exp(-zJj)V2j {F(z)-A2X’(z-w)} dz

w
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In general, for tg[mw,(m+l)w] the solution of (3.1) may be written in the form (2.5)

whereDj(t) is given by

t

Dj(t)=Dj (mw)+[ exp(-zJj)V2j F(z)-A2X" (z-w) dz te[mw, (m+l)w] (3.2)
mw

Taking into account that X(u)=G(u) for ue[O,w], it follows that

t t

Dj(t)=Dj(w) exp(%)V2jF(z)dz Iw weXp(-zJj)V2jG (z-w)dz tg[w,2w] (3 3)

and from (2.5) and (3.3), we have

k

X(t)=j=ly" Mljexp(tJJ )Dj (t)=
k t t

j--1 w

If tg[2w,3w], one gets

(3.4)

t

Dj (t)=Dj (2w)+i exp(-zJj)V2jF(z)dz It exp(-zJj)V2jA2X" (z-w)dz
2w 2w

and from (3.3)-(3.4), it follows that

2w 2w

Dj(t)=Dj(w)+I exp(-zJj)V2jF(z)dz I exp(-zJj)V2jA2G’(z-w)dz +
w w

t k

Jl=lJl Jl Jl

z-w k

jZ exp(-(z-w)Jjl)V2 jexp(-uJj )V2JlA2G’(u-w)du + ljlexp((z-w)JjlJw
F(z-w) +

-exp(-(z-w)Jjl)V2JlA2G’(z-2w)]}dz
k
E MI exp((z-w)Jj (w) dz +=Dj(w)- weXp(-zJj)V2jA2 Jl=I jlJJl I)Djl

t .t k z-w

t k

-f2weXp(-zJj)V2jA2 Jl=IZMljlV2jlF(z-w)dz
(3.5)

t k z-w

+!2w Jl=l iJJl fwexp(-zJj)V2jA2 I MIj exp((z-w)Jj exp(-uJj )V2JlA2G’(u-w)dudz

+I2w Jl=l Jl
z exp(-zJj)V2jA2G’(z-w)dexp(-zJj)V2jA2 Z MI A2G’(z-2w)d z

Now by using the induction principle we are going to prove that the solution of
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(i.i) for tE[mw,(m+l)w], is given by (2.5) where Dj(t) is expressed in terms of the

operator in the form

m k
I . J. exp((u. ,-(d+l)w)JjDj(t)=Dj(w)+ E (-1)p-1 [p,2,t,j,

Jl=1 31 31 z..p=2 )Dj (w)] +

m

+ Z (-1)P-l@[p,l,t,j,F(Ud+l-dW)]+(-l)m [m,l,t,j,A2G’(Ul+d-(d+l)w)] +
p=l

m
+Z {(-I)p-I [p-l,l,pw,j, A2G’(Ul+d-(d+l)w)] +
p=2

(3.6)

m k
Z (-i)r-I [r,p+l,t,j, Z j/jpeXp((Up+l-W)Jjp)[p-l,l,pw,jp,A2G’(ur=p+l jp=l

l+d
-( d+l )w)]1

It is easy to prove that in (3.3)-(3.5), Dj(t) coincides with (3.6) for m=l,2. Let us

suppose that for tE[mw,(m+l)w] ,Dj(t) is given by (3.6), and let tE[(m+l)w,(m+2)wJ.
Then from (2.5),(3.2), it follows that

t t

Dj(t)=Dj((m+l)w)+I exp(-zJ:)V2jF(z)dz -I exp(-zJj)V2jA2X" (z-w)dz
(m+l)w J (m+l)w

(3.7)

If we apply the induction hypothesis and we take into account the expression of X(z-w)

for zg[(m+l)w,t] and (3.7), it follows that

m k

%(t)={)j(W)+l)=2Z (-1)p-I p,2,(m+l)w, j, A2
Jl=lZ MlJlJjlexp((U2+d-(d+l)w)Jjl)Djl(W)]

exp(-zJ.
k

(m+l)w
3)V2j A2 Jm=lYMlJmJjmeXp((z-w)J-’jm)Djm(W) +

k m k

k m
+ Y..j_exp((z-wj_) F. (-i)p-Id , [p,2,t,Jm, jlJJleXP((+d-{d+l)w)Jjl)%l(W)] )t_w] }dz

jm:t -m p=2 Jl:l
m t

+ p=II (-I) p-I [p, 1, (m+l)w, j F(Ul+d-dW)] [J(m+l)wexp(-zJ.j)V2j (-1)F(z) +

k m

[ I MlJmJjmeXp((z-w)J:Jm p--iI (-I)
p-I [p,l,z-W,Jm,F(Ul+d-dW)]+

jm=I

k
Z M jmeXp( (z-w)JjmJm=l

m
d ]Z (-I) p-I --( [p,l,t,Jm,F(Ul+d-dW)] )t=z-w }dz +

p=l

t k
(-1)H’I I exp(-zJ)V2j [ Z MIjmJ%exp((z-w)Jjm (1)[m,l,z-W,Jm,A2g’(Ul+d-(d+l)w)] +

(m+l)w "J jm--i



SOLUTION OF A CLASS OF COUPLED SECOND ORDER DIFFERENTIAL-DIFFERENCE EQUATIONS 393

k
Z MlJmeXp((z_w)jjm)d_( [m,l,t,Jm,A2G’(Ul+d_(d+l)w)])t=z_w] d +

Jml
m
Z (-I)p-I [p-l,l,pw,j,G’(Ul+d-(d+1)w)] + (-I)m [m,l,(m+l)w,j,A2G’(u l+d-(d+I)w)] +

kI t(m+l)w exp(%)V2j [(-1 )P-IA2 JmE=lMlJmj.jmeXp((.-w)Jjm) [p-1 pw Jm A2G’(Ul+d-(d+1 )w)]+

k m k

A2FLjm=lr.M..jmj’jmexp((-w)j)jm r=p+l
(-1)-1 *[r’p+l’z-w’Jm’A2

jp=l Mlj/Jpexp((up+l-w)jjp
[p-1,1 ,pW,jp,A2G’(Ul+d-(d+l)w)] +

k m
Z MlJmeXp((z-w)J: l (-I)r-I d

Jm=l Jm r=p+l
-’(

k
@[r,p+l,t,Jm,A2 I MIj/j exp((Up+l-W)Jj @[p-l,l,pw, jp, A2G’(Ul+d-(d+l)w)]] )t=z_w]]dz

jp=l p p

Now taking into account the lemma 2 and the proof of lemma I, we may write

m+l k

()] +Dj(t)=Dj(w) + p=2F" (-i) p-I [p,2 t j,A2
Jl=IIMlJl.Jjlexp((u2+d-(d+l)w)Jjl)Djl

m+l
I (-I)p-I [p,l,t,j,F(Ul+d-dW)] +(-l)m+l [m+l,l,t,j,A2G. <Ul+d_Cd+l)w] +

p=l

m+l
Z {(-I)p-I [p-l,l,pw,j, A2G’(Ul+d-(d+l)w)] +
p=2

+I k
Zl (-I>r-I [r,p+l,t,j, jp=ljpexpC(Up+l-w)Jjr-p+l p

[p-l,l,pw jp, Ul+dA2G’( -(d+l)w)]

Note that this expression coincides with (3.6) replacing m by m+1. Thus the

followresult has been established:

THEOREM 2. Let us consider the notation of Theorem 2 and let {(MIj,Jj); lk} be

a k-complete set of co-solutions of equation (1.2). Let F(t) be a continuous function

in [w,) and let G(t) be a continuously differentiable function in [O,w]. Then the

solution of problem (i.I) is given by (2.5), where Dj(t) is defined by (3.6) for ljk

tE[mw,Cm+l>w], ml.
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In the following we illustrate with an example in 2 the previous results and

we show the availability of the construction of the solution of the problem (i.i).

EXAMPLE. Let us consider the coupled differential-difference system

X" (t)+ X’(t-w)+ X(t)= t>w>O
0 0

O<-twX(t)=

The companion matrix C defined in Theorem takes the form

(3.8)

C

0 0 I 0

0 0 0

0 0 -I

0 -i 0 2

Straightforward computations yield that the matrices J and M of Theorem as well

as the k-complete set of co-solutions of the associated algebraic matrix equation

0 I] =
are given by

J=diag(Ji,J2) Jl--(O), J2 0
0 0

-i -i

MII-- MI2-- 0 -i O 0
0 0 0

FromTheorem 2, the solution of problem (3.8) is given by

X t )=M11exp(tJ )D t )+MI2exp tJ2 )D2 t

_-MIIDI (t)+Ml2exp(t) t
0 1

where Dj(t) for j--l,2, are defined by (3.6) and Dl(W), D2(w), are determined by the so-

lution of the corresponding system (2.7)

0
0 O

exp(w) 0 w D2(w)
1 0 0

I

Solving this system it follows that

Dl(W)--w-2 D2(w)=exp(-w) I-i-/2]
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If te[w,2w], then from (3.6) it follows that

and

D (t)=exp(w)-exp(t)+t-2

w-t-(l+t2/2)exp(-t)]D2 (t)= texp(-t)

-exp(-t)

Hence from (2.5),(3.6), the solution of (3.8) in [w,2w] is given by

X(t)=exp(t) +
0

If te [2w,3w] ,then from (3.6) it follows that

D (t)=(t-2w-i)exp(t-w)-exp(t)+2exp(w)-2+t

and

D2 (t)--Iw-t+(t2/2 2wt)exp(-w)-(l+t2/2)exp(-t) I
texp(-t)

-exp(-t)

From (2.5),(3.6), it follows that the solution X(t) of (3.8) in [2w,3w] is given by

X(t)= exp(t-w) + exp(t) + +
L 0 J 0

+exp(t) 0 t

0 -I 0 0 [ w-t+expC-w)Ct212-2wt)-Cl+t2/2)exp(-t)]
texp(-t)

-exp(-t) J

[t--l] t+2wt-2w-l-t2/2 ] [2exp(w)+t]exp(t) + exp(t-w) +
0

In an analogous way using (2.5) and (3.6) we may obtain the expression of the solu-

tion of the problem in any interval [mw,(m+l)w].
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