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ABSTRACT. In order to the second order Cauchy problem (CP;): z"(t) = Az(t), z(0) = = €
D(A™), 2"(0) = y € D(A™) on a Banach space, Arendt and Kellermann recently introduced
the integrated cosine function. This paper is concerned with its basic theory, which contain some
properties, perturbation and approximation theorems, the relationship to analytic integrated semig-
roups, interpolation and extrapolation theorems.
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1. BASIC PROPERTIES

Let A be a linear operator on a Banach space X. If there exist n € Ng = NU{0}, M,w > 0 and
a strongly continuous family C(¢) in L(X) with ||C(¢)|| < Me*! for t > 0 such that (w?, 00) C p(A)
and R(A\%, A) = A" [ e~>C(t)dt for A > w, then we say that A generates the (exponentially
bounded) n-times integrated cosine function C(¢) (see [1]), and write (A, C(t))(or A, or C(t))€
Ga(M,w, X). Set Gn(w, X) = Um>0Gn(M,w, X) and Gn(X) = Uu>0Gn(w, X). The definition of
integrated semigroups see e.g. [6], and the corresponding notations Gn(M,w, X), Ga(w, X) and
E"(.\') also can be introduced.

It is known that a 0-times integrated cosine function consists with a cosine function, while the
following relationship can be shown by the same method as in [4, Th.3.5].

PROPOSITION 1.1. (A, C(t)) € Ga(X) iff (A4,C(t)) € Gaya(X?), where A = ( 2 é ) and

() = ( RC(s)ds  fi(t " s)C(s)ds
C(t) —t*I/n! Jo C(s)ds

The basic properties of integrated cosine functions now can be deduced from Prop.1.1, the
properties of Laplace transforms and integrated semigroups (cf. [6]). We omit the details.

PROPOSITION 1.2. Let (A,C(t)) € Ga(M,w, X), (k) = [%£!], and t,s € R* = [0,00). Then

(a) C(t)C(s) = C(s)C(t), C(r)z =0 (r > 0) implies z = 0, and C(t) is uniquely determined
by A.

(b) (A, [§(t — 5)*C(s)ds/k!) € Gryrr(Mw™ " w, X) for k € Ny.

(c) R(A?, A) = An! [0 e MC(t)dt and ||R(A?, A)|| € M|A|""}(ReX —w)~! for Re) > w.

(d) For = € D(A®)), C(-)z € C*(R*, X) (k € Np) and A>""**R()\?, 4)z — C¥)(0) = §kn7 as
A = 00 (0 € k < n), where § denotes the Kronecker delta.

(e) C(t)x € D(A), fi(t — s)C(s)zds € D(A) and A f§(t — s)C(s)xds = C(t)z — t"z/n! for
z € X; AC(t)x = C(t)Az and C(t)z = [3(t — s)C(s)Azds + t"z/n! for z € D(A).

(f) fd C(s)xds € D(A) and A 3 C(s)zds = C'(t)x — t"'z/(n — 1)! for z € X,; C(t)x € D(A)
and AC(t)x = C"(t)x — "2z /(n — 2)! for z € X,, where X, = {r € X; C(-)x € C*(R*, X)}.

) for t > 0. (1)
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(g) C(1)S(s) + S()C(s) = {[** = [sHs + t =r)*"'S(r)dr/(n — 1)!, where S(t) = f; C(s)ds.
We conclu(le this section with some remarks on CP;. r(t) is called a solution of CP; if z(-) €
C*(R*, X)NC(R*, D(A)) satisfying CP2. CP; is called n-wellposed if CP; has a unique solution
2(1) for every (z,y) € D(A™) x D(A®) satisfying (&)l < p(t)(lelly + 1¥llay) for some
locally bounded function p(t). CP; is called exponentially n-wellposed if, in addition, p(t) = Me“*.

The following result follows from Prop.1.1, (3, Th.2.5] and [6, §7]. The details are omitted.

THEOREM 1.3. Let w > 0, n,m € Ng and p(A) # 0. Then the following statements hold.

(a) If CP; has a unique solution for every (z,y) € D(A"t?) x D(A(™+1) then CP; is k-
wellposed where & = max(m,n). In particular, CP; has a unique solution for every (z,y) €
D(A®2) x D(A+1) iff ACP, is n-wellposed.

(b) A € Gn(w, X) iff CP, has a unique solution z(t) with ||2”(t)|| = O(e**) for every (x,y) €
D(A"+2) x D(A™+D), 1f, in addition, D(A) = X then A € G.(w, X) iff CP; is exponentially
n-wellposed.

2. PERTURBATIONS

We first consider the perturbation problem of 2m-times integrated cosine functions. The fol-
lowing is a generalization of the Takenaka-Okazawa theorem (cf. [10, II}).

THEOREM 2.1. Let (A,C(t)) € G2m(X) and B be a linear operator on X satisfying

(b;) D(A) € D(B), R(B) C D(AT') and BR()o, A) € L(X) for some Ao € p(A), where R(B)
denotes the range of B, and A, = AID(A) (the part of A in D(A)).

(b2) loo = limy00 [y < 00, where Iy = sup{Js° e=|| BC™=)(t)z||ndt; x € D(A™), ||z||lm <
1} and ||z]lm = |lzll; = Thto [|A*2]| for = € D(A™).

Then A; + ¢B € Gy (D(A)) for every q with |g| < 1/l.

PROOF. Let A= () é ), B=( g g ) and C(t) be given by (1) with n = 2m. Then

ROLA) = (5 F)RO%A) for M€ p(a), )

and therefore (b,) implies (b): D(A) C D(B), R(B) C D(A?*+') and BR(\/?, A) € L(X?).
Since |(z,y)lm = ||lzll4+; + llyllA is equivalent to ||(z,y)||741 on D(A*™*!) we have that

1y = sup{[5° e |BCC™ D (t)(2, y)|mdt; (z,y) € D(A*™?), |(z,y)lm < 1} < max{l}, ]},

where I = sup{J3° || BC®™)(t)z||ndt; € D(A™*1), ||Z|lms1 < 1}. Noting that Iy < I} and,
by (by), I = 0 as A — oo, one has that limy_,c0 I} = loo. Combining (b}), Prop.1.1, [10, 11, Th.4.2)

with this yields that A, + ¢B € @gm“(D(A)) for |¢| < 1/lw. Let C(t) generated by A, + gB have

Si(t
the form ( Cilt) - t’"‘*l‘s I)/(2m +1) ) Then we can deduce from (1) and (2) that,

A=l [0 o= MO (t)zdt = R(N?, Ay 4 qB)z = \™ [° e 25, (t)zdt for z € D(A).

Consequently Cy(t) € L(D(A)), and so the claim follows.

The subsequent theorem can be shown by (10, II, Th.4.3] and the same method as above.

THEOREM 2.2. Let (A, C(t)) € G2m(X) and B be a closed linear operator on X satisfying

(bs) D(A)U f; C(s)(X)ds C D(B) for t > 0 and R(B) C D(A™).

(bs) B JyC(s)xds € C(R*,[D(A™))]) for = € X where [D(A™)] = (D(A™), || * |Im), and loo =
limy o0 [n < 00 Where [y = sup{fs° e~ || BC?*™~V(t)z||mdt; £ € D(A™), ||2|lm < 1}
Then A + ¢B € Gyn(X) for every q with |q] < 1/l.

In the case m = 0, since [, = 0 (see [9, Lemma]) and (bs) can be replaced by f; C(s)(X)ds €
D(B) for t > 0, Theorem 3.2 (with m = 0) is consistent with [9, Prop.).

We now turn to the perturbation problem of (2m + 1)-times integrated cosine functions.
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THEOREM 2.3. Let (A,C(t)) € Gam41(X) and B be a linear operator on X satisfying (b))
and || BC(t)x||m < Me“!||r|| for + € D(A) and t > 0. Then A + B € Gy (D(A)).

PROOF. We first note that p(A) C p(A,) and R(A, A;) = R(A, A) on D(A) for A € p(A).
Next, set Cy(t) = (Ao — A)"BCP™(t)R(Ao, A)™ and Cy(t) = (do — A;)™BC(t) on D(A) for some
Ao € p(A). Then, by our assumptions and Prop.1.2(d), C,(1) (i = 1,2) can be extended to strongly
continuous families in L(D(A)), and satisfy B|R(/\2 Ap) = [CeMCy(t)dt and BR(A?, Ay) =
AZm [0 e=M(y(t)dt for large A, where By = (Mg — A;)"BR(Jo, A))™ and B, = (ho — A))™B. It
follows thus that

(,'3(”5 +{(v“m) ()\0, )"‘}*{1+C,( )+Zk QCI k}*Cz t) fOl't>0

15 also a strongly continuous family in L(D(A)), where * denotes the convolution. Now, one can
directly check that R(A%, A, + B) = A?™ [5° e~ C5(t)dt for large .

By a modification of the proof of Theorem 3.3 we can show the following

THEOREM 2.4. Let (A,C(t)) € G2m+1(X) and B be a closed linear operator on X satisfying

(bs) D(AYUC(t)(X) C D(B) for t > 0 and R(B) C D(A™).

(b6) BC(-)r € C(R*,[D(A™)]) and ||BC(t)x||m < Me“!||z|| for € X and t > 0.
Then A+ B € Gt (X).

As a generalization of [1, Th.5.3] we have

COROLLARY 2.5. Let A € Gn(X), and let B € L(X) and B : D(A) — D(A"™Y) (or
B : D(A) = DA™Y and BR(X, A) € L(X) for some Ao € p(A)). Then A + B € G,.(X).
3. APPROXIMATIONS

The first approximation theorem is a direct consequence of [10, I, Th.3].

THEOREM 3.1. Let (Ag, Ck(t)) € Gu(M,w, X) (k € No). If limk0o R(A2, Ak)x = R(A2, Ao)z
for r € X and some Relg > w, then for z € D(A4p), y€ X and T >0

limkse0 supoci<r{IICk(t)z — Co(t)z]l + || o(Ci(s)y — Co(s)y)ds||} = 0. 3)

Conversely, if D(Ag) =X and limg_,e0 Ci(t)z = Cy(t)z for z € X and ¢t >0 then limy_o, R(A?, Ag)z
= R()\?, Ag)r for = € X, uniformly for X in compact subsets of ReA > w.

THEOREM 3.2. Let (Ag, Ci(t)) € Go(M,w, X) (k € N), and limy_,o, R(A3, Ax)z = Roz (z €
X) for some Re)g > w and some injective operator Ro. Then there exists (A, C(t)) € Gny1(w, X)
such that (Ay,C’(t)) € G.(M,w, D(A)), Ro = R()2, A) and (3) (Ao and Cy(t) replaced by A and
C(t), respectively) holds. If, in addition, Ro has dense range then (A, C'(t)) € Ga(M,w, X).

PROOF. For every (Ax,Ck(t)) € Ga(M,w, X) we define (Ax,Ci(t)) € Gnyi(w, X?) as in
Prop.1.1. Thus (2) and our assumption implies that

Jim R(Xo, Ar)(z.y)" = ( I,\-?-IE\%RO MoFo )( ; ) = Ro(z,y)” for r,y € X.
It follows from [10, I, Th.4] that there exists (A, C(t)) € Gnya(w, X?) such that Ro = R(Xe,.A) and

limkyo0 sUpg< i< Il Jo Ch(s)(z,y)7ds — C(t)(2,y)"|| =0 for z,y € X, T > 0. (4)

It is easy to show, by Ro = R()o, A), that A = ( 4 (I] ) and Ry = R(A2, A), while the remainder

conclusions now can be deduced from Prop.1.1 and (4).
4. RELATIONSHIP TO INTEGRATED SEMIGROUPS

Let A be a linear operator on X. If there exist n € No, w > 0 and a strongly continuous
family T'(t) € L(X) (¢ > 0) such that (w,00) C p(A), [°e M|IT({)||dt < oo and R(A,A) =
A" 5 e MT(t)dt for A > w, then we say that A generates the n-times semigroup T(t), and write
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(A, T(1)) € Ga(X). Obviously, (A, S(t)) € Gn(X) implies (A, S(t)) € Ga(X), and (A,T(2)) €
G.(X) implies (A, [ T(s)ds) € Gpy1(X) (see [2, Prop.1.1]).
LEMMA 4.1. Let (A,C(t)) € G.(X) and Ty = {t; |argt| < 8} \ {0}(0 < 6 < 7/2). Define

(=1)F(mt)~"2 [°[ DF exp(—s?/4t)|C(s)ds for k € No
(mt)~1? [ exp(—s?/4t)(f5 C(r)dr)ds for k = —1,
where D, = 8/0s. Then Ti(t) is analytic and T{(t) = Ti+2(t) for Ret > 0 and k € NouU {-1}. If
in addition ||C(t)]| € Mtde“!(t > 0) for some d > 0, then for k € Np and 0 < 6 < 7/2

(a) IT()|| € M|t]**+1/2(Ret)~(+a+1/2(1 4 |t]2/Ret)(k+d)/2 exp(w’ltl’/Ret) for Ret > 0.

(b) IT(O] < Molt|4-H1/2(1 + |¢])++9/2 exp(u?Ret cos? 6) for t € Ty \ {0

() IT=1 ()] < M|t|#+3/2(Ret)~+D/2(1 + |t|?/Ret)4+1)/2 exp(w?|t|?/Ret) for Ret > 0.

(d) IT=1 ()] < Malt|+D/2(1 4 |2])@+1)/2 exp(w?Ret/ cos? §) for t € Ty \ {0}.

() In the case —1 < k < d + 2 we have that [3* e™*||Tk(t)||dt < co and

Ti(t) = { (5)

R(), A) = Mn=R)/2 [ o=MTy (1)dt  for A > w?. (6)
PROOF. The analyticity of Ti(t) and T}(t) = Ti+2(t) are easily shown. By (5) we have

Te(t)l < M|t|V? [ 5D sk=2 )=k exp(—s?Ret /4]t|?)sde“* ds
1]
< M TESD |12 (Ret) (k44172 oo ph-2itd eyp(—p? — u|t|v/ V/Ret)dv
< Mt/ (Ret)~+d+1/2(1 4 |t]2/Ret)(*+9)/2 exp(w?|t|?/Ret)

for Ret > 0 and k € Ng, where M denotes a generic constant. Thus (a) is proved. (b) follows from
(a) and Ret > |t|cos 8 (t € Ty). Since ||C(t)|| < Mt?e* implies || 3 C(s)ds|| < Mt**'e*t, (c) and
(d) follow from (a) and (b) (replacing (k,d) with (0,d+1)), respectively. Finally, [g° "\‘||Tk(t)||dt
< oo follows from (b) and (d), while by T}(¢) = Ti4+2(t) and Fubini’s theorem we can check (6).

COROLLARY 4.2. Let (A,C(t)) € Ga(X) and ||C(¢)|| < Mtde“t(t > 0) for some 0 < d < n.
If k = n — 2m and m is the least integer> (n — d — 2)/2, then (A, Tx(t)) € Gm(X).

In the sequel, we infer to, e.g., [10, III] for analytic integrated semigroups, and write (A, S(t)) €
H,(8,w, X) for A generating the analytic n-times integrated semigroup S(t) of type (8,w).

THEOREM 4.3. Let the conditions of Corollary 5.3 be satisfied. Then for every 8 € (0,7 /2)

(a) If k < d then (A, Sk(t)) € Hp(8,w?/cos? 0, X), where Sk(t) = Ti(t) for t € E¢ and
Sk(0)=0

(b) In the case k = d, if in addition (i) D(A) = X, or (ii) lim,o C(t)z/t*(z € D) exist where
D = X, then (A, Sk(t)) € Hn(0,w?/ cos? 8, X), where Si(t) = Ti(t) for t € Ty and Si(0) = &knl.

PROOF. (a) follows from Lemma 4.1. To prove (b), we note, by Prop.1.2, that (i) implies (ii)
with D = D(A™)), and that (ii) and ||C(t)|| < Mt*e** imply lim,o C(t)z/t* = §tnz/n! for z € X.
The following proof is divided into cases.

Case k < n. Fix £ € X. Then for arbitrary € > 0, there exists § > 0 such that ||C(s)z/s*|| < ¢
(0 < s < §). Thus we have (cf. the proof of Lemma 4.1(a))

Tzl < M|/ TESY 3 sk=% 1t ~*exp(—s?Ret/4]¢[*)es*ds
M|t TSN [0 gk=2 |4k exp(—s2Ret /4|t|?)ske“*ds (7
Moe + My exp(w?[t]/ cos ) TGV [0, (w2 + |t/*~*) exp(—u?)du,

IN

where y(t) = §V/Ret/2|t] — w|t|/VRet = 00 as Tg 3t = 0. Thus Ti(t)r - 0as X3t — 0, i.e,
Sk(t) is strongly continuous on ¥ U {0} and therefore the claim follows from Lemma 4.1.
Case k = n. Since lim;o C(t)z/t" = z/n! for x € X, we have (cf. (7))

To(t)r — z = (=1)"(nt)~V2 [°[D? exp(—s?/4t)]s"(C(s)x[s™ — x/nl)ds — 0
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as Uy 31 = 0 for r € X and therefore the claim also follows from Lemma 4.1.

In the case n = 1, Cor.4.2 (with d = 0) and Th.4.3 (with d = 1) were shown in {1, Th.5.2]. In
the casc d = 0 we obtain

COROLLARY 4.4. Let (A,C(t)) € Gn(X). Then for every 0 € (0,7/2)

(a) If n = 2mn then (A, S(t)) € Hn(0,w?/cos?,X), where S(t) = To(t) for t € L4 and
S(0) = boml.

(b) 1r n = 2m + 1 then (A, Ty(t)) € G(X) and (A,S(t)) € Hpmy(0,w?/ cos?, X), where
S(t)=T_,(t) for t € T4 and S(0) = 0.

The results relating to Cor.4.4 see [5, 8].
5. INTERPOLATION AND EXTRAPOLATION

In this section we will give some results on interpolation and extrapolation of integrated cosine
functions, which are analogous to the results of integrated semigroups obtained by Arendt et al
[2]. In the sequel, X, Y and Z are Banach spaces. X < Y means that X is a subspace of Y and
that the inclusion is continuous. We write X <4 Y, if in addition X is dense in Y.

THEOREM 5.1. Let B € Go(Y) and [D(A™)] < X < Y for some m € N. In the case m > 2
assume in addition that R()\o, B).X C X for some )\ € p(B). Then Bx € Gym(X).

PROOF. Let (B,S(t)) € Go(w,Y) and C(t) = f3(t — s)*"~18(s)ds/(2m — 1)!. Since by
Prop.1.2(f) (with n = 0)

' m . ' t(t_ )2m—2: 1
C<t)=§(,)A 0{ROe, B [ 1oy s)d”,_;.(? )

for t > 0, our assumptions (noting R(Ao, B)X C R(Xo, B)Y C D(B) C X for m = 1) imply the
strongly continuity of C(t)x and ||C(1)x||x < Me*'. The claim now follows from

B’"™+ R()o, B)"}

AR(X%, Bx) = AR(N*, B)x = [§° e S8(s)xds = A?™ [° e"MC(s)xds for A > w.

Similarly to [1, Lemma 2.4] we can show that if (A4, C(t)) € G2m(Y), and if D(A) # Y in the
case m = 0 and C(-)y ¢ C(R*,[D(A)]) for some y € Y in the case m > 0, then [D(A)] =& X =Y
for some X, (Ax, S(t)) € Gams2(X), and S(-)z ¢ C(R*,[D(Ax)]) for some z € X. From this we
can deduce the following theorem (cf. the proof of [1, Th.0.1(b)]).

THEOREM 5.2. Let B € Go(Y) and D(B) # Y. Then [D(B™)] < X — Y for some X, and
Bx € Gam(X).

The converse of Th.5.1 and 5.2, i.e., an extrapolation of integrated cosine functions is as follows.

THEOREM 5.3. Let A € Gap(w,X). Then [D(A™)] < X <4 Y for some Y, A = By
for some B € Go(Y'), and [D(A™)] is maximal unique (i.e., Z — X and Az € Go(w, Z) imply
Z — [D(B™)}).

PROOF. Let C(t) be generated by A. We first show that for + € D(A™) and t,s > 0

2C0C™ () CP) (s)x = C™)(t 4 s)x + CO™)(|t — s|)z. (8)
In fact, set P, = AR()?, A) for A > w and y = R(\g, A)™x for some Ay > w, then

J5° J5° 267X COM()C O™ (s)ydsdt = 2PAPuy = 35 (Py — Py + 5 (Pa+ Py
= [ [P e M (COP™(t 4 s)y + CC™(|t — s|)y)dsdt for p > A > w,
and so (8) holds for y. Integrating this 2m-times with respect to t we find that the equation
obtained holds for r. Now, (8) follows by differentiating this equation 2m-times with respect to t.
Next, let Y be the completion of X with respect to ||z|ly = sup,sg |le™'C ™ (t)R( Ao, A)™z||x.
Then X <4 Y. Since we can show by (8) and Prop.1.2 that )

I (—s)ee= 3 (C™) (¢t + s)x + COM(|t — s))x)ds = CP™(E)(AR(A2, A)) Pz
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for r € D(A™), k € Ny and A > w, it follows that
AR, A)Bxly < Lsupso{fs® skelw=Nsds 4 [ skelw=Ns-2wtgg 4 [t ske—(wtN2ds)| x|y
<K -w)H)zlly for A>w, k€ Ngand r € X. (9)

It follows that R(A%, A) has a unique extension R(A?) € L(Y") and so R(A?) (A > w) is a pseudo
resolvent on Y. We show that limy,e |AR(A)y — ylly = 0 for y € Y. Indeed, from (9) (with
k = 0) it suffices to show this for y € X. Let z = R(Ao, A)™y. Then the same method as in the
proof of [1, (3.5)] leads to

INR(A*)y = ylly = supyo lle™ (A R(A%, 4) = 1)CC™(t)z||x < Iy +I- — 0

as A — 0 where Iy = § sup,5q || fo° Ae™*(CP™)(|s £ t|) — C?™)(|t - s|))ads||x. Thus there exists a
densely defined linear oprator B on Y such that (w?,00) C p(B) and R(\) = R(, B) for A > w?.
It now follows from (9) that B € Go(Y). The rest can be proved as in [2, §3].

COROLLARY 5.4 If D(A) = X and p(A) # 0. Then the following statements are equivalent.

(2) A € Gam(X).

(b) [D(A™)] — Z < X for some Z, and Az € Go(Z).

(c) [D(B™)] = X < Y for some Y and some B € Go(Y'), R(XAo, B)X C X for some Ag € p(B),
and A = Dy.

After the paper was accepted, the author understood that the equivalence of (a) and (b) has
heen extended to the case D(A) # X by Shaw and Li [7]. But Th.2.1 and 2.2 cannot be deduced
by combining this with the corresponding results of cosine functions because the norm || - ||» is not
equivalent to the norm of Z (see Cor.5.4(b)).
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