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ABSTRACT. Let X be a metric space and let CB(X) denote the closed bounded subsets of X with the
Hausdorft metric. Given a complete subspace Y of CB(X), two fixed point theorems, analogues of re-
sults in [1], are proved, and examples are given to suggest their applicability in practice.
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Let X be a metric space with metric  and let Y be a complete subspace of the space CB(X) of all
closed and bounded subsets of X, with the Hausdortf metric p:
p(A, B) = max{supd(x,A),supd(x, B)}. )
x€B x€A
In Hicks [1], fixed point theorems for set-valued maps T : X — CB(X) were proved; and illustrated with
examples. We show that similar results for maps T: Y — X can be obtained, using essentially the same
techniques as in Hicks [1].
THEOREM 1. Let T:Y — X be continuous. Then there is an A € Y such that T(A) € A iff there

exists a sequence {4,}"_in ¥ with T(A,) € A,,, (or T(A,,,) € A,) and

n=0

S Ay ) <= ®
n=0
In this case, A, — A as n — co. (In fact, we may let A,,; = A, U{T(4,)}, for each n, for the case
T(A,) € Aiy)
PROOF. If T(A) € A, then we are done. Conversely, if the given conditions are met, then {A,}"_
is Cauchy, so let A € Y beits limit. Thus T(A,) = T(A). Il y € A, then

d(v,T(A)) < d(y,T(A,)) + d(T(A,). T(A)), (©)]
SO
d(A,T(A)) < d(A,T(A,))+d(T(A,). T(A)). @)
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Since d(,T(A,).T(A)) = 0 and we have d(A.T(A,)) < p(A.A,,) > 0, it follows that T(A)e A.
||

EXAMPLES
(1) Let X = R, with the usual metric. Define 7: CB(R) — R by

T(A) = asup(A) + (1 —a)int(A), (5)
where o € [0,1]. Then T is continuous. It A € CB(R), then
T(AU{T(A)}) = T(A) e AU{T(A)}. ©6)

(2) Let X=Rasin I, and let r:[0,e0) — [0,00) be such that r ~ 15, where 1 is the identity on
R. Define T : CB(R) - R by

T(A) = ar{jsup(A)]) + (1 - a)r(finf(A))), ™M

where a € (0,1). Assuming r is continuous, so is T. Let A, € CB(R), and for n e N, let

An+| = An U[igL{T(A")}’ilg:{T(A‘ )}] (8)

Theorem 1 yields A e CB(R) with T(A) € A if

gl max{d(ir;ﬁ{T(A,,)},A,,)d(s;t;g{T(Ak )} A, )} < oo, ©)

DEFINITION. Let (X,d) be a metric space and let ¥ be a subspace of (CB(X),p). Let T:Y — X.
Then T is nice if for each A € Y and each x € A with d(x,T(A)) = d(A,T(A)), there exists a set Be Y
with T(B) = x.

EXAMPLES

(3) Let X =R?, T:CB(R?) - R defined by

T(A) = (inf(proj, (A)),sup(proj, (A))). (10)

Let a>b and A =[0,a]x[0.b]. Then T(A) = (0,a), and (0.b) is the only point of A whose
distance from (0,a) equals d(A,T(A)). Let B= [(),b]z. Then T(B) = (0,b).
(4) Let X = R?, and for A e CB(R?), let T(A) be the center of the circle which circumscribes A.
Let r = d(A,T(A)), and let x € A with d(x,T(A))=r. Let B= Anﬂ(x.%). Then
T(B) = x.
THEOREM 2. Let (X,d) be a metric space and let Y be a complete subspace of (CB(X),p), each
member of which is compact. Let T:Y — X be continuous. Assume that K : [(),e0) = [0,%) is non-
decreasing, K(0) =0, and

P(A. B) < K(d(T(A).T(B))) (n

for A, BeY. If Tis nice, then there is A € Y such that T(A) € A iff there exists Ay € Y for which
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> K"(d(Ag. T(A))) < o *)
n=l

In this case, we can choose {4, )" such that T(A,,,) € A, and A, — A.
PROOF. If T(A)e A, then we are done. If Ap e satisties (*), let x; € Ay with
d(x,T(Ay)) = d(Ay. T(A)). Since Tis nice, let A, € ¥ with T(4,) = x.
Next, let x, € A; with d(x,,T(A,)) = d(A,.T(A))). and then let A, € Y with T(A,) = x,. Then

d(T(A)).T(A;)) = d(T(A,).x,)
= d(T(Al),A,) =d(x,A) (12)
< p(A0. A1) < K(d(T(49). T(AD)),

so that

K(d(T(A)).T(42)) < K2(d(T(A40).T(A)))
= K*(d(T(Ag).x,)) (13)
= K*(d(T(Ay). A0))
Now, suppose we have x, €A, , and A, eY with d(x,,T(A,,))=d(A, . T(A,,)) and

T(A,) = x,- Let x,,y € A, with d(x,,),T(4,)) = d(A,.T(A,)) and let A,,; € ¥ with T(A4) = Xpey.
Then

d(T(A,).T(A1)) = d(T(A,). Xps2)
=d(T(A,).A,) = d(x,.A,) (14)
< p(An-isAu) < K(d(T(Ap11). T(4,))).
so that
K(d(T(4,).T(4,..1)) < K2(d(T(4,-1). T(4,))
= K(K(d(T(A,-1).T(4,))))

< K(K*(d(T(A,-2).T(4,-1)))) (15)
K(((nZ (nl))
(‘ A() A())
Thus, since
p(A Au+l) (d(T(An) ( n+l)))’ (16)
it follows from (*) that
Zp(AnvAnH) <o, 17)

n=0

and then by Theorem 1, A, 5> A and T(A)e A. W



822 M. INSALL

Note that the conditions of theorem 2 force T to be a bijection. In both of these theorems, we have
used completeness of the given subspace Y of CB(X) instead of completeness of X. In fact, in theorem 2,
since T is a bijection, we may trade completeness of Y back for completeness of X and use the second

theorem of Hicks [1].
THEOREM 3. If (X,d) is a complete metric space and Y is any subspace of (CB(X).p), each

member of which is compact, then for any homeomorphism T : Y — X such that
p(A,B) < K(d(T(A), T(B))). (18)

where K :[0,00) - [0,00) is nondecreasing, with K(0) =0, there is A € ¥ such that T(A) € A iff there
exists Ay € Y for which (*) holds.

PROOF. If Ay €Y satisties (*), let x = T(Ay). Apply theorem 2 of Hicks [1]to T : X > Y 10
obtaina p e X suchthat pe T™'(p). Let A =T"'(p). Then T(A) = p is in A, so we are done. W
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