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1. INTRODUCTION AND PRELIMINARIES

Recently, a number of fixed point theorems for single-valued and multi-valued mappings in

probabilistic metric spaces have been proved by many authors ([1]-[3], [5]-[12], [14]-[20], [22], [25])
Since every metric space is a probabilistic metric space, we can use many results in probabilistic metric

spaces to prove some fixed point theorems in metric spaces
In this paper, first, we prove some common fixed point theorems in metric spaces and probabilistic

metric spaces Secondly, we give some convergence theorems for sequences of self-mappings on a

metric space Finally, we extend Caristi’s fixed point theorem and Ekeland’s variational principle in metric

spaces to probabilistic metric spaces
For notations and properties of probabilistic metric spaces, refer to [6], [9], 18] and 19]
Let R denote the set of real numbers and R+ the set of non-negative real numbers A mapping

F :R R+ is called a distribution function if it is a nondecreasing and let continuous function with

infF 0 and sup F 1 We will denote D by the set of all distribution functions

DEFINITION 1.1. A probabilistic metric space (briefly, a PM-space) is a pair (X, F), where X is a

nonempty set and F is a mapping from X x X to D. For (u, v) E X X, the distribution function

F(u, v) is denoted by F,v The functions Fu,v are assumed to satisfy the following conditions

(P1) F,v(z) 1 for every z > 0 if and only ifu v,

(P2) F,,v(0) 0 for every u, v E X,
(P3) F,v(Z) F,u(z) for every u, v X,
(P4) If F,(z) 1 and F,w(V) 1, then F,w(z + y) 1 for every u, v, w X
DEFINITION 1.2. A t-norm is a function /x :[0, 1] [0, 1] which is associative, commutative,

nondecreasing in each coordinate and AX (a, 1) a for every a [0, 1]
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DEFINITION 1.3. A Menger PM-space is a triple (X, F, A ), where (X, F) is a PM-space and

Zk is a t-norm with the following condition

(P5) F,w(x + y) >_ A(F,,,(x),F,,,(y)) foreveryu, v,w E X and x,y E R+

DEFINITION 1.4. A non-Archimedean Menger /:’M-space (an N A Menger PM-space) is a

triple (X, F, x), where A is a t-norm and the space (X, F) satisfies the conditions (PI) (P3) and (P6)
(P6) F.(max{t,tl}) > A(F.v(t),Fv.(t2)) forallu, v,w X and t,t2 > 0

The concept of neighborhoods in /:’M-spaces was introduced by Schweizer and Sklar [18] If

u X, > 0 and A (0, 1), then the (e,A)-neighborhood of u, denoted by U,(e,A), is defined by

U(e, A) (v X" F,v(e) > 1 A}
If (X,F,A) is a Menger PM-space with the continuous t-norm A, then the family

{U(, A) u E X, > 0, A (0, 1)} of neighborhoods induces a Hausdorff topology on X, which is

denoted by the (, A)-topology r

DEFINITION 1.5. A PM-space (X, F) is said to be of type (C) if there exists an element g f2

such that

g(F,(t)) <_ 9(F,z(t)) + 9(Fz,(t)) for all x,y,z X and >_ 0,

where {g" g" [0, 1] [0, oo] is continuous, strictly decreasing, g(1) 0 and g(0) < oo}
DEFINITION 1.6. An N A Menger PM-space (X, F, A) is said to be of type (D)g if there exists

an element g 2 such that

g(A(s, t)) _< g(s) + g(t) for all s, E [0, 1]

REMARK 1. ([9]) (1) If an N A Menger PM-space (X,F,A) is oftype (D)g, then (X,F,&)
is of type (C)g

(2) If (X,F,A) is an N A Menger PM-space and A>_ A,, where A,(s,t)=
max{s + 1,0}, then (X,F,&) is oftype (D)g for 9 f defined by 9(t) 1

(3) Ifa PM-space (X, F) is of type (C)g, then it is metrizable, if the metric d on X is defined by

(,) d(:r,,) 9(F,(t))dt for all :c, X

(4) If an N A. Menger PM-space (X,F, A) is of type (D), then it is metrizable, where the metric

d on X is defined by (.) On the other hand, the (e, A)-topology T coincides with the topology induced

by the metric d defined by (.).
(5) If (X,F,A) is an N A. Menger PM-space with the t-norm such that A(s,t) _>

A,(, t) max{ + 1, 0} for , E [0, 1], then (4) is also true

2. FIXED POINT THEOREMS IN METRIC SPACES
In this section, we give several fixed point theorems for compatible mappings of type (A) in a metric

space (X, d). The following definitions and properties of compatible mappings and compatible mappings

oftype (A) are given in 17]
DEFINITION 2.1. Let S, T (X, d) (X, d) be mappings S and T are said to be compatible if

lim d(ST(z,),TS(x,)) 0

whenever (xn} is a sequence in X such thatlifno S(xn) =lirnoo T(z,) for some tin X

DEFINITION 2.2. Let S, T" (X, d) (X, d) be mappings. S and T are said to be compatible

type (A) if

lim d(TS(x,),SS(x,)) 0 and lim d(ST(x),TT(x,)) 0
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whenever {:v,,} is a sequence in X such that lira S(:r,,) lira T(z,) for some in X

The following propositions show that Definitions 2 and 2 2 are equivalent under some conditions

PROPOSITION 2.1. Let S,T:(X,d)- (X,d) be continuous mappings If S and T are

compatible, then they are compatible of type (A)
PROPOSITION 2.2. Let S,T’(X,d) (X,d)be compatible mappings of type (A) If one ofS

and T is continuous, then S and T are compatible

The following Is a direct consequence of Propositions 2 and 2 2

PROPOSITION 2.3. Let S, T. (X,d) (X, d) be continuous mappings Then S and T are

compatible if and only if they are compatible of type (A)
REMARK 2. In 17], we can find two examples that Proposition 2 3 is not true if S and T are not

continuous on X
Next, we give some properties of compatible mappings of type (A) for our main theorems

PROPOSITION 2.4. Let S, T (X, d) (X, d) be mappings If S’ and T are compatible

mappings of type (A) and S(t) T(t) for some E X, then ST(t) TT(t) TS(t) SS(t)
PROPOSITION 2.5. Let S,T:(X,d)- (X,d) be mappings Let S and T be compatible

mappings of type (A) and let S(zn), T(zn)-+ as n-+ oo for some E X Then we have the

following
(1) lira TS(z,)=S(t) ifS is continuous at t,

(2) ST(t) TS(t) and S(t) T(t) ifS and T are continuous at

Let I, be the family of all mappings (IR+)5 IR+ such that q5 is upper semicontinuous, non-

decreasing in each coordinate variable, and for any > 0,

(t,t,O, at, t) <_ fit and (t,t,O,O, at) <_ t,

where 3 1 for a 2 and/3 < 1 for a < 2, and

,(t) 4,(t, t,,t,,t,,at) < t,

where 3’ IR+ JR+ is a mapping and al -+- a2 + aa 4

For convenience, we shall write S:c for S(z)
LEMMA 2.1 ([21]) For any > 0, 7(t) < 1 if and only iflim 7’(t) 0, where 7 denotes the n-

times composition of’r
Let A, B, S, T be mappings from a metric space (X, d) into itself such that

A(X) c T(X) and B(X) c S(X), (2 1)

there exists ,:I:, such that

d(Az, By) < (d(Ax, Sz),d(By, Ty),d(Ax, Ty),d(By, Sx),d(Sz, Ty)) for all :r,U E X

(2 2)

Then, by (2 1), since A(X) C T(X), for any point a:0 X, there exists a point a: X such that

Azo Txa Since B(X)C S(X), for this point xl, we can choose a point zg. E X such that
Bgr ,5’a:9 and so on Inductively, we can define a sequence {y,} in X such that

y Tz2,+l Aa:9.n and y,+a ,5’a:::n+9. Ba:2,+l for n 0, 1,2, (2 3)
LEMMA 2.2. lim d(b’,, ,+1) 0, where {,} is the sequence in X defined by (2 3)

PROOF. Let d, d(/,, :gn+a), n 0, 1, 2, Now, we shall prove that the sequence {d,} is

non-decreasing in ]R+, that is, dn <_ d-I for n 0, 1, 2, By (2 2), we have



246 Y CHO, K S PARK AN’I)S S CHANG

d2n d(y2,, Y2,, )
d(Ax2,, Bx2, )

<_ (d(Az2,,Sx2,),d(Bx2,+,Tz2,_),
d(Ax2,,Tx2,+),d(Bx2r,+,Sx2,),d(Sx2,,,Tx2,+)) (2 4)

(d(y2, Y2-), d(y2+, Y2), d(y2, Y2 ), d(y2,,, , Y2-), d(y2, , y2 ))
(d2_ , d2n, O, d2n- + d2n, d2n- ).

Suppose that d-i < d for some n Then, for some a < 2, d_l+ d, ad Since is non-

decreasing in each coordinate variable and < 1 for some a < 2, by (2 4), we have

d2 (d2, d2, 0, ad2, d2) d2 < d2

Similarly,

d24 (d+,d2+,O, ad2+,d2+l) d2. < d2+l

Hence, for eve n O, 1, 2, d fld < d, which is a contradiction Therefore, {} is a non-

increasing sequence in R+ Now, again by (2 2),

d d(y, Y2)
d(Ax,Bx2)
(d(Ax2,Sz2),d(Bx,Tz),d(Ax2,Tx),d(Bxl,Sz2),d(Sz2,Tx))
(d(y2, Yl ), d(yl, Yo), d(y2, Yo ), d(yl, y ), d(y, Yo ))

5 (d,4, 4 + d,0,4)
(,, 2do, , d0)
v(4).

In general, d () for n 0, 1, 2, which implies that, if d0 > 0, then, by Lemma 2 l, we have

lim d lim () 0.

Therefore, it follows that

lim d, lim d(y,, y,+l 0.

For do 0, since {d,} is non-increasing, we have clearly lim d, 0 This completes the proof

LEMMA 2.3. The sequence {y,,} defined by (2.3) is a Cauchy sequence in X.
PROOF. By Lemma 2.2, it is sufficient to prove that {V2n} is a Cauchy sequence in X. Suppose

that {y2n} is not a Cauchy sequence in X Then there is an e > 0 such that for each even integer 2k,
there exist even integers 2re(k) and 2n(k) with 2re(k) > 2n(k) > 2k such that

d(Y2m(k), Y2n(k)) > e- (2 5)

For each even integer 2k, let 2rn(k) be the least even integer exceeding 2n(k) satisfying (2.5), that is,

d(Y2n(k), Y2m(k)-2) < e and d(Y2n(k), Y2m(k)) > e. (2 6)

Then for each even integer 2k, we have

e < d(y2n(k), Y2r(k)) < d(y2,.,(k), Y2,(k)-2) + d(y2,,(k)-2, Y2,(k)-I + d(Y2m(k)-, Y2-(k))

It follows from Lemma 2 2 and (2.6) that

lim d(y2,,(k), Y2,()) e. (2 7)
k--o

By the triangle inequality, we obtain

[d(Y2,(k), Y2m(k)-l) d(Y2,(k), Y2m(k) )[ < d(y2,.,(k)-l Y2m(k)
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]d(Y2n(k) l,Y2m(,k; 1) d(Y2,(k),Y..tk )[ d(2m,) 1,2mik)) +d(2n(k?,2n(k),l)

From Lemma 2 2 and (2 7), as k , it follows that

d(2n(k)+l,2m(k)- 1) and d(2n(k)+l,2m(k)_l) e. (2 8)

Therefore, by (2 2) and (2 3), we have

d(y(,y() d(y(,y)+) + d(y(+,y())
d(y2(k), Y2(k).l) + d(Ax2(k), Bx2(k)+)
d(y2(k), Y2(k).) + (d(Ax2(k), Sx2(k)), d(Bx(k)+, Tx2(k)+l),
d(Ax2mk), TX2n(k)+l ), d(Bx2n(k)+l, Sx2m(k) ), d(Sx2m(k), Tx2n(k). 1))
d(y2(k), Y2(k)+) + (d(y(k), Y2(k)- ), d(y2(k)+, Y2(k)),
d(y2(k), Y2(k)), d(y2(k)+, Y2(k)-1 ), d(y2()_ Y2(k) ))

Since is upper semicontinuous, as k in (3 9), by Lemma 2 2, (2 7) and (2 8), we have

(0,0,,,) ()< ,
which is a contradiction Therefore, the sequence {y2} is a Cauchy sequence in X and so is {y} This

completes the proof

Now, we are ready to prove a main theorem in this section

TNEOM 2.4. Let A, B, S, and T be mappings from a complete metric space (X, d) into itself

satising the conditions (2 1), (2 2), (2 10) and (2 11)
one of A, B, S, and T is continuous, (2 10)
the pairs A, S and B, T are compatible of type (A) (2 l)
PNOOF. By Lemma 2 3, the sequence {y} defined by (2 3) is a Cauchy sequence in X d so,

since (X, d) is complete, it converges to a point z in X On the other hand, the subsequences {Ax},
{Bx2+ }, {Sx2} and {Tx2+ } of {y} also converges to the point z

Now, suppose that T is continuous. Since B and T are compatible of type (A), by Proposition 2.5,

BTx2+, TTx2+ Tz as n Putting x x2 and y Tx2+ in (2 2), we have

d(Ax2, BTx2+ (d(Ax2, Sx2), d(BTx2+, TTz+ ),
d(Ax2,TTx2+),d(BTx2+,Sz2),d(Sx2,TTx2+)). (2 12)

Tng n in (3 12), since , we have

d(z, T) (0, 0, d(z, rz), d(, Tz), d(z, Tz)) < (d(, Tz)) < d(z, Tz)

wNch is a contradiction Thus, we have Tz z Similarly, if we replace x by x2 d y by z in (2 2),
respectively, d take n , then we have Bz z Since B(X) C S(X), there ests a point u in X
such that Bz Su z By using (2 2) again, we have

d(Au, z)- d(Au, Bz) (d(Au, Su),d(Bz, Tz),d(Au, Tz),d(Bz, Su),d(Su, Tz))
(d(Au, z), O, d(Au, z), 0, 0) < 7(d(Au, z)) < d(Au, z),

wNch is a contradiction and so Au z Since A and S are compatible mappings of type (A) d
Au Su z, by Proposition 2 4, d(ASu, SSu) 0 and hence Az ASu SSu Sz FinNly, by

(2 2) again, we have

d(Az, z) d(Az, Bz) (d(Az, Sz),d(Bz, Tz),d(Az, Tz),d(Bz, Sz),d(Sz, Tz))
(d(Az, z), O, d(Az, z), O, O) < (d(Az, z)) < d(Az, z),

wNch implies that Az z. Therefore, Az Bz Tz- z, that is, z is a common fixed point of the

given mappings A, B, S and T The uNqueness ofthe common fixed point z follows easily from (2 2)
Silarly, we can prove Theorem 2 4 when A or B or T is continuous This completes the proof
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Next, we give convergence theorems for sequences of self-mappings on a metric space
TltEOREM 2.5. Let A, }, { B,}, {S } and {T, be sequences of mappings from a metric space

(X, d) into itself such that { A, }, B, }, { S, and T, } converge umformly to self-mappings A, B, S
and T on X, respectively Suppose that, for n 1,2,..., z, is a unique common fixed point of A,,, B,,
S, and Tn and the self-mappings A, B, S and T satisfy the following conditions

d(Ax, By) < (d(Ax, Sx),d(By, Ty),d(Az, Ty),d(By, Sx),d(Sx, Ty)) (2 13)

for all x, y E X, where ’(R+)5 jR+ is a mapping such that is upper semmontinuous, non-

decreasing in each variable and for any > 0, (t, t, t, t, t) _</3t for 0 </3 < 1

If z is a unique common fixed point of A, B, S and T and sup{d(z,,z)} < +oo, then the

sequence { z,} converges to z

PROOF. Let e > 0 for 1, 2 Since {Am } and {S,} converge uniformly to self-mappings A and

S on X, respectively, there exist positive integers N1, N. such that for all z E X

d(A,x, Ax) < el for n _> N1 and d(Snx, Sx) < e2 for n _>

respectively Choose N max{N1,N} and max{e,e2} For n >_ N, we have

d(z,,z) d(A,z,,Bz) <_ d(A,z,,Az,,) + d(Az,,Bz)
<_ d(A,,z,,Az,) +(d(Az,,Sz,),d(Bz, Tz),d(Az,,Tz),d(Bz, Sz,),d(S,,Tz))
<_ d(A,z,,Az,) +(d(Az,,A,z,) +d(A,z,,Sz,),O,d(Az,,A,zn)

+d(A,z,,Tz),d(Bz, Srz,)+d(S,z,,Sz,),d(Sz,,S,z,)+d(S,zn,Tz)) (2 14)

d(A,z,,Az,) + (d(Az,,A,z,) + d(S,z,,Sz,), O,d(A,z,,Az,) + d(z,,z),
<, + (2e, 0, e + d(z,, z),, 4- d(z,, z),, + d(z,, z)).

From (2 14), ifd(z,,z) > e, then we have

d(z,,z) < e +(e +d(zn,z),e +d(z,,z),e +d(z,,z),e 4-d(zn, Z), +d(z,,z))
<_ + ,0( + d(zr,,Z)) + ,0 + d(z,,z).

This implies that

1+/3)(1-)d(z,,z)< (l+/3)e or d(z,,z) <
1-

e. (2 15)

Thus, letting/3 0+ in (2 15), then e < d(z,, z) < e, which is a contradiction Therefore, for n > N,
d(z, z) < e, which means that {z,} converges to z This completes the proof

Similarly, we have the following
TIIEOREM 2.6. Let {A, }, {Bn}, {Sn } and {T, } be sequences of mappings from a metric space

(X, d) into itself satisfying the following condition

d(A,z,B,.,y) <_ (d(A,.,x,S,x),d(B,y,T,y),d(Anx, Ty),d(B,y,S,x),d(S,.,z, Tr,y)) (2 16)

for all x, y X, where the mapping is as in the condition (2 14)
If {A,,}, {B,}, {S,} and {T,} converge uniformly to self-mappings A, B, S and T on X,

respectively, then A, B, S and T satisfy the condition (2 14)
Further, the sequence { z, } of unique common fixed points zn of A,, B,, S,, and Tr, converges to a

unique common fixed point z of A, B, S and T if sup{d(z,, z) } < + oo

REMARK 3. Our main theorems extend and improve a number of fixed point theorems for

commuting, weakly commuting and compatible mappings in metric spaces

3. FIXED POINT THEOREMS IN PM-SPACES
In this section, we extend the Caristi’s fixed point theorem and the Ekeland’s variational principle in

PM-spaces Also, we prove some common fixed point theorems in PM-spaces by using the results in

Section 2 In [4] and [13], K Caristi and Ekeland proved the following theorems, respectively
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THEOREM 3.1. Let (X, d) be a complete metric space and T be a mapping from X into itself If
there exists a lower semlcontmuous function ( X R’ such that d(x, Tx) <_ ((x)- ((Tx) for all
x 6 X, then T has a fixed point m X

THEOREM 3.2. Let (X, d) be a complete metric space and f be a proper, bounded below and
lower semicontnuous function from X into (- , + ] Then for each > 0 and u X such that

f(u) < inf{f(x) x X} + , there exists a point v X such that

f (v) <_ f (u (3 1)

d(u,v) _< 1, (3 2)

f(w) >f(v)-ed(v,w) for all wX, wv (3 3)

First, we prove the following
THEOREM 3.3. Let (X, F) be a PM-space of type (C)g and (X, d) be a complete metric space,

where the metric d on X is defined by (.) If " X R is a lower semicontinuous and bounded below

function and a mapping T X X satisfies the following condition

g(Fx.’x(t)) < ((z) ((T3:) for all 3: X and _> 0, (3 4)

then T has a fixed point in X
PROOF. From (3 4), we have

d(3:,Tz) g(F.r(t))dt <_ (((z) ((Tz))dt ((:c) (Tz)

and thus, by Theorem 3 1, T has a fixed point in X
COROLLARY 3.4. Let (X, F) be a PM-space of type (C)g, (X, d) be a complete metric space,

where the metric d on X is defined by (.), and a function r/(3:, t) X N/ N be integrable in Ifa
function b(3:) fd r/(3:, t)d is lower semicontinuous and bounded below and a mapping T" X X
satisfies the following condition

g(F,T(t)) <_ rl(x,t) rl(Tx, t) for all x X and _> 0, (3 5)

then T has a fixed point in X
PROOF. From (4 5), we have

d(z, Tz) g(F,T(t))dt <_ (r(z,t) r(Tz, t))dt

(z,t)dt v(Tz, t)dt

(z)

Therefore, by Theorem 3 3, T has a fixed point in X
TFIEOREM 3.5. Let (X, F) be a PM-space of type (C) and (X, d) be a complete metric space,

where the metric d on X is defined by (.) If a function ( X ]R is proper, lower semicontinuous and
bounded below, and T is a multi-valued mapping from X into 2x such that for each 3: E X, there exists

a point fz Tz satisfying that f X X is a function satisfying the following condition

g(Fx.T(t)) <_ <(3:) <(f3:) for all :r X and _> 0, (3 6)

then .f and T have a common fixed point in X
PROOF. Since is proper, there exists a point u X such that (x) < + oo and so let A {x
X" g(F,(t)) <_ (x)} Then A is a nonempty closed set in X Since g(F,fz(t)) < (3:) (f3:)

for each x X, fx A and so we have
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Thus we have

_< ((u) (:r) + (:r)
=(u)- (f:r)

Therefore, by Theorem 3 3, the function fA A has a fixed point in A, say xo, and so

:r0 fx0 E Tz0, that is, the point x0 s a common fixed point of f and T This completes the proof
By Theorem 3 5, we have Ekeland’s variational principle in PM-spaces
THEOREM 3.6. Let (X, F) be a PM-space of type (C)q and (X, d) be a complete metric space,

where the metric d on X is defined by (.) If a function ( X R is proper, lower semcontinuous and

bounded below and, for each > 0, there exists a point u E X such that (u) _< inf{(x) x E X) + ,
then there exists a point v X such that

((v) < ((u), (3 7)

g(F,(t)) < 1, (3 8)

((v)-((z) <_eg(f,x(t)) for all zX and t>_0. (3 9)

PROOF. Let > 0 and let a point u X such that (u) < inf{(u)’x E X} + Letting
A {z X" (x) < (u) e9(F,x(t))}, then A is a nonempty closed set in X and so, since (X,d) is

complete, A is complete For each x A, let

and define

s: { x. () _< (:) (F,(t)), : }

z if Sx is empty,
Tz

Sz if Sx isnonempty

Then T is a multi-valued mapping from A into 2A

Sz # , we have, for each y Tx Sx,

and

Since Tx-zA ifSx=0 and Tz=Sz if

(y) <_ (x) g(F,y(t))

eg(F=.y(t)) < g(F=,x(t)) + g(Fx,y(t))
_< (=) () + () ()
=()- (),

which implies y E A and so we have Tx Sx C A Assume that T has no fixed point in A Then for

each x A and y Tx Sx, we obtain

g(F.(t)) (x) (y), and g(F.(t)) (x) ().

Thus, by Theorem 4 5, T has a fixed point v in A, which is a contradiction Therefore, Sv , that is,

for each x X, x # v, (x) > (v) g(F,(t)) Since v A, (v) (u) g(F,(t)) and so

() (u) On the other hand, we have

eg(F,(t)) ((u)- ((v)
()- inf{((x) x E X} <

and so g(Fu,v(t)) _< 1 This completes the proof
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Next, by using Theorem 2 4, we prove common fixed point theorems in PM-spaces Now, we

introduce some definitions and properttes of compatible mappings of type (A) in PM-s,paces ([ 11 ])
DEFINITION 3.1. Let (X,F,/) be an N A Menger PM-space of type (D),j and A, S be

mappings from X into itself A and S are said to be compatible if

lim g(F,,.,.s,.(t))-0 for all >0,

whenever {z,,} is a sequence in X such that lim Az,, hm Sz, z for some e X

DEFINITION 3.2. Let (X,F,) be an N A Menger PM-space of type (D), and A, S be

mappings from X into tself A and S are said to be compatible of type (A) if

lira g(Es,s,’. (t) 0 and lim g(Fs’A .....a.. (t) 0

for all > 0, whenever {z}is a sequence in X such that lim Az,, lim Sz, z for some z e X

MA 4. (1) In fact, since (X,F,) is an N A Menger PM-space of type (D)q and it is

metrizable by the metric d defined by (.), Definitions 2 and 3 1, 2 2 and 3 2 are equivalent to each
other, respectively

(2) By using Definitions 3 and 3 2, we can obtain same propeies, that is, Propositions 2 2 5,
between compatible mappings and compatible mappings of type (A) in PM-spaces
TEOM 3.7. Let (X, F, ) be a r-complete N A Menger PM-space with the t-norm A such

that A(s,t)(s,t)=max{s+t-l,0},s, te[0,1] Let A,B,S and T be mappings from X
into itself such that

(ii) A(X) c T(X) and B(X) c S(X),
(ii) one of A, B, S and T is r-continuous,

(iii) the pairs A, S and B, T are compatible mappings of type (A),
(iv) there exists e such that

Fsaz,,aAz (t)dt 1 1 Fsa,s(t)dt, 1 Fnu,ru(t)dt, 1 Fa,u(t)dt,

1 F,s(t)dt, 1 F.s(t)dt for all z, e Xd 0

Then A, B, S and T have a unique common fixed point in X
PNOOF. Since (X,F,) is N A Menger PM-space with the t-norm & such that

(s, t) m(s,t) m{s + t- 1,0}, s,t [0,1], by Remark (5), it is metfizable by the metric d

defined by (.) Thus, if we define 9(t) 1 t, om (3 12), we have

for NI x, X. Therefore, by Theorem 2.4, A, B, S and T have a unique common fixed point in X
This completes the proof

As an inediate consequence of Theorem 3.7, we have the following
CONOLLN 3.g. Let (X, F, &) be as in Theorem 3 7 Let A, B, S and T be mappings om X

into itself satising the conditions (i)-(iv) and (v)
there ests c (0, 1) such that

1 F,s(t)dt, 1 Fs,r(t)dt for all z, X and 2 0
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Then A, B, S and T have a unique common fixed point m X
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