COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS

KENAN TAŞ
Department of Mathematics
Abant Izzet Baysal University
Bolu, 14280, TURKEY
MUSTAFA TELCI
Department of Mathematics
Hacettepe University
Beytepe
Ankara 06532, TURKEY
BRIAN FISHER
Department of Mathematics and Computer Science
University of Leicester
Leicester, LE1 7RH, ENGLAND

(Received August 30, 1994 and in revised form December 6, 1994)

Abstract

By using a compatibility condition due to Jungck we establish some common fixed point theorems for four mappings on complete and compact metric spaces These results also generalize a theorem of Sharma and Sahu

KEY WORDS AND PHRASES. Common fixed point, commuting mappings, weakly commuting mappings and compatible mappings
1991 AMS SUBJECT CLASSIFICATION CODE. 54H25

1. INTRODUCTION.

The following theorem was given by Sharma and Sahu [3]
THEOREM 1.1. Let (X, d) be a complete metric space and let S, T and A be three continuous mappings of X into itself satisfying the conditions
(i) $\quad S A=A S, \quad T A=A T$,
(ii) $\quad S(X) \subseteq A(X), \quad T(X) \subseteq A(X)$,
and the inequality

$$
\begin{aligned}
{[d(S x, T y)]^{2} \leq } & a_{1} d(A x, S x) d(A y, T y)+a_{2} d(A x, T y) d(A y, S x) \\
& +a_{3} d(A x, S x) d(A x, T y)+a_{4} d(S x, A y) d(T y, A y) \\
& +a_{5}[d(A x, A y)]^{2}
\end{aligned}
$$

for all x, y in X, where $a_{2} \geq 0$ for $i=1,2,3,4,5, a_{1}+a_{4}+a_{5}<1$ and $2 a_{1}+3 a_{3}+2 a_{5}<2$, then S, T and A have a unique common fixed point in X

Unfortunately, the theorem as stated is incorrect First of all the only restriction on a_{2} is that $a_{2} \geq 0$ This is clearly false In fact the inequality $a_{1}+a_{4}+a_{5}<1$ should have been $a_{2}+a_{4}+a_{5}<1$ This was only a typing error

More seriously, on examınation of the proof it is seen that the inequality $2 a_{1}+3 a_{3}+2 a_{5}<2$ was obtained by reading $\left[d\left(A x_{2 n}, A x_{2 n \cdot 2}\right)\right]^{2}$ as $\left[d\left(A x_{2 n+1}, A x_{2 n}\right]^{2} \quad\right.$ This inequality should have been $a_{1}+2 a_{3}+a_{5}<1$ The proof continues with a 'similarity ', but on following through it is seen that this time the inequality $a_{1}+2 a_{4}+a_{5}<1$ is required

2. PRELIMINARIES.

The following definitions were given by Sessa [2] and Jungck [1] respectively
DEFINITION 2.1. [2] Self-mappings f and g on a metric space (X, d) are said to weakly commute if and only if $d(f g x, g f x) \leq d(f x, g x)$ for all x in X

DEFINITION 2.2. [1] Self-mappings f and g on a metric space (X, d) are said to be compatible if and only if whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in X, then $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$

Note that f and g commute, then it is easily seen that they weakly commute and if f and g weakly commute, then they are compatible However, weakly commuting mappings do not necessarily commute and compatible mappings do not necessarily weakly commute For examples, see [1] and [2]

PROPOSITION 2.1. [1] Let f and g be compatible self-mappings on a metric space (X, d) with the properties
(i) if $f(t)=g(t)$, then $f g(t)=g f(t)$,
(ii) $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=t$

Then $\lim _{n \rightarrow \infty} g f\left(x_{n}\right)=f(t)$ if f is continuous
We now prove the following theorem
THEOREM 2.1. Let f and g be self-mappings of the set $X=\left\{x, x^{\prime}\right\}$ with any metric d If the range of g contains the range of f, then the following statements are equivalent
(i) f and g commute,
(ii) f and g weakly commute,
(iii) f and g are compatible

PROOF. The implication that (i) \Rightarrow (ii) \Rightarrow (iii) is clear It is therefore sufficient to show that (iii) \Rightarrow (i) The four self-mappings on X are as follows

$$
A x=x, \quad A x^{\prime}=x^{\prime}, \quad B x=B x^{\prime}=x, \quad C x=C x^{\prime}=x^{\prime}, \quad D x=x^{\prime}, \quad D x^{\prime}=x
$$

We note that A is the identity mapping on X and since we only have to prove that compatible mappings commute, we may suppose that $f \neq g, f \neq A$ and $g \neq A \quad$ Further, since $f(X) \subseteq g(X)$, we only have to consider the following two cases

$$
\text { (a) } B=f, \quad D=g \quad \text { and } \quad \text { (b) } C=f, \quad D=g
$$

If f and g are compatible and (a) holds, then $B x^{\prime}=D x^{\prime}$ implies that $B D x^{\prime}=D B x^{\prime}$ by Proposition 21 Consequently, $x=x^{\prime}$, a contradiction

Similarly, if (b) holds, then $D x=C x$ implies that $D C x=C D x$ by Proposition 2.1 and again $x=x^{\prime}$, a contradiction The conditions of the theorem can therefore hold only if either $f=g$ or $f=A$ or $g=A$ and the commutativity of f and g follows This completes the proof

3. MAIN RESULTS.

Let A, B, S and T be self-mappings of a metric space (X, d) such that

$$
\begin{align*}
& A(X) \subseteq T(X) \quad \text { and } \quad B(X) \subseteq S(X) \tag{array}\\
& {[d(A x, B y)]^{2} \leq } c_{1} \max \left\{[d(S x, A x)]^{2},[d(T y, B y)]^{2},[d(S x, T y)]^{2}\right\} \\
&+c_{2} \max \{d(S x, A x) d(S x, B y), d(A x, T y) d(B y, T y)\} \\
&+c_{3} d(S x, B y) d(T y, A x) \tag{32}
\end{align*}
$$

for all x, y in X, where $c_{1}, c_{2}, c_{3} \geq 0, c_{1}+2 c_{2}<1$ and $c_{1}+c_{3}<1$
Now let x_{0} be an arbitrary point in X Then since (3 1) holds, we can define a sequence

$$
\begin{equation*}
\left\{y_{n}\right\}=\left\{A x_{0}, B x_{1}, A x_{2}, B x_{3}, \ldots, A x_{2 n}, B x_{2 n+1}, \ldots\right\} \tag{33}
\end{equation*}
$$

inductively such that $y_{2 n 1}=T x_{2 n-1}=A x_{2 n-2}, y_{2_{n}}=S x_{2 n}=B x_{2 n}$ for $n=1,2, \ldots$
For simplicity, let $d_{n}=d\left(y_{n}, y_{n+1}\right)$ for $n=0,1,2, \ldots$ We need the following lemma for our main theorem

LEMMA 3.1. The sequence $\left\{y_{n}\right\}$ defined in (3 3) is a Cauchy sequence
PROOF. Using inequality (3 2) we have

$$
\begin{align*}
d_{2 n-1}^{2}= & {\left[d\left(y_{2 n+1}, y_{2 n+2}\right)\right]^{2}=\left[d\left(A x_{2 n}, B x_{2 n+1}\right)\right]^{2} } \\
\leq & c_{1} \max \left\{\left[d\left(S x_{2 n}, A x_{2 n}\right)\right]^{2},\left[d\left(T x_{2 n+1}, B x_{2 n+1}\right)\right]^{2},\left[d\left(S x_{2 n}, T x_{2 n+1}\right)\right]^{2}\right\} \\
& +c_{2} \max \left\{d\left(S x_{2 n}, A x_{2 n}\right) d\left(S x_{2 n}, B x_{2 n+1}\right), d\left(A x_{2 n}, T x_{2 n+1}\right) d\left(B x_{2 n+1}, T x_{2 n+1}\right)\right\} \\
& +c_{3} d\left(S x_{2 n}, B x_{2 n+1}\right) d\left(T x_{2 n+1}, A x_{2 n}\right) \\
\leq & c_{1} \max \left\{d_{2 n}^{2}, d_{2 n+1}^{2}\right\}+c_{2} d_{2 n} d\left(y_{2 n}, y_{2 n+2}\right) \\
\leq & c_{1} \max \left\{d_{2 n}^{2}, d_{2 n+1}^{2}\right\}+c_{2}\left[d_{2 n}^{2}+d_{2 n} d_{2 n+1}\right] \\
\leq & c_{1} \max \left\{d_{2 n}^{2}, d_{2 n+1}^{2}\right\}+c_{2}\left[\frac{3}{2} d_{2 n}^{2}+\frac{1}{2} d_{2 n+1}^{2}\right] . \tag{3}
\end{align*}
$$

If $d_{2 n+1}>d_{2 n}$, inequality (34) implies

$$
d_{2 n+1}^{2} \leq \frac{3 c_{2}}{2-2 c_{1}-c_{2}} d_{2 n}^{2}
$$

a contradiction since

$$
\frac{3 c_{2}}{2-2 c_{1}-c_{2}}<1
$$

Thus $d_{2 n+1} \leq d_{2 n}$ and inequality (3.4) implies that

$$
d_{2 n+1}=d\left(y_{2 n+1}, y_{2 n+2}\right) \leq h d\left(y_{2 n}, y_{2 n+1}\right)=d_{2 n}
$$

where

$$
h^{2}=\frac{2 c_{1}+3 c_{2}}{2-c_{2}}<1
$$

Similarly,

$$
d_{2 n}^{2}=\left[d\left(y_{2 n}, y_{2 n+1}\right)\right]^{2}=\left[d\left(A x_{2 n}, B x_{2 n-1}\right)\right]^{2} \leq c_{1} \max \left\{d_{2 n-1}^{2}, d_{2 n}^{2}\right\}+c_{2}\left(\frac{3}{2} d_{2 n-1}^{2}+\frac{1}{2} d_{2 n}^{2}\right)
$$

and it follows as above that

$$
d_{2 n}=d\left(y_{2 n}, y_{2 n+1}\right) \leq h d\left(y_{2 n-1}, y_{2 n}\right)=d_{2 n-1}
$$

Consequently,

$$
d\left(y_{n+1}, y_{n}\right) \leq h d\left(y_{n}, y_{n-1}\right)
$$

for $n=1,2, \ldots$ Since $h<1$, this last inequality implies that $\left\{y_{n}\right\}$ is a Cauchy sequence in X
Now by replacing commuting mappings with compatible mappings, and by using four mappings as opposed to three, we prove the following generalization of the amended Theorem 11 which shows that only one of the mappings in Theorem 11 needs to be continuous

THEOREM 3.1. Let A, B, S and T be self-mappings on a complete metric space (X, d) satisfying conditions (31) and (32) and suppose that one of the mappings is continuous If A and B are compatible with S and T respectively, then A, B, S and T have a common fixed point z Further, z is the unique common fixed point of A and S and of B and T

PROOF. Since X is complete, it follows from Lemma 31 that the sequence (3 3) converges to a point z in X. The subsequences $\left\{A x_{2 n}\right\},\left\{S x_{2 n}\right\},\left\{B x_{2 n-1}\right\}$ and $\left\{T x_{2 n-1}\right\}$ must therefore also converge to z

Let us first of all suppose that S is continuous Since A and S are compatible, Proposition 21 implies that $\left\{S^{2} x_{2 n}\right\}$ and $\left\{A S x_{2 n}\right\}$ converge to $S z$ Using inequality (3 2) we have

$$
\begin{aligned}
& {\left[d\left(A S x_{2 n}, B x_{2 n-1}\right)\right]^{2} \leq c_{1} \max \left\{\left[d\left(S^{2} x_{2 n}, A S x_{2 n}\right)\right]^{2},\left[d\left(T x_{2 n-1}, B x_{2 n-1}\right)\right]^{2},\left[d\left(S^{2} x_{2 n}, T x_{2 n-1}\right)\right]^{2}\right\}} \\
& \quad+c_{2} \max \left\{d\left(S^{2} x_{2 n}, A S x_{2 n}\right) d\left(S^{2} x_{2 n}, B x_{2 n-1}\right), d\left(A S x_{2 n}, T x_{2 n-1}\right) d\left(B x_{2 n-1}, T x_{2 n-1}\right)\right\} \\
& \quad+c_{3} d\left(S^{2} x_{2 n}, B x_{2 n-1}\right) d\left(T x_{2 n-1}, A S x_{2 n}\right)
\end{aligned}
$$

Letting n tend to infinity we have

$$
[d(S z, z)]^{2} \leq\left(c_{1}+c_{3}\right)[d(S z, z)]^{2}
$$

and since $c_{1}+c_{3}<1$, it follows that $S z=z$
Using inequality (32) again we have

$$
\begin{aligned}
{\left[d\left(A z, B x_{2 n-1}\right)\right]^{2} \leq } & c_{1} \max \left\{[d(S z, A z)]^{2},\left[d\left(T x_{2 n-1}, B x_{2 n-1}\right)\right]^{2},\left[d\left(S z, T x_{2 n-1}\right)\right]^{2}\right\} \\
& +c_{2} \max \left\{d(S z, A z) d\left(S z, B x_{2 n-1}\right), d\left(A z, T x_{2 n-1}\right) d\left(B x_{2 n-1}, T x_{2 n-1}\right)\right\} \\
& +c_{3} d\left(S z, B x_{2 n-1}\right) d\left(T x_{2 n-1}, A z\right)
\end{aligned}
$$

Letting n tend to infinity we have

$$
[d(A z, z)]^{2} \leq c_{1}[d(S z, A z)]^{2}=c_{1}[d(z, A z)]^{2}
$$

and since $c<1$, it follows that $A z=z$.
Now since $A(X) \subseteq T(X)$, there exists a point u in X such that $z=A z=S z=T u$. Then on applying inequality (32) to $[d(A z, B u)]^{2}$, it follows that

$$
[d(A z, B u)]^{2}=[d(z, B u)]^{2} \leq c_{1}[d(z, B u)]^{2}
$$

which implies that $z=B u$. Since B and T are compatible and $T u=B u=z$, we have from Proposition (2.1) that $T B u=B T u$ which implies that $T z=B z$. Again, on applying inequality (3.2) to $[d(A z, B z)]^{2}$, it follows that

$$
[d(A z, B z)]^{2}=[d(z, B z)]^{2} \leq\left(c_{1}+c_{3}\right)[d(z, B z)]^{2}
$$

and so $z=B z=T z$. We have therefore proved that z is a common fixed point of A, B, S and T if S is continuous.

The same result of course holds if we suppose that T is continuous instead of S.
Now suppose that A is continuous. Since A and S are compatible, it follows from Proposition (2.1) that the sequences $\left\{A^{2} x_{2 n}\right\}$ and $\left\{S A x_{2 n}\right\}$ converge to $A z$ From inequality (3 2) we have

$$
\begin{aligned}
& {\left[d\left(A^{2} x_{2 n}, B x_{2 n-1}\right)\right]^{2} \leq c_{1} \max \left\{\left[d\left(S A x_{2 n}, A^{2} x_{2 n}\right)\right]^{2},\left[d\left(T x_{2 n-1}, B x_{2 n-1}\right)\right]^{2},\left[d\left(S A x_{2 n}, T x_{2 n-1}\right)\right]^{2}\right\}} \\
& \quad+c_{2} \max \left\{d\left(S A x_{2 n}, A^{2} x_{2 n}\right) d\left(S A x_{2 n}, B x_{2 n-1}\right), d\left(A^{2} x_{2 n}, T x_{2 n-1}\right) d\left(B x_{2 n-1}, T x_{2 n-1}\right)\right\} \\
& \quad+c_{3} d\left(S A x_{2 n}, B x_{2 n-1}\right) d\left(T x_{2 n-1}, A^{2} x_{2 n}\right)
\end{aligned}
$$

Letting n tend to infinity we have

$$
[d(A z, z)]^{2} \leq\left(c_{1}+c_{3}\right)[d(A z, z)]^{2}
$$

and since $c_{1}+c_{2}<1$, it follows that $A z=z$.

Now since $A(X) \subseteq T(X)$, there exists a point v in X such that $T v=A z=z \quad$ Using inequality (3) 2), we have

$$
\begin{aligned}
{\left[d\left(A^{2} x_{2 n}, B v\right)\right]^{2} \leq } & c_{1} \max \left\{\left[d\left(S A x_{2 n}, A^{2} x_{2 n}\right)\right]^{2},[d(T v, B v)]^{2},\left[d\left(S A x_{2 n}, T v\right)\right]^{2}\right\} \\
& +c_{2} \max \left\{d\left(S A x_{2 n}, A^{2} x_{2 n}\right) d\left(S A x_{2 n}, B v\right), d\left(A^{2} x_{2 n}, T v\right) d(B v, T v)\right\} \\
& +c_{3} d\left(S A x_{2 n}, B v\right) d\left(T v, A^{2} x_{2 n}\right)
\end{aligned}
$$

Letting n tend to infinity, we have

$$
[d(A z, B v)]^{2}=[d(z, B v)]^{2} \leq c_{1}[d(z, B v)]^{2}
$$

which implies that $z=B v$ Since B and T are compatible and $T v=B v=z$, it follows from Proposition (21) that $T B v=B T v$ which implies that $T z=B z \quad$ Similarly, applying inequality (3) to $\left[d\left(A x_{2 n}, B z\right)\right]^{2}$, it follows that $T z=B z=z$

Since $B(X) \subseteq S(X)$, there exists point w in X such that $S w=B z=z$ Using inequality (3), we have

$$
[d(A w, z)]^{2}=[d(A w, B z)]^{2} \leq c_{1}[d(S w, A w)]^{2}=c_{1}[d(z, A w)]^{2}
$$

and it follows that $z=A w$ Since A and S are compatible and $A w=S w$, it follows from Proposition (2 1) that $A S w=S A w$ and so $A z=S z \quad$ Thus z is a common fixed point of A, B, S and T if A is continuous

The same result holds if we suppose that B is continuous instead of A
Finally, let us suppose that A and S have a second common fixed $z^{\prime} \quad$ Then from inequality (3) we have

$$
\begin{aligned}
{\left[d\left(z^{\prime}, z\right)\right]^{2}=} & {\left[d\left(A z^{\prime}, B z\right)\right]^{2} \leq c_{1} \max \left\{\left[d\left(S z^{\prime}, A z^{\prime}\right)\right]^{2},[d(T z, B z)]^{2},\left[d\left(S z^{\prime}, T z\right)\right]^{2}\right\} } \\
& +c_{2} \max \left\{d\left(S z^{\prime}, A z^{\prime}\right) d\left(S z^{\prime}, B z\right), d\left(A z^{\prime}, T z\right) d(B z, T z)\right\}+c_{3} d\left(S z^{\prime}, B z\right) d\left(T z, A z^{\prime}\right) \\
= & \left(c_{1}+c_{3}\right)\left[d\left(z^{\prime}, z\right)\right]^{2}
\end{aligned}
$$

and it follows that $z=z^{\prime}$, since $c_{1}+c_{3}<1$ Analogously, z is the unique common fixed point of B and T This completes the proof of the theorem.

We now prove the following common fixed point theorem for a compact metric space
THEOREM 3.2. Let (X, d) be a compact metric space and let A, B, S and T be continuous mappings of X into itself satisfying the conditions

$$
\begin{equation*}
A(X) \subseteq T(X) \text { and } \quad B(X) \subseteq S(X) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
A \text { and } B \text { compatible with } S \text { and } T \text { respectively } \tag{36}
\end{equation*}
$$

and the inequality

$$
\begin{align*}
{[d(A x, B y)]^{2}<} & c \max \left\{[d(S x, A x)]^{2},[d(T y, B y)]^{2},[d(S x, T y)]^{2}\right\} \\
& +\frac{1}{2}(1-c) \max \{d(S x, A x) d(S x, B y), d(A x, T y) d(B y, T y)\} \\
& +(1-c) d(S x, B y) d(T y, A x) \tag{37}
\end{align*}
$$

for all x, y in X for which the right hand side of (3.7) is positive, where $0<c<1$ Then A, B, S and T have a common fixed point z. Further, z is the unique common fixed point of A and S and of B and T

PROOF. Suppose first of all that there exists $c_{1}, c_{2}, c_{3} \geq 0$, with $c_{1}+2 c_{2}<1$ and $c_{1}+c_{3}<1$ such that inequality (3.2) is satisfied. Then the result follows from Theorem 31.

Now suppose that no such c_{1}, c_{2}, c_{3} exist. Then if $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are monotonically increasing sequences of real numbers converging to $c, \frac{1}{2}(1-c)$ and $(1-c)$ respectively, we can find sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{align*}
{\left[d\left(A x_{n}, B y_{n}\right)\right]^{2}>} & a_{n} \max \left\{\left[d\left(S x_{n}, A x_{n}\right)\right]^{2},\left[d\left(T y_{n}, B y_{n}\right)\right]^{2},\left[d\left(S x_{n}, T y_{n}\right)\right]^{2}\right\} \\
& +b_{n} \max \left\{d\left(S x_{n}, A x_{n}\right) d\left(S x_{n}, B y_{n}\right), d\left(A x_{n}, T y_{n}\right) d\left(B y_{n}, T y_{n}\right)\right\} \\
& +c_{n} d\left(S x_{n}, B y_{n}\right) d\left(T y_{n}, A x_{n}\right) \tag{38}
\end{align*}
$$

for $n=1,2, \ldots \quad$ Since X is compact we may assume, by taking subsequences if necessary, that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to x and y respectively Letting n tend to infinity in inequality (3 8) we have, since A, B, S and T are continuous,

$$
\begin{aligned}
{[d(A x, B y)]^{2} \geq } & c \max \left\{[d(S x, A x)]^{2},[d(T y, B y)]^{2},[d(S x, T y)]^{2}\right\} \\
& +\frac{1}{2}(1-c) \max \{d(S x, A x) d(S x, B y), d(A x, T y) d(B y, T y)\} \\
& +(1-c) d(S x, B y) d(T y, A x)
\end{aligned}
$$

This is only possible if $A x=B y=S x=T y$ Since A and S are compatible and $A x=S x$, it follows from Proposition (2 1) that $A S x=A^{2} x=S A x$

Suppose that $A^{2} x \neq B y$ Then using inequality (37) we have

$$
\begin{aligned}
& {\left[d\left(A^{2} x, B y\right)\right]^{2}<} c \\
& \max \left\{\left[d\left(S A x, A^{2} x\right)\right]^{2},[d(T y, B y)]^{2},[d(S A x, T y)]^{2}\right\} \\
&+\frac{1}{2}(1-c) \max \left\{d\left(S A x, A^{2} x\right) d(S A x, B y), d\left(A^{2} x, T y\right) d(B y, T y)\right\} \\
&+(1-c) d(S A x, B y) d\left(T y, A^{2} x\right) \\
&= {\left[d\left(A^{2} x, B y\right)\right]^{2} }
\end{aligned}
$$

a contradiction and so $A^{2} x=B y=A B y$. It follows that $B y=z$ is a fixed point of A Further,

$$
S z=S B y=S A x=A S x=A B y=A z=z
$$

and it follows that z is a common fixed point of S and A
Similarly, we can prove that B and T have a common fixed point v If $z \neq v$, then on using inequality (3.7) we have

$$
\begin{aligned}
{[d(z, v)]^{2}=} & {[d(A x, B v)]^{2} } \\
< & c \max \left\{[d(S z, A z)]^{2},[d(T v, B v)]^{2},[d(S z, T v)]^{2}\right\} \\
& +\frac{1}{2}(1-c) \max \{d(S z, A z) d(S z, B v), d(A z, T v) d(B v, T v)\} \\
& +(1-c) d(S x, B v) d(T v, A z) \\
= & {[d(z, v)]^{2} }
\end{aligned}
$$

a contraction. Thus z is a common fixed point of A, B, S and T. It follows easily that z is the unique fixed point of A and S and of B and T.

Finally, note that some obvious corollaries can be obtained from Theorems 31 and 3.2 by letting $A=B$ and $S=T$.

REFERENCES

[1] JUNGCK, G., Compatible mappings and common fixed points, Internat. J. Math. Math. Scl. 9 (1986), 771-773.
[2] SESSA, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (1982), 149-153.
[3] SHARMA, B. K. and SAHU, N. K., Common fixed points of three continuous mappings, Math. Student 59 (1991), 77-80

