FURTHER RESULTS ON A GENERALIZATION OF BERTRAND'S POSTULATE

GEORGE GIORDANO

Department of Mathematics, Physics and Computer Science Ryerson Polytechnic University Toronto, Ontario, Canada M5B 2K3

(Received November 6, 1992 and in revised form February 28, 1995)

ABSTRACT. Let d(k) be defined as the least positive integer n for which $p_{n+1} < 2p_1 - k$. In this paper we will show that for $k \ge 286664$, then $d(k) < k/(\log k - 2.531)$ and for $k \ge 2$, then $k(1-1/\log k)/\log k < d(k)$. Furthermore, for k sufficiently large we establish upper and lower bounds for d(k).

KEY WORDS AND PHRASES. Bertrand's Postulate, Primes. 1992 AMS SUBJECT CLASSIFICATION CODE. 11N05

1. INTRODUCTION.

Let p_n be the nth prime and let k be a positive integer. We define d(k) to be the least positive integer n for which $p_{n+1} < 2p_n - k$, and consider the corresponding generalization of Bertrand's Postulate. There are other generalizations of Bertrand's Postulate, for example [1] and [2].

Dressler [3] showed that $p_{n+1} < 2p_n - 10$ for all n > 6. Badea [4] proved that for every integer $k \ge 1$ we have

 $d(k) \leq (M_{k} + 2 + ((M_{k})^{2} + 12 M_{k} + 4)^{1/2})/4$

where $M_k = max$ (118, [13 k/12] + 1). The Mathematical Review (88j:11005) of [4] points out two facts. First, "Since the prime number theorem implies $p_{n+1} \sim p_n \sim n\log n$ it follows that

 $d(k) \sim k/\log k$." Second, the reviewer states that using the results found in [4] he can establish, using an elementary argument, the following:

 $d(k) \leq [13 \ k/(12(\log k - \log \log k))] + 1$ for every $k \geq 4$.

In this paper we will use improved upper and lower bounds for p_n and thereby establish an improved upper bound for d(k). Furthermore, we will give an explicit lower bound for d(k). It is obvious that in order to establish an upper bound for d(k) we would want to find conditions on n which guarantee

$$k < 2p_n - p_{n+1}.$$
 (1.1)

Also in order to establish a lower bound for d(k) we would want to find conditions on n which guarantee

$$k > 2p_n - p_{n+1}.$$
 (1.2)

To obtain an explicit upper bound for d(k) we have to observe that $k/(\log k - \log \log k) < k/(\log k - 2.531)$ if $k \le 286663$. Hence we have different upper bound functions for d(k) depending upon the value of k. Moreover, we need to use the computer languages Maple and Turbo Pascal. We use Maple to get the exact value of k which is needed in Lemma 7, and we use Turbo Pascal to obtain Tables 1 and 2 for small values of k and provide a program to verify Cases 1-3 of Theorem 4.

The proofs of this paper require the following results.

(1.3) and (1.4) are found in [5], (1.5) is found in [6] and (1.6) is found in [7].

We define the following function to make Lemmas 2 and 4 more readable,

$$T(k,c) = (1+c\varepsilon)/\log k \quad \text{where } \varepsilon > 0. \quad (1.9)$$

2. THEOREMS, LEMMAS AND THEIR PROOFS.

LEMMA 1. For n sufficiently large, there exists $\varepsilon > 0$ such that $2p_n - p_{n+1} > n(\log n + \log \log n - (1 + \varepsilon))$.

PROOF. From (1.5) there exists a constant c such that $p_n < n(\log n + \log \log n - 1 + c(\log \log n / \log n))$ and

76

```
p_n > n(\log n + \log \log n - 1 - c(\log \log n / \log n))
We see that
     2p_n - p_{n+1} > 2n(\log n + \log \log n - 1 - c(\log \log n/\log n))
                  -(n+1)\{\log(n+1) + \log \log(n+1) - 1\}
                           + c(\log \log(n+1)/\log(n+1)).
                                                             (2.1)
After simplification and for n sufficiently large (2.1) will
become 2p_n - p_{n+1} > n(\log n + \log \log n - (1+\varepsilon)).
                                                                     QED.
     LEMMA 2. With \varepsilon and n as in Lemma 1,
let n = k(1+(1+4\epsilon)/\log k)/\log k then for k sufficiently large we
have k < n(\log n + \log \log n - (1+\varepsilon)).
     PROOF. Suppose not; then
                       k \ge n(\log n + \log \log n - (1+\varepsilon)).
                                                                    (2.2)
After substituting for n, multiplying through by (\log k)/k and
using (1.9), (2.2) becomes
    \log k > \log k + \log(1+T(k,4)) - \log \log k - (1+\epsilon)
           + \log \log((k/\log k)(1+T(k,4))) + T(k,4)\log k
           + T(k, 4) \log(1+T(k, 4)) - (1+\varepsilon)T(k, 4)
           - T(k, 4) \{ \log \log k - \log \log((k/\log k)(1+T(k, 4))) \}. (2.3)
We observe that (2.3) does not hold for large k because
- log log k + log log((k/log k)(1+T(k,4))) \rightarrow 0 and the T(k,4)log k
term dominates. Hence this establishes the Lemma.
                                                                     QED.
```

THEOREM 1. With ε as in Lemma 1, there exists k sufficiently large such that $d(k) < k(1+(1+4\varepsilon)/\log k)/\log k$.

PROOF. We want to find an upper bound for the function d(k) such that for all $n \ge d(k)$ we have

$$k < 2p_n - p_{n+1}.$$
 (2.4)

For n sufficiently large and ϵ > 0, by Lemma 1 we have the following inequality

$$n(\log n + \log \log n - (1+\epsilon)) < 2p_n - p_{n+1}.$$
 (2.5)

From (2.5) we now replace (2.4) with a more restrictive inequality

$$k < n(\log n + \log \log n - (1+\epsilon)).$$
 (2.6)

Choose $n = k(1+(1+4\epsilon)/\log k)$. Then by Lemma 2, (2.6) and hence (2.4) still hold. Therefore $d(k) < n=k(1+(1+4\epsilon)/\log k)/\log k$, establishing an upper bound for d(k). QED.

LEMMA 3. For n sufficiently large, there exists $\varepsilon > 0$ such that $2p_n - p_{n+1} < n(\log n + \log \log n - (1-\varepsilon))$.

 $\label{eq:proof_proof} \textbf{PROOF}. \quad \text{By using the upper and lower bounds for p_n found in the proof of Lemma 1, we have the following}$

$$2p_n - p_{n+1} < 2n(\log n + \log \log n - 1 + c(\log \log n/\log n)) - (n+1) \{\log(n+1) + \log \log(n+1) - 1 - c(\log \log(n+1)/\log(n+1))\}.$$
(2.7)

After simplification of (2.7) we have for n sufficiently large the desired result $2p_n - p_{n+1} < n(\log n + \log \log n - (1-\epsilon))$. QED.

LEMMA 4. With ε and n as in Lemma 3, let $n = k(1+(1-3\varepsilon)/\log k)/\log k$ then for k sufficiently large we have $k > n(\log n + \log \log n - (1-\varepsilon)).$

PROOF. Suppose not; then

$$k \leq n(\log n + \log \log n - (1-\varepsilon)). \qquad (2.8)$$

After substituting for n, multiplying through by $(\log k)/k$ and using (1.9), (2.8) becomes

$$\begin{split} \log k &\leq \log k + \log(1+T(k,-3)) - \log \log k - (1-\varepsilon)T(k,-3) \\ &+ \log \log((k/\log k)(1+T(k,-3))) + T(k,-3)\log k \\ &+ T(k,-3)\log(1+T(k,-3)) - T(k,-3)\log \log k - (1-\varepsilon) \\ &+ T(k,-3)\log \log((k/\log k)(1+T(k,-3))). \end{split}$$

We observe that (2.9) does not hold for large k because - log log k + log log((k/log k)(1+T(k,-3))) \rightarrow 0 and the T(k,-3)log k term dominates, thereby proving the Lemma. QED.

THEOREM 2. With ε as in Lemma 3, there exists k sufficiently large such that $d(k) > k(1+(1-3\varepsilon)/\log k)/\log k$.

PROOF. We want to find a lower bound for d(k) such that for all n < d(k) we have

$$k > 2p_n - p_{n+1}.$$
 (2.10)

For n sufficiently large, Lemma 3 yields the following inequality

 $n(\log n + \log \log n - (1-\epsilon)) > 2p_n - p_{n+1}.$ (2.11)

```
From (2.11) we now replace (2.10) with a more restrictive
inequality
                     k > n(\log n + \log \log n - (1-\varepsilon)). (2.12)
Choose n = k(1+(1-3\varepsilon)/\log k)/\log k. Then by Lemma 4, (2.12) and
hence (2.10) still hold. Therefore
d(k) > n = k(1+(1-3\varepsilon)/\log k)/\log k establishing a lower bound for
d(k).
                                                                 QED.
     LEMMA 5. If n \ge 20, then
2p_n - p_{n+1} < n(\log n + \log \log n + 1/2).
     PROOF. From (1.3) and (1.4) we have
     2p_n - p_{n+1} < 2n(\log n + \log \log n - 1/2)
                  -(n+1)(\log(n+1) + \log \log(n+1) - 3/2).
                                                              (2.13)
After several manipulations we see that (2.13) becomes
           2p_n - p_{n+1} < n(\log n + \log \log n + 1/2).
                                                                 OED.
     LEMMA 6. Let n = k(1 - 1/\log k)/\log k, where k \ge 92 then
k > n(\log n + \log \log n + 1/2).
     PROOF. Suppose not; then
                     k \le n(\log n + \log \log n + 1/2). (2.14)
After substituting for n and multiplying through by (\log k)/k,
(2.14) would become
\log k \leq \log k - \log \log k + \log(1 - 1/\log k)
        + \log \log(k(1 - 1/\log k)/\log k) + 1/2
        + {\log \log k - \log k - \log(1 - 1/\log k)
            -\log \log(k(1 - 1/\log k)/\log k) - 1/2)/\log k. (2.15)
With further simplifications and rearrangement of terms we see
that (2.15) is false for k \ge 92, thereby establishing the
Lemma.
                                                                 OED.
     THEOREM 3. For k \ge 2 then k(1 - 1/\log k)/\log k < d(k).
     PROOF.
              We want to find a lower bound for d(k) such that
for all n < d(k) we have
                     k > 2p_n - p_{n+1}.
                                                               (2.16)
For n \ge 20 and using Lemma 5 we establish the following
```

$$2p_n - p_{n+1} < n(\log n + \log \log n + 1/2).$$
 (2.17)

```
G. GIORDANO
```

From (2.17) we now replace (2.16) with a stronger inequality $k > n(\log n + \log \log n + 1/2).$ (2.18)If $n = k(1 - 1/\log k)/\log k$, then by Lemma 6 (2.18) and hence Therefore $d(k) > n = k(1 - 1/\log k)/\log k$ (2.16) hold. establishing a lower bound for d(k). From Table 2 we see that Theorem 3 holds if $2 \le k \le 92$. QED. **THEOREM 4.** For $19 \le k \le 286663$ then $d(k) < k/(\log k - \log \log k).$ **PROOF**. To prove this Theorem we must divide this proof into four cases. $6036 < k \leq 286663$ Case 1. Case 2. $388 < k \le 6036$ Case 3. $193 < k \le 388$ Case 4. $19 < k \le 193$ In Cases 1-3 we will need to use the Pascal program called Verification which is found in Section 3, whereas for Case 4 we will use Table 1. Case 1. We have $k < 2p_n - p_{n+1}$. (2.19)By using (1.3) we see that (2.19) will now become a more restrictive inequality $k < n(\log n + \log \log n - 1.5) + p_n - p_{n+1}.$ (2.20) If we let $n = k/(\log k - \log \log k)$ and we use (1.6) then (2.20) becomes even more restrictive. $k < n(\log n + \log \log n - 1.5) - 652.$ (2.21) By using the Pascal program, (2.21) is true for integer $k \in (6036, 286663]$ and hence (2.19) is true. Case 2. Similar to Case 1 up to (2.20). However, we note that if $n = k/(\log k - \log \log k)$ then $n \in [93, 922]$. Hence for n in this range we have $p_{n+1} - p_n \leq 34$. Hence in this range (2.20) becomes $k < n(\log n + \log \log n - 1.5) - 34.$ (2.22)

By using the Pascal program we can verify that (2.22) is true and hence (2.19) is true for $k \in (388, 6036]$. Case 3. Similar to Case 2 except that $n \in [54, 92]$ and

```
80
```

 $p_{n+1} - p_n \le 14$. QED. Case 4. We look at Table 1. **LEMMA** 7. Let $k \ge 286664$, c = 2.531 and $y = (\log(\log(k)-c)-c)/(\log(k)-c)$, then the maximum value of y is approximately .0292756256. PROOF. k = 286664then y = -0.02241285 $k \rightarrow \infty$ then $y \rightarrow 0$ Using elementary calculus we set y' = 0 an see that $k = \exp(e^{c+1}+c)$ For this k we note that y'' < 0 and hence we have a relative the value of y was determined by using a symbolic maximum; language called Maple. QED. **LEMMA** 8. If $k \ge 286664$ and c = 2.531, let $n = k/(\log(k)-c)$ then $k < n(\log n + \log \log n - 2.500539232)$. Suppose not; then PROOF. $k \ge n(\log n + \log \log n - 2.500539232).$ (2.23) After several manipulations of (2.23) we now have $0 \ge \log \log(k/(\log(k)-c)) - \log(\log(k)-c) + c - 2.500539232.$ (2.24) By grouping the terms containing log functions we see after several steps that (2.24) becomes $0 \ge \log(1+(c-\log(\log(k)-c))/(\log(k)-c))+c-2.500539232. (2.25)$ By Lemma 7 we see immediately that the smallest possible value for the second term within the outer log function is approximately .970724375. And hence (2.25) is false thereby establishing the QED. Lemma. **LEMMA** 9. For $n \ge 28567$ then $2p_n - p_{n+1} > n(\log n + \log \log n - 2.500539232).$ PROOF. Using (1.3) and (1.4) we have $2p_n - p_{n+1} > 2n(\log n + \log \log n - 3/2)$ $-(n+1)(\log(n+1) - \log \log(n+1) - 1/2).$ (2.26) After several simple algebraic manipulations and using (1.7), (2.26) becomes

 $2p_n - p_{n+1} > n(\log n + \log \log n - 2.500003412)$ $- n\log(1+1/n) - \log(n+1) - \log \log(n+1).$ (2.27)

Using (1.8) we have the desired result. QED.

THEOREM 5. For $k \ge 286664$ then $d(k) < k/(\log k - 2.531)$. **PROOF.** For $k \ge 286664$, we want to find an upper bound to d(k) such that for all $n \ge d(k)$ we have

$$k < 2p_n - p_{n+1}.$$
 (2.28)

For $n \ge 28567$ and Lemma 9 we have the following

$$n(\log n + \log \log n - 2.500539232) < 2p_n - p_{n+1}$$
. (2.29)

From (2.29) we replace (2.28) with a more restrictive inequality

$$k < n(\log n + \log \log n - 2.500539232).$$
 (2.30)

Choose $n = k/(\log k - 2.531)$. Then by Lemma 8, (2.30) and hence (2.28) still hold. Therefore $d(k) < n = k/(\log k - 2.531)$, establishing an upper bound for d(k). QED.

3. COMPUTER PROGRAMS AND TABLES.

The computer program called Verification was written in Turbo Pascal. Tables 1 and 2 were produced by other Pascal programs.

```
program Verification;
var i:integer;
     j:longint;
     answer, k, n: real;
begin
     for
           i:=194 to 388 do begin
           k:=i;
           n:=k/(ln(k)-ln(ln(k)));
           answer:=n^{(\ln(n)+\ln(\ln(n))-1.5)-14-k};
           if ( answer<0 ) then writeln(k,answer)</pre>
     end;
     for
           i:=389 to 6036 do begin
           k:=i;
           n:=k/(ln(k)-ln(ln(k)));
           answer:=n^{(\ln(n)+\ln(\ln(n))-1.5)-34-k};
           if ( answer<0 ) then writeln(k,answer)</pre>
     end;
     for
           j:=6037 to 286663 do begin
           k:≈j;
           n:=k/(ln(k)-ln(ln(k)));
           answer:=n*(ln(n)+ln(ln(n))-1.5)-652-k;
           if ( answer<0 ) then writeln(k,answer)</pre>
     end
```

end.

k d(k) f(k)	k d(k) f(k)	k d(k) f(k)	k d(k) f(k)
1 3	50 17 19.6235	99 31 32.2462	148 37 43.6793
2 3 1.8874	51 17 19.9007	100 31 32.4887	149 37 43.9046
3 5 2.9864	52 17 20.1768	101 31 32.7308	150 37 44.1297
4 5 3.7748	53 17 20.4519	102 31 32.9723	151 38 44.3545
554.4109 654.9646	54 17 20.7258	103 31 33.2135	152 38 44.5790
	55 19 20.9987	104 31 33.4542	153 38 44.8032
7 5 5.4680 8 5 5.9376	56 19 21.2706 57 19 21.5415	105 31 33.6944	154 38 45.0272
9 7 6.3828	57 19 21.5415 58 19 21.8115	106 31 33.9343	155 38 45.2510
10 7 6.8094	59 19 22.0805	107 31 34.1737 108 31 34.4127	156 38 45.4745
11 7 7.2211	60 19 22.3486	108 31 34.4127 109 31 34.6513	157 38 45.6977 158 38 45.9207
12 7 7.6206	61 19 22.6157	110 31 34.8894	
13 7 8.0098	62 19 22.8820	111 31 35.1272	159 39 46.1434 160 39 46.3659
14 7 8.3901	63 20 23.1475	112 31 35.3646	161 40 46.5881
15 9 8.7626	64 20 23.4120	113 31 35.6016	162 40 46.8101
16 9 9.1282	65 20 23.6758	114 31 35.8382	163 40 47.0319
17 10 9.4877	66 20 23.9387	115 31 36.0744	164 40 47.2534
18 10 9.8415	67 22 24.2009	116 31 36.3103	165 40 47.4746
19 10 10.1903 20 10 10.5344	68 22 24.4623	117 31 36.5457	166 40 47.6957
20 10 10.5344 21 10 10.8742	69 22 24.7229	118 31 36.7808	167 41 47.9165
22 10 10.8742	70 22 24.9828 71 22 25.2419	119 31 37.0155	168 41 48.1370
23 10 11.5421	72 22 25.5003	120 31 37.2499 121 31 37.4839	169 41 48.3574
24 10 11.8707	73 22 25.7580	121 31 37.4839 122 31 37.7176	170 41 48.5775
25 12 12.1961	74 22 26.0151	123 32 37.9509	171 43 48.7974 172 43 49.0170
26 12 12.5183	75 23 26.2714	124 32 38.1838	172 43 49.0170 173 43 49.2365
27 12 12.8377	76 23 26.5271	125 33 38.4164	174 43 49.4557
28 12 13.1544	77 24 26.7821	126 33 38.6487	175 43 49.6747
29 12 13.4684	78 24 27.0365	127 33 38.8806	176 43 49.8934
30 12 13.7800	79 24 27.2902	128 33 39.1122	177 43 50.1120
31 12 14.0892	80 24 27.5433	129 35 39.3435	178 43 50.3303
32 12 14.3962 33 13 14.7010	81 25 27.7958	130 35 39.5745	179 43 50.5485
34 13 15.0038	82 25 28.0477 83 25 28.2990	131 35 39.8051	180 43 50.7664
35 13 15.3046	83 25 28.2990 84 25 28.5497	132 35 40.0354	181 43 50.9841
36 13 15.6035	85 25 28.7999	133 35 40.2654 134 35 40.4951	182 43 51.2016
37 13 15.9006	86 25 29.0495	135 35 40.7244	183 43 51.4189 184 43 51.6359
38 13 16.1959	87 25 29.2985	136 35 40.9535	184 43 51.6359 185 43 51.8528
39 15 16.4896	88 25 29.5470	137 35 41.1822	186 43 52.0695
40 15 16.7816	89 25 29.7949	138 35 41.4107	187 47 52.2860
41 16 17.0721	90 25 30.0423	139 35 41.6389	188 47 52.5022
42 16 17.3611	91 25 30.2892	140 35 41.8667	189 47 52.7183
43 16 17.6485 44 16 17.9346	92 25 30.5356	141 35 42.0943	190 47 52.9342
44 16 17.9346 45 16 18.2193	93 26 30.7814 94 26 31.0268	142 35 42.3216	191 47 53.1499
46 16 18.5026	94 26 31.0268 95 26 31.2716	143 35 42.5486	192 47 53.3653
47 17 18.7847	96 26 31.5160	144 35 42.7753 145 37 43.0017	193 47 53.5806
48 17 19.0655	97 26 31.7599	145 37 43.0017 146 37 43.2278	194 47 53.7957 195 47 54.0106
49 17 19.3451	98 26 32.0033	147 37 43.4537	195 47 54.0106

TABLE 1

where $f(k) = k/(\log k - \log \log k)$

k	d(k)	g(k)	k	d ()	(k) g(k)	k	d(k)	g(k)
1	3	-	32	12	6.5691	63	20	11.5357
2	3	-1.2773	33	13	6.7387	64	20	11.6885
3	5	0.2451	34	13	6.9075	65	20	11.8410
4	5	0.8040	35	13	7.0754	66	20	11.9931
5	5	1.1764	36	13	7.2426	67	22	12.1449
6	5	1.4797	37	13	7.4090	68	22	12.2963
7	5	1.7486	38	13	7.5747	69	22	12.4474
8	5	1.9971	39	15	7.7396	70	22	12.5982
9	7	2.2319	40	15	7.9039	71	22	12.7487
10	7	2.4568	41	16	8.0675	72	22	12.8989
11	7	2.6743	42	16	8.2305	73	22	13.0488
12	7	2.8858	43	16	8.3929	74	22	13.1984
13	7	3.0923	44	16	8.5547	75	23	13.3478
14	7	3.2948	45	16	8.7159	76	23	13.4968
15	9	3.4936	46	16	8.8766	77	24	13.6455
16	9	3.6894	47	17	9.0367	78	24	13.7940
17	10	3.8824	48	17	9.1963	79	24	13.9422
18	10	4.0730	49	17	9.3554	80	24	14.0902
19	10	4.2613	50	17	9.5140	81	25	14.2379
20	10	4.4476	51	17	9.6721	82	25	14.3853
21	10	4.6320	52	17	9.8297	83	25	14.5325
22	10	4.8148	53	17	9.9869	84	25	14.6794
23	10	4.9959	54	17	10.1436	85	25	14.8261
24	10	5.1756	55	19	10.2999	86	25	14.9726
25	12	5.3538	56	19	10.4558	87	25	15.1188
26	12	5.5308	57	19	10.6112	88	25	15.2648
27	12	5.7065	58	19	10.7663	89	25	15.4105
28	12	5.8811	59	19	10.9209	90	25	15.5560
29	12	6.0546	60	19	11.0752	91	25	15.7013
30	12	6.2271	61	19	11.2291	92	25	15.8464
31	12	6.3986	62	19	11.3826	93	26	15.9913

TABLE 2

where $g(k) = (k/(\log k))(1 - 1/\log k)$

4. COMMENT.

There is a discrepancy between the value of d(8) found in [4] and the value of d(8) found in this paper. This author believes that the value of d(8) is 5 and not 7.

5. ACKNOWLEDGEMENTS.

I am deeply indebted to Professor J. Repka for his suggestions which led to a better presentation of the manuscript. I would also like to thank the referee for his/her helpful comments. A portion of the cost of this manuscript was supported by the Instructor Development Fund at Ryerson Polytechnic University.

REFERENCES

- SHAPIRO, H.N., <u>Introduction to the Theory of Numbers</u>, John Wiley & Sons, Inc., New York, 1983, 369-370, 398
- GIORDANO, G., The Generalization and Proof of Bertrand's Postulate, <u>Internat. J. Math. Math. Sci.10</u>(1987), 821-823
- DRESSLER, R.E., A stronger Bertrand's postulate with an application to partitions, <u>Proc. Amer. Math. Soc. 33</u>(1972), 226-228
- 4. BADEA, C., On a stronger Bertrand's postulate, <u>An.</u> <u>Stiint.Univ. "Al.I. Cuza" Iasi Sect. I a Mat. (N.S.)32</u>(1986), no.<u>3</u>, 3-5
- ROSSER, J.B. and SCHOENFELD, L., Approximate Formulas for Some Functions of Prime Numbers, <u>Illinois J. Math. 6</u> (1962), 64-94
- ROSSER, J.B., The nth prime is greater than n log n, Proc. London Math. Soc. (2), 45(1939), 21-44
- BRENT, R.P., The First Occurrence of Large Gaps between Successive Primes, <u>Math. Comp. 27</u>(1973),959-963.