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ABSTRACT. Let d(k) be defined as the least positive integer n

for which Pni < 2p: k. In this paper we will show that for

k _> 286664, then d(k) < k/(log k 2.531) and for k _> 2, then

k(l-i/log k)/log k < d(k) Furthermore, for k sufficiently large

we establish upper and lower bounds for- d(k)
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1. INTRODUCTION.

Let Pn be the n th prime and let k be a positive integer. We

define d(k) to be the least positive integer n for which

Pn,l < 2pn k, and consider the corresponding generalization of

Bertrand s Postulate. There are other generalizations of

Bertrand’s Postulate, for example [i] and [2].

Dressler [3] showed that Pn+l < 2p i0 for all n > 6. Badea

[4] proved that for every integer k _> 1 we have

d(k) <_ (M + 2 + ((Mk) + 12 M + 4)I/2)/4

where Mk max (118, [13 k/12] + I) The Mathematical Review

(88j’Ii005) of [4] points out two facts. First, "Since the prime

number theorem implies Pn+I -Pn- nlog n it follows that

d(k) k/log k." Second, the reviewer states that using the

results found in [4] he can establish, using an elementary

argument, the following:

d(k) _< [13 k/(12(log k log log k)) + 1 for every k > 4.
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In this paper we will use improved upper and lower bounds for Pn

and thereby establish an improved upper bound for d(k) Further-

more, we will give an explicit lower bound for d(k) It is

obvious that in order to establish an upper bound for d(k) we

would want to find conditions on n which guarantee

k < 2pn Pn/l. (i.I)

Also in order to establish a lower bound for d(k) we would

want to find conditions on n which guarantee

k > 2pn Pn+l (i 2)

TO obtain an explicit upper bound for d(k) we have to observe

that k/(log k log log k) < k/(log k 2.531) if k < 286663.

Hence we have different upper bound functions for d(k) depending

upon the value of k. Moreover, we need to use the computer

languages Maple and Turbo Pascal. We use Maple to get the exact

value of k which is needed in Lemma 7, and we use Turbo Pascal to

obtain Tables 1 and 2 for small values of k and provide a program

to verify Cases 1-3 of Theorem 4.

The proofs of this paper require the following results.

n(log n + log log n 3/2) < Pn n _> 2 (1.3)

Pn < n(log n + log log n 1/2) n > 20 (1.4)

Pn n(log n + log log n 1 + 0(log log n/log n)) (1.5)

Pn+l Pn -< 652 Pn < 2.686 1012 (1.6)

log log(n+l) < .000003412 + log log n n _> 28567 (1.7)

nlog(l+i/n)+log(n+l)+log log(n+l) < .00053582n n >_ 28567 (1.8)

(1.3) and (1.4) are found in [5], (1.5) is found in [6] and (1.6)

is found in [7]

We define the following function to make Lemmas 2 and 4 more

readable,

T(k,c) (l+cE)/log k where E > 0. (1.9)

2. THw-OMS, LEMMAS AND THEXR PROOFS.

LEMMA i. For n sufficiently large, there exists > 0 such

that 2pn Pn+l > n(log n + log log n (i + )).

PROOF. From (1.5) there exists a constant c such that

Pn < n(log n + log log n 1 + c(log log n / log n) and
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Pn > n (log n + log log n 1 c (log log n / log n)

We see that

2pn Pn+l > 2n(log n + log log n 1 c(log log n/log n))

(n+l) {log(n+l) + log log(n+l) 1

+ c(log log(n+l)/log(n+l)) ). (2.1)

After simplification and for n sufficiently large (2.1) will

become 2pn Pn+l > n(log n + log log n (l+E)) QED.

LWMMA 2. With and n as in Lemma I,

let n k(l+(l+4E)/log k)/log k then for k sufficiently large we

have k < n(log n + log log n (I+))

PROOF. Suppose not; then

k _> n(log n + log log n (l+E)) (2.2)

After substituting for n, multiplying through by (log k)/k and

using (1.9), (2.2) becomes

log k > log k + log (l+T (k, 4) log log k (i+)

+ log log( (k/log k) (l+T(k,4))) + T(k,4)log k

+ T(k,4)log(l+T(k,4) (I+E) T(k,4)

T(k,4) {log log k log log( (k/log k) (l+T(k,4))) }. (2.3)

We observe that (2.3) does not hold for large k because

log log k + log log((k/log k)(l+T(k,4))) --) 0 and the T(k,4)log k

term dominates. Hence this establishes the Lemma. QED.

THw.ORM I. With E as in Lemma i, there exists k

sufficiently large such that d(k) < k(l+(l+4)/log k)/log k.

PROOF. We want to find an upper bound for the function

d(k) such that for all n _> d(k) we have

k < 2pn Pn+l. (2.4)

For n sufficiently large and > 0, by Lemma 1 we have the

following inequality

n(log n + log log n (l+e)) < 2pn Pn+l. (2.5)

From (2.5) we now replace (2.4) with a more restrictive inequality

k < n(log n + log log n (I+)) (2.6)
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Choose n k(l+(l+4E)/log k) Then by Lemma 2, (2.6) and hence

(2.4) still hold. Therefore d(k) < n=k(l+(l+4E) /log k)/log k,

establishing an upper bound for d(k) QED.

LEMMA 3. For n sufficiently large, there exists E > 0 such

that 2pn Pn/l < n(log n + log log n (l-E))

PROOf. By using the upper and lower bounds for Pn found in

the proof of Lemma I, we have the following

2pn Pn/! < 2n(log n + log log n 1 + c(log log n/log n))

(n+l)(log(n+l) + log log(n+l) 1

c(log log(n+l)/log(n+l)) }. (2.7)

After simplification of (2.7) we have for n sufficiently large the

desired result 2pn Pn+l < n(log n + log log n (l-E)). QED.

LEMMA 4. With E and n as in Lemma 3, let

n k(l+(l-3E)/log k)/log k then for k sufficiently large we have

k > n(log n + log log n (l-E))

PROO. Suppose not; then

k _< n (log n + log log n (l-E)). (2.8)

After substituting for n, multiplying through by (log k)/k and

using (1.9), (2.8) becomes

log k _< log k + log (l+T (k, -3) log log k (I-E)T(k,-3)

+ log log( (k/log k) (l+T(k,-3))) + T(k,-3)log k

+ T (k, -3) log (I+T (k, -3) T (k, -3) log log k (l-E)

+ T(k,-3)log log((k/log k) (l+T(k,-3))) (2.9)

We observe that (2.9) does not hold for large k because

log log k + log log( (k/log k)(l+T(k,-3)))--) 0 and the

T(k,-3) log k term dominates, thereby proving the

Lemma. QED.

TH.ORm.M 2. With E as in Lemma 3, there exists k

sufficiently large such that d(k) > k(l+(l-3E)/log k)/log k.

PROOF. We want to find a lower bound for d(k) such that

for all n < d(k) we have

k > 2pn Pn+l. (2.10)

For n sufficiently large, Lemma 3 yields the following inequality

n(log n + log log n (l-E)) > 2pn Pn/l. (2.11)
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From (2.11) we now replace (2.10) with a more restrictive

inequality

k > n(log n + log log n (l-e)). (2.12)

Choose n k(l+(l-3)/log k)/log k. Then by Lemma 4, (2.12) and

hence (2.10) still hold. Therefore

d(k) > n k(l+(l-3)/log k)/log k establishing a lower bound for

d(k) QED.

LW.MMA 5. If n > 20, then

2pn- Pn+l < n(log n + log log n + 1/2).

PROOF. From (1.3) and (1.4) we have

2pn Pn+l < 2n(log n + log log n 1/2)

(n+l)(log(n+l) + log log(n+l) 3/2). (2.13)

After several manipulations we see that (2.13) becomes

2pn Pn+I < n(log n + log log n + 1/2). QED.

Lw.MMA 6. Let n k(l 1/log k)/log k, where k _> 92 then

k > n(log n + log log n + 1/2).

PROOF. Suppose not; then

k < n(log n + log log n + 1/2). (2.14)

After substituting for n and multiplying through by (log k)/k,

(2.14) would become

log k < log k log log k + log(l 1/log k)

+ log log(k(l- 1/log k)/log k) + 1/2

+ {log log k- log k log(l 1/log k)

log log(k(l 1/log k)/log k) i/2}/log k. (2.15)

With further simplifications and rearrangement of terms we see

that (2.15) is false for k _> 92, thereby establishing the

Lemma. QED.

THEORW.M 3. For k > 2 then k(l 1/log k)/log k < d(k)

PROOF. We want to find a lower bound for d(k) such that

for all n < d(k) we have

k > 2Pn Pn+l. (2.16)

For n 20 and using Lemma 5 we establish the following

2pn Pn+l < n(log n + log log n + 1/2) (2.17)
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From (2.17) we now replace (2.16) with a stronger inequality

k > n(log n + log log n + 1/2). (2.18)

If n k(l 1/log k)/log k, then by Lemma 6 (2.18) and hence

(2.16) hold. Therefore d(k) > n k(l 1/log k) /log k

establishing a lower bound for d(k)

From Table 2 we see that Theorem 3 holds if 2 < k < 92. QED.

THw.OR.M 4. For 19 < k < 286663 then

d(k) < k/(log k log log k)

PROO. To prove this Theorem we must divide this proof

into four cases.

Case i. 6036 < k < 286663

Case 2. 388 < k < 6036

Case 3. 193 < k < 388

Case 4. 19 < k < 193

In Cases 1-3 we will need to use the Pascal program called

Verification which is found in Section 3, whereas for Case 4 we

will use Table i.

Case i. We have

k < 2pn Pn/l. (2.19)

By using (1.3) we see that (2.19) will now become a more

restrictive inequality

k < n(log n + log log n 1.5) + Pn Pn/l- (2.20)

If we let n k/(log k log log k) and we use (1.6) then (2.20)

becomes even more restrictive.

k < n(log n + log log n 1.5) 652. (2.21)

By using the Pascal program, (2.21) is true for integer

k E (6036, 286663] and hence (2.19) is true.

Case 2. Similar to Case 1 up to (2.20). However, we note that

if n k/(log k log log k) then n e [93,922]. Hence for n in

this range we have Pn+I Pn < 34.

Hence in this range (2.20) becomes

k < n(log n + log log n 1.5) 34. (2.22)

By using the Pascal program we can verify that (2.22) is true and

hence (2.19) is true for k e (388, 6036].

Case 3. Similar to Case 2 except that n e [54, 92] and
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Pn+l Pn <-- 14.

Case 4. We look at Table i. QED.

LW.MSK 7. Let k > 286664, c 2.531 and

y (log (iog (k) -c) -c) / (log (k) -c) then the maximum value of y is

approximately .0292756256.

PROOF. k 286664 then y -0.02241285

k --) then y - 0

Using elementary calculus we set y’ 0 an see that k exp(ec/l+c)

For this k we note that y" < 0 and hence we have a relative

maximum; the value of y was determined by using a symbolic

language called Maple. QED.

LW.MMA 8. If k >_ 286664 and c 2.531, let n k/ (log (k) -c)

then k < n(log n + log log n 2.500539232).

PROOF. Suppose not; then

k _> n(log n + log log n 2.500539232) (2.23)

After several manipulations of (2.23) we now have

0 _> log log (k/ (log (k) -c) -log (log (k) -c) +c-2 500539232 (2.24)

By grouping the terms containing log functions we see after

several steps that (2.24) becomes

0 > log (l+ (c-log (log (k) -c) / (log (k) -c) +c-2 500539232 (2.25)

By Lemma 7 we see immediately that the smallest possible value for

the second term within the outer log function is approximately

.970724375. And hence (2.25) is false thereby establishing the

Lemma. QED.

LW.MMA 9. For n > 28567 then

2pn Pn/l > n(log n + log log n 2.500539232).

PROOF. Using (1.3) and (1.4) we have

2pn Pn/1 > 2n(log n + log log n 3/2)

(n+l) (log(n+l) log log(n+l) 1/2) (2.26)

After several simple algebraic manipulations and using (1.7),

(2.26) becomes

2pn Pn+1 > n(log n + log log n 2.500003412)

-nlog(l+i/n) log(n+l) log log(n+l) (2.27)

Using (1.8) we have the desired result. QED.
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THEOREM 5. For k > 286664 then d(k) < k/(log k 2.531).

PROOF. For k > 286664, we want to find an upper bound to

d(k) such that for all n > d(k) we have

k < 2pn Pn+l. (2.28)

For n > 28567 and Lemma 9 we have the following

n(log n + log log n 2.500539232) < 2Pn Pn/!" (2.29)

From (2.29) we replace (2.28) with a more restrictive inequality

k < n(log n + 10g log n- 2.500539232). (2.30)

Choose n k/(log k 2.531). Then by Lemma 8, (2.30) and hence

(2.28) still hold. Therefore d(k) < n k/ (log k 2.531)

establishing an upper bound for d(k) QED.

3. COMPUTER PROGRAMS AND TABLES.

The computer program called Verification was written in Turbo

Pascal. Tables 1 and 2 were produced by other Pascal programs.

program Verification;
var i-integer;

j:longint;
answer,k,n:real;

begin
for

end;
for

end;
for

end
end.

i’=194 to 388 do begin
k .=i;
n :=k/ (in (k) -in (in (k)
answer :=n* (in (n) +in (in (n)) -i. 5)-14-k;
if answer<0 then writeln (k, answer)

i’=389 to 6036 do begin
k "=i;
n :=k/ (in (k) -in (in (k)
answer :=n* (in (n) +in (in (n)) -1.5) -34-k;
if answer<0 then writeln (k, answer)

j’=6037 to 286663 do begin
k’=j;
n :=k/ (In (k) -in (in (k)
answer :=n* (in (n) +in (in (n)) -1.5)-652-k;
if answer<0 then writeln (k, answer)
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k d(k) f(k)

1 3
2 3 1.8874
3 5 2.9864
4 5 3.7748
5 5 4.4109
6 5 4.9646
7 5 5.4680
8 5 5.9376
9 7 6.3828

i0 7 6.8094
II 7 7.2211
12 7 7.6206
13 7 8.0098
14 7 8.3901
15 9 8.7626
16 9 9.1282
17 I0 9. 4877
18 i0 9. 8415
19 I0 I0.1903
20 i0 I0.5344
21 I0 10.8742
22 i0 11.2100
23 I0 II.5421
24 I0 11.8707
25 12 12.1961
26 12 12.5183
27 12 12.8377
28 12 13.1544
29 12 13. 4684
30 12 13. 7800
31 12 14.0892
32 12 14.3962
33 13 14. 7010
34 13 15.0038
35 13 15.3046
36 13 15. 6035
37 13 15. 9006
38 13 16.1959
39 15 16.4896
40 15 16.7816
41 16 17.0721
42 16 17.3611
43 16 17.6485
44 16 17.9346
45 16 18.2193
46 16 18.5026
47 17 18. 7847
48 17 19. 0655
49 17 19.3451

TABLE 1

k d (k) f (k) k d (k) f (k)

50 17 19.6235 99 31 32.2462
51 17 19.9007 i00 31 32.4887
52 17 20.1768 101 31 32.7308
53 17 20. 4519 102 31 32. 9723
54 17 20. 7258 103 31 33.2135
55 19 20. 9987 104 31 33. 4542
56 19 21.2706 105 31 33. 6944
57 19 21.5415 106 31 33.9343
58 19 21.8115 107 31 34.1737
59 19 22. 0805 108 31 34. 4127
60 19 22.3486 109 31 34.6513
61 19 22.6157 Ii0 31 34.8894
62 19 22. 8820 Iii 31 35. 1272
63 20 23.1475 112 31 35.3646
64 20 23. 4120 113 31 35. 6016
65 20 23.6758 114 31 35.8382
66 20 23.9387 115 31 36.0744
67 22 24.2009 116 31 36.3103
68 22 24.4623 117 31 36.5457
69 22 24. 7229 118 31 36. 7808
70 22 24.9828 119 31 37.0155
71 22 25.2419 120 31 37.2499
72 22 25. 5003 121 31 37.4839
73 22 25. 7580 122 31 37. 7176
74 22 26. 0151 123 32 37. 9509
75 23 26.2714 124 32 38.1838
76 23 26.5271 125 33 38.4164
77 24 26. 7821 126 33 38. 6487
78 24 27.0365 127 33 38.8806
79 24 27.2902 128 33 39.1122
80 24 27.5433 129 35 39.3435
81 25 27.7958 130 35 39.5745
82 25 28.0477 131 35 39.8051
83 25 28.2990 132 35 40. 0354
84 25 28.5497 133 35 40.2654
85 25 28. 7999 134 35 40. 4951
86 25 29. 0495 135 35 40. 7244
87 25 29.2985 136 35 40.9535
88 25 29. 5470 137 35 41. 1822
89 25 29. 7949 138 35 41. 4107
90 25 30. 0423 139 35 41. 6389
91 25 30.2892 140 35 41.8667
92 25 30. 5356 141 35 42.0943
93 26 30.7814 142 35 42.3216
94 26 31.0268 143 35 42.5486
95 26 31.2716 144 35 42.7753
96 26 31.5160 145 37 43.0017
97 26 31. 7599 146 37 43.2278
98 26 32. 0033 147 37 43. 4537

k d(k) f(k)

148 37
149 37
150 37
151 38
152 38
153 38
154 38
155 38
156 38
157 38
158 38
159 39
160 39
161 40
162 40
163 40
164 40
165 40
166 40
167 41
168 41
169 41
170 41
171 43
172 43
173 43
174 43
175 43
176 43
177 43
178 43
179 43
180 43
181 43
182 43
183 43
184 43
185 43
186 43
187 47
188 47
189 47
190 47
191 47
192 47
193 47
194 47
195 47

43.6793
43.9046
44.1297
44.3545
44.5790
44.8032
45.0272
45.2510
45.4745
45.6977
45.9207
46.1434
46.3659
46.5881
46.8101
47.0319
47.2534
47.4746
47.6957
47.9165
48.1370
48.3574
48.5775
48.7974
49.0170
49.2365
49.4557
49.6747
49.8934
50.1120
50.3303
50.5485
50.7664
50.9841
51.2016
51.4189
51.6359
51.8528
52.0695
52.2860
52.5022
52.7183
52.9342
53.1499
53.3653
53.5806
53.7957
54.0106

where f(k) k/(log k log log k)
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TABLE 2

k d(k) g(k) k d(k) g(k)
1 3 32 12 6.5691
2 3 -1.2773 33 13 6.7387
3 5 0.2451 34 13 6.9075
4 5 0.8040 35 13 7.0754
5 5 1.1764 36 13 7.2426
6 5 I. 4797 37 13 7 4090
7 5 1.7486 38 13 7.5747
8 5 1.9971 39 15 7.7396
9 7 2.2319 40 15 7.9039

I0 7 2.4568 41 16 8.0675
ii 7 2.6743 42 16 8.2305
12 7 2.8858 43 16 8.3929
13 7 3.0923 44 16 8.5547
14 7 3.2948 45 16 8.7159
15 9 3.4936 46 16 8.8766
16 9 3. 6894 47 17 9.0367
17 I0 3.8824 48 !7 9.1963
18 i0 4.0730 49 17 9.3554
19 i0 4.2613 50 17 9.5140
20 i0 4.4476 51 17 9.6721
21 I0 4.6320 52 17 9.8297
22 I0 4.8148 53 17 9.9869
23 I0 4.9959 54 17 i0.1436
24 I0 5. 1756 55 19 I0.2999
25 12 5.3538 56 19 I0.4558
26 12 5. 5308 57 19 I0.6112
27 12 5. 7065 58 19 i0.7663
28 12 5.8811 59 19 10.9209
29 12 6.0546 60 19 11.0752
30 12 6.2271 61 19 11.2291
31 12 6.3986 62 19 11.3826

where g (k)= (k/ (log k))(I 1/log k)

k d(k) g(k)
63 20 11.5357
64 20 11.6885
65 20 11.8410
66 20 11.9931
67 22 12.1449
68 22 12.2963
69 22 12.4474
70 22 12.5982
71 22 12.7487
72 22 12.8989
73 22 13.0488
74 22 13.1984
75 23 13.3478
76 23 13.4968
77 24 13.6455
78 24 13.7940
79 24 13.9422
80 24 14.0902
81 25 14.2379
82 25 14.3853
83 25 14.5325
84 25 14.6794
85 25 14.8261
86 25 14.9726
87 25 15.1188
88 25 15.2648
89 25 15.4105
90 25 15.5560
91 25 15.7013
92 25 15.8464
93 26 15.9913

4. COMMENT.

There is a discrepancy between the value of d(8) found in [4] and

the value of d(8) found in this paper. This author believes that

the value of d(8) is 5 and not 7.
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