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ABSTRACT. In order to the second order Cauchy problem (CP2): x"(t) Ax(t), z(O) z E

D(A"), z"(O) y D(A") on a Banach space, Arendt and Kellermann recently introduced

the integrated cosine function. This paper is concerned with its basic theory, which contain some

properties, perturbation and approximation theorems, the relationship to analytic integrated semig-

roups, interpolation and extrapolation theorems.
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1. BASIC, PHOPERTIES
Let A I)c a linear operator on a Banach space X. If there exist n No NO{0}, M,w > 0 and

a strongly continuous family C(i)in L(X) with [IC(t)[[ _< Me’t for >_ 0 such that (w,) C p(a)
and R(,A) "- f e-xtC(t)dt for > w, then we say that A generates the (exponentially

bounded) ,,-times integrated cosine function C(t) (see [1]), and write (a,c(t))(or A, or C(t))
Gn(M,w,X). Set G,(w,X) UM>oG,(M,w,X) and G,(X) U>0G,(w,X). The definition of

integrated semigroups see e.g. [6], and the corresponding notations G,(M,w,X), G,(w,X) and

G,(X) also can be introduced.

It is known that a 0-times integrated cosine function consists with a cosine function, while the

following relationship can be shown by the same method in [4, Th.3.5].
0 I

PROPOSITION 1.1. (a, C(t)) G,(X)iff (A,C(t)) G,+,(X), where A ( a 0 ) and

C(t) ( C(t) t"l/n fg C(s)ds ) mr O. (1)

The basic properties of integrated cosine functions now can be deduced from Prop.l.1, the

properties of Laplace transforms and integrated semigroups (cf. [6]). We omit the details.

PROPOSITION .2. Let (A,C(t)) G,(M,w,X) (k) [l and s R+ [0,) ThenJ

(a) C(t)C(s)= C(s)C(t), C(r)x 0 (r 0) implies x 0, and C(t) is uniquely determined

by A.
(b) (A, fd(t s)C(s)ds/kl) G,+m+(Mw--,w,X) for k N0.
(c) R(A, A) A"- f e-’x’C(t)dt nd IIR(A, a)ll MIAI"-(ReA -)-’ for ReA > w.

(d) For x D(a(k)), C(.)x C(R+,X) (k N0) and -"+kR(,.4)x C(k)(O) 5k,x as

A (0 k 5 n), where 6 denotes the Kronecker delta.

(e) C(t)x D(A), fd(t- s)C(s)xds D(A) and a fg(t- s)C(s).rds C(t)x- t"x/nl for

z X; ac(t)x C(t)Ax and C(t)z f(t- s)C(s)Azds + t"z/n for x D(A).
(f) fg C(s).rds D(A) and a fd C(s)xds C’(t)x t"-z/(n 1)! for x X; C(t)x D(A)

and AC(t)x C"(t)x -t"-.r/(n 2)! for x X:, where X, {x fi X; C(.)x C’(R+,X)}.
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(g) C(t).q’(s)+ S(t)C(s) {ftt+’- f}(s + r)’-tS(r)dr/(n 1)!, where S(t) fd C(s)ds.
We conclude this section with some remarks on CP2..r(t) is called a solution of CP2 if x(-) 6-

C2(R+, X) N C(R+, D(A)) satisfying CP2. CP is called n-wellposed if CP2 has a unique solution

x(t) for every (x,y) 6- O(:1(’+2)) x D(A(’+)) satisfying II.r(t)l _< p(t)(][x]lt,, + IlY]I(,,-t)) for some

locally bounded function p(t). CP2 is called exponentially n-wellposed if, in addition, p(t) Me’.
The following result follows from Prop.l.1, [3, Th.2.5] and [6, 7]. The details are omitted.

THEOREM 1.3. Let w > 0, n, rn 6- No and p(A) # . Then the following statements hold.

(a) If CP has a unique solution for every (x,y) 6- D(A(’+2)) x D(A(’+)) then CP2 is k-

wellposed where k max(re, n). In particular, CP2 has a unique solution for every (x,y) 6-

D(A(’+)) D(A(’+)) iff ACP2 is n-wellposed.
(b) A 6- G,(w,X) iff CP has a unique solution x(t) with Ilx"(t)ll O(e’) for every (x,y) 6-

D(A(’+)) D(A(’+t)). If, in addition, D(A) X then A 6- G,,(w,X) iff CP is exponentially
n-wellposed.

2. PERTURBATIONS
We first consider the perturbation problem of 2m-times integrated cosine functions. The fol-

lowing is a generalization of the Takenaka-Okazawa theorem (cf. [10, II]).
THEOREM 2.1. Let (A, C(t))

_
G2(X) and B be a linear operator on X satisfying

(b) D(A) C D(B), R(B) C D(A’[’) and BR(Ao, A) 6_ L(X) for some A0 6- p(A), where R(B)
denotes the range of B, and A, AIo-- (the part of A in D(A)).

(b) loo liin.\+oo/.\ < c, where Ix sup{f e-X’llBC(’-t)(t)xll,dt; x D(A"+’), Ilxll,. <
1} and Ilxll.. -Ilxll ET=0 IIA.rll for D(A").
Then A + qB 6_ G2,,,(D(A)) for every q with Iql < /l.

0 I 0 0PROOF. LetA= ( ,4 0)’B= B 0) andC(t) be given by (1) with n 2m. Then

A I AR(A,A) ( A A ) R(X’A) for 6- p(A), (2)

and therefore (b)implies (b’): D(.A) C D(B), R(B) C D(J["+) and BR(A/,j[) q L(X).
Since I(x Y)l --II. AI1+, + Ilyll is equivalent to II(.,u)ll+, on D(A’*+’) we have that

l, sup{f0 e-x’lBC"+’)(t)(x,y)l,,,dt; (x,y) O(A2m+), I(x,y)l. _< 1} < max{/,/x},

where l sup{f -’’llBC")(t)ll,dt; , D(A"+), I111,,+ -< 1}. Noting that Ix < l and,
by (b,), l - 0 as A c, one has that limxoo/, loo. Combining (b]), Prop.l.1, [10, II, Th.4.2]
with this yields that A + qB 6- G+(D(.A)) for Iql < i/t. Let C(t) generated by ,4 + qB have

S,(t)the form ( C(t)- t’+’l/(2m + 1)! )" Then we can deduce from (1) and (2) that.

’"- f e-XtC(t)zdt R(,,A + qB)z ,’ fo e_XtSt(t)zdt for x 6_ D(A).

Consequently C(t) L(D(A)), and so the claim follows.
The subsequent theorem can be shown by [10, II, Th.4.3] and the same method as above.
THEOREM 2.2. Let (A, C(t)) 6_ G,,,(X) and B be a closed linear operator on X satisfying
(b3) D(A) U fg C(s)(X)ds C D(B) for > 0 and R(B) C D(A’).
(b) BfoC(s)xds 6- C(R+,[D(Am)]) for x 6- X where [D(A’)] (D(A’),II. ]1,,,), and 1

lim_,/ < where l sup{j0 e-’tllBC(2"-’)(t)xll,,,dt; x D(A"), II.rll,, <_ 1}.
Then A + qB 6- G,(X) for every q with ]ql < 1/loo.

In the case m 0, since loo 0 (see [9, Lemma]) and (b3) can be replaced by fg C(s)(X)ds 6-

D(B) for > 0, Theorem 3.2 (with m 0) is consistent with [9, Pop.l.
We now turn to the perturbation problem of (2rn + )-times integrated cosine fimctions.
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TIIEORI,iM 2.3. Let (A,C(t)) E G,,+(X) ad B t)e a linear operator on X satisfying (b,)
and IIt3d().,ll, _< M’II.II for .r D(A) and 0. Then A + B G+,(D(A)).

PROOF. We first note that p(A) C p(A,) and R(,A,) R(A,A)on D(A) for p(A).
Next, set C,(t) (A0- A)BC()(t)R(Ao, A) and C(t) (A0- A,)BC(t)on D(A) for some

o 6 p(A). Then, by our assumptions and Prop.l.2(d). C,(t)(i 1,2) can be extended to strongly
co,,l.inuous fa,ilies in L(D(A)), and satisfy BR(A,A) f e-’C(t)dt and BR(A,A,)
A’"[ c-’’((t)dt for large A, where B (A0 A)BR(Ao a) and B (A0- A)B. It
follows titus that

(.’a(t) =- C(t) + {C(’’r’)(t)R(Ao, ,4,)"} {I + C,(t) + k= C,(t).k}. C(t) for 0

is also a strongly continuous family in L(D(A)), where denotes the convolution. Now, one can

directly check that R(A, A + B) f e-C(t)dt for large A.
By a modification of the proof of Theorem 3.3 we can show the following
THEOREM 2.4. Let (A,C(t)) G+(X) and B be a closed linear operator on X satisfying
(b) D(A)U C(t)(X)C D(B) for 0 and R(B) C D(A).
(b6) BC(.).r C(R+,[D(A)]) and IIBC(t).ll M’llxll for z X and 0.

Then A + B G,,,+(X).
As a generalization of [1, Th.5.3] we have
COROLLARY 2.5. Let A G,(X), and let B L(X) and B D(A) D(A("-)) (or

B" o(a) D(A("+’)) and BR(0, A) L(X) for some 0 p(a)). Then A + B G,,(X).
3. APPROXIMATIONS

The first approximation theorem is a direct consequence of [10, I, Th.3].
TIIEOREM 3.1. Let (A,C(t))G G,(M,,X)(k N0). Iflim R(A,A)x R(A,Ao)x

for .r X and some Redo > , then for x G D(A0), 9 G X and T > 0

li,n SUpo<,<T{llC(t)z Co().ll + fg(ck()u Co(s)u)dsll} O. (a)

Conversely, if D(Ao)=X and limk Ck(t)x=C(t)x for x 6 X and k 0 then limk R(A2, Ak)x
R(A:, Ao).r for x X, uniformly for A in compact subsets of ReA > w.

TIIEOREM 3.2. Let (A, C(t)) G,(M,w,X) (k N), and lim R(A,Ak)x x (x
X) for some ReA0 > and sone injective operator . Then there exists (A, C(t)) G,+(w,X)
such that (a,c’(t)) G,(M,w,D(A)), R(A,A) and (3) (ao and Co(t) replaced by a and
C(t), respectively) holds. If, in addition, h dense range then (A, C’(t)) G,(M,w,X).

PROOF. For every (A,C(t)) G,(M,w,X) we define (A,C(t)) ,+,(w,X) in
Prop.l.1. Thus (2) and our assumption implies that

A0 )( x
o(x,y)* forx yX.lim R( Ao, A# )( x y)

k

It follows from [10, I, Th.4] that there exists (A,C(t))e,+(w,X) such that 0 R(A0, A) and

limsupo<,<T]]fgC(s)(x,y)*ds-C(t)(.r,y)[]=O for z,y X, T>0. (4)

0 IIt is easy to show, by 0 R(A0, A), that A A 0
and m R(A, a), while the remainder

conclusions now can be deduced from Prop.l.l and (4).
4. RELATIONSttIP TO INTEGRATED SEMIGROUPS

Let A be a linear operator on X. If there exist n N0, w > 0 and a strongly continuous

family T(t) G L(X) (t > 0) such that (,) C p(A), fe-’xt[[T()l[dt < and R(A,A)
A" f c-’XT(t)dt for A > w, then we say that A generates the n-times semigroup T(t), and write
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(A,T(t)) F_ 0,,(.\’). Obviously, (A,S(t)) E ,(X)implies (A,S(t)) rr_ ,,(X), and (A,T(t))
_

’,(.\’) implies (A,f,T(s)d,) 8,+(X)(see [, Prop..]).
I.EMMA 4.1. Let (A, C(t))_ G,(X) and Ee {t; largtl < O} \ {0}(0 < 19 < r/2). Define

Tk(t) { (--1)k(rrt)/2 f[D exp(-,s2/4t)]C(s)d, for k No (5)
(rrt)-/fg exp(-s/4t)(f/ C(r)dr)ds for k -1,

where O, ig/c_gs. Then T:(t) is analytic and T(t) Tk+(t) for Ret > 0 and/ NoO {-). f
in addition IIC(t)ll < Mt’e"’(t > 0) for some d > 0, then for k No and 0 < 19 < r/2

(a) IIZ(t)ll < Mltla+/(Ret)-(+a+)/(1 + Itl/Ret)(+a)/z exp(:o"ltl/Ret) for Ret > 0.

(b) IlZe(t)ll < Meltl(U-)/(1 / ILl) (+a)/ exP(Ret/cos O) for E e \ {0).
(c) IIZ-,(t)ll < Mltla+3/(Ret)-(a+)/(1 + Itl/Ret)(a+)/exP(wltl/Ret) for Ret > 0.

(d) IIT-(t)ll < Meltl(U+t)/z( + Itl)(a+)/exp(Ret/cosZ O) for e \ {0).
(e) In the case -1 < k < d + 2 we have that f:’e-X’llZk(t)lldt < and

R(A, A) A(’-k)/ fo e_.\,Tk(t)dt for A > w2. (6)

PROOF. The analyticity of Tk(t) and T/,(t) Tk+(t) are easily shown. By (5) we have

v.(k-) Sk-2,ltl,-k exp(-s2Ret/4ltl2)sae,,ds
<_ M ,=or(-’ Itla+’+’/2(Ret)’-(+a+)/2 f o-’+ exp(-o ltlv/)dv
< Mltla+/2(Ret)-(t+a+)/2(1 + Itl2/Ret)(+a)/2exp(:o21tl2/Ret)

for Ret > 0 and k No, where M denotes a generic constant. Thus (a) is proved. (b) follows from

(a) and Re/> Itlcos0 (t a). Since IIC(t)ll < Mt%’t implies Ilfg C()all _< Mta+’e’’, (c) and

(d) follow from (a) and (b) (replacing (k,d) with (0, d+ 1)), respectively. Finally, f’ e-X’llT(t)lldt
< oo follows from (b) and (d), while by T(t) Tk+2(t) and Fubini’s theorem we can check (6).

COaOLLArt .2. Let (A,C(t))rr_ G,(X) and IIC(t)ll < Mt’eW’(t > 0) for some 0 < d < n.

If k n 2m and m is the least integer> (n- d- 2)/2, then (A,T(t)) rr_ GIn(X).
In the sequel, we infer to, e.g., [10, III] for analytic integrated semigroups, and write (A,S(t)) .

H,(8,to, X) for A generating the analytic n-times integrated semigroup S(t) of type (9,w).
THEOREM 4.3. Let the conditions of Corollary 5.3 be satisfied. Then for every 9 E (0, ’/2)
(a) If k < d then (A,S(t)) . H,,(19,to2/cos19,X), where Sk(t) T(t) for E Ee and

S(0) =0.

(b) In the case k d, if in addition (i) D(A) X, or (ii) lim,oC’(t)z/tk(:r. . D) exist where
X, then (A,S(t)) . H(19,/cos 19, X), where S(t)= Tk(t) for E Ee and Sk(0) ,,I.

PROOF. (a) follows from Lemma 4.1. To prove (b), we note, by Prop.l.2, that (i) implies (ii)
with D D(A(k)), and that (ii) and 116’(t)ll _< Mtke’’t imply limt_oC(t)z/t’ ,,z/n! for : X.
The following proof is divided into cases.

Case k < n. Fix z X. Then for arbitrary > 0, there exists > 0 such that IIC(s)/s*ll <
(0 < s < ). Thus we have (cf. the proof of Lemma 4.1(a))

IIT(t)zll < MILl-/2 z..,=o fao s-iltl’-kexp(-sRet/4{t[)sds
+Mltl-,/2v’<-l> I,-z_.,=0 f sk-’lt exp(-sZRet/41tl)s’e’’ds (7)

< Mo + Moexp(wZltl/cos 19) E,=0(-’) f(,)(uz_2, + itl_,)exp(_uZ)du,

where 7(t) av/E-/:Zltl -Itl/V’E- - oo as - O. Thus Z(t).r 0 a r,e 9 o, i.e.,

Sk(t) is strongly continuous on Ee U {0} and therefore the claim follows from Lemma 4.1.

Case k n. Since lim,_+oC(t)z/t" z/n! for z. X, we have (cf. (7))

T,(t)z x (-1)’(rt)-/f[D exp(-s14t)]s"(C(s)’ls .rln!)ds 0
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as E0 9 0 for .r (5 X and therefore the claim also follows from Lemma 4.1.

In the case n l, Cor.4.2 (with d 0) and Th.4.3 (with d 1) were shown in [1, Th.5.2]. In
the case d 0 we ol)tai,

COROI,I,ARY 4.4. Let (A,C(t)) (5 G,,(X). Then for every/9 (5 (0, r/2)
(a) If n 2m then (A,S(t))(5 tt,,,(O,/cosO,X), where S(t) To(t)for (5 Eo and

S(0)
(b) If n 2m +l then (A,T(t)) ,,(X)and (A,S(t)) H,,+,(O,w/cosO,X), where

.q’(/) T_(t) for 6. E0 and S(0)= 0.

Tim results relating to Cor.4.4 see [5, 8].
5. INTEIIPOIATION AND EXTRAPOLATION

In this section we will give some results on interpolation and extrapolation of integrated cosine

functions, which are analogous to the results of integrated semigroups obtained by Arendt et al

[2]. In the sequel, X, Y and Z are Banach spaces. X ’- Y means that X is a subspace of Y and

that the inclusion is coztinuous. We write X ’-+a Y, if in addition X is dense in Y.
THEOREM .5.1. Let B 6’0(Y) and [D(A’)] ,--+ X Y for some rn 6. N. In the case m _> 2

assume in addition that R(fl0, B)X C X for some Am (5 p(B). Then Bx 6. G,(X).
PROOF. Let (B,S(t)) (5 Go(,Y) and C(t) fd(t- s)"’-zS(s)ds/(2m- 1)!. Since by

l?rop.l.2(f) (with n 0)

C(t) .’ A0’’-’ (- )’{R(A0, B) (2m- 2i- 1)!’-q()ds+ (.
for > 0, our assumptions (noting R(Ao, B)X C R(Ao, B)Y C D(B) C X for m 1) imply the

strongly continuity of C(t)x and IIC(t)xllx _< Met. The claim now follows frown

AR(A:,Bx) AR(A,B)x fo e_.\tS(s)xds A fo e-xtC(s)xd for A > w.

Similarly to [1, Le,nma 2.4] we can show that if (A, C(t)) 6_ G,,,(Y), and if D(A) :fi Y in the

case m 0 and C(.)y C(R+,[D(A)]) for some y 6_ Y in the case m > 0, then [D(A)] ’--+ X ’-+ Y
for some X, (Ax,S(t)) 6_ G,,+(X), and S(.)x (/i C(R+,[D(Ax)]) for some x 6_ X. From this we

can deduce the following theorem (cf. the proof of [1, Th.0.1(b)]).
TItEOREM 5.2. Let B 6_ Go(Y) and D(B) Y. Then [D(B’)] ’-+ X ’- Y for some X, and

Bx 6_ G,,(X).
The converse of Th.5.1 and 5.2, i.e., an extrapolation of integrated cosine functions is as follows.

THEOREM 5.3. Let A 6_ G,(,X). Then [D(A’)] ’--+ X ,-+ Y for some Y, A Bx
for some B 6_ Go()’), and [D(A)] is maximal unique (i.e., Z ’- X and Az 6. Go(w,Z) imply
Z [D(B)]).

PROOF. Let C(t) be generated by A. We first show that for x (5 D(A’) and t, s >_ 0

2c("")(t)c(:")()x c(:")(t + ) + c(")(It 1). (8)

In fact, set Px AR(A:, A) for A > w and y R(Ao, A)"’x for some Ao > w, then

(Px + Pu)YfF f2e-t-"c(m)(t)C(’)(s)Ydsdt 2PaP.y (Pu- Px)Y +
f fd e-’t-"’(C()(t + s)y + C()(I sl)y)dsdt for, > A > w,

and so (8) holds for y. Integrating this 2m-tinms with respect to we find that the equation

obtained holds for x. Now, (8) follows by differentiating this equation 2m-times with respect to

Next, let Y be the completion of X with respect to

Then X ’--d Y. Since we can show by (8) and Prop.l.2 that

f5"(-s)e-’\’(C(:)(t + s)x + c(m)(It sl)x)ds C("’)(t)(,R(),A))()z
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for .r E D(A" ), l,’E No and , > w, it follows that

II(AII(x A))t).llv _< supt>o{fo ske(’-)Sds + ft ske(w-x}s-2"tds + f
_< k!(A- )-’llllv for A > w, k E No and a" E X. (9)

It follows that R(A, A) has a unique extension R(A) E L(Y) and so R(A2) (A > w) is a pseudo
resolvcnt on Y. Ve show that lim.x IIAR(A)u- Yllv 0 for y Y. Indeed, from (9) (with
k 0) it sutfices to show this for y X. Let x R(Xo, A)"y. Then the same method in the

proof of [1, (3.5)] leads to

IIAR(&)y ullw sup,>oll-’(AR(&,a)- 1)C()(t)xllx + + I_ 0

0 where I supt,0 f Ae-’(C()(s t])- C()(]t s[))xds]]x. Thus there exists a

densely defined linear oprator B on Y such that (w,) C p(B) and R() R(, B) for > w.
It now follows from (9) that B Go(Y). The rest can be proved in [2, 3].

COROLLARY 5.4 If D(A) X and p(A) . Then the following statements are equivalent.
(a) a G(X).
(b) [D(A)] Z X for some Z, and Az Go(Z).
(c) [D(B)] X Y for some Y and some B Go(Y), R(o,B)X C X for some 0 fi p(B),

and A Bx.
After the paper w accepted, the author understood that the equivalence of (a) and (b) h

been extended to the ce D(A) X by Shaw and Li [7]. But Th.2.1 and 2.2 cannot be deduced
I)y combining this with the corresponding results of cosine functions because the norm ]. 1 is not
equivalent to the norm of Z (see Cor.5.4(b)).
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