ON THE SURJECTIVITY OF LINEAR TRANSFORMATIONS

M. DAMLAKHI and V. ANANDAM

Department of Mathematics King Saud University P O Box 2455, Riyadh 11451, SAUDI ARABIA

(Received March 2, 1993 and in revised form February 11, 1993)

ABSTRACT. Let *B* be a reflexive Banach space, *X* a locally convex space and $T: B \to X$ (not necessarily bounded) linear transformation A necessary and sufficient condition is obtained so that for a given $v \in X$ there is a solution for the equation Tu = v This result is used to discuss the existence of an L^p -weak solution of Du = v where *D* is a differential operator with smooth coefficients and $v \in L^p$

KEY WORDS AND PHRASES: Admissible linear operators, L^p-functions, harmonic functions 1991 AMS SUBJECT CLASSIFICATION CODES: 47F05, 47B38

1. INTRODUCTION

Let T be a (not necessarily bounded) linear operator from a reflexive Banach space B into a locally convex space X We obtain a necessary and sufficient condition for the existence of a solution $u \in B$ to the equation Tu = v, when $v \in X$ is known

In this context the following question arises naturally Let Ω be an open set in \mathbb{R}^n and D a differential operator of order m with c^m -coefficients in Ω Given $v \in L^p(\Omega)$ does Du = v have a weak solution $u \in L^p(\Omega)$?

When p = 2, Ω is a bounded domain and D has constant coefficients, L Hormander (to see Corollary 1 14, M Schechter [1]) has proved that Du = v has always a weak solution The proof depends heavily on Hilbert space techniques as applied to $L^2(\Omega)$ Our investigation here is around the form the above result of Hormander takes when only Banach space methods are available as in $L^p(\Omega)$

2. ADMISSIBLE LINEAR OPERATORS

Let B be a Banach space and X be a locally convex space. Let B' and X' denote the algebraic duals of B and X, B^* and X^* denote their topological duals.

Given $T: B \to X$, a linear operator not necessarily bounded, define the linear operator $T^*: X' \to B'$ as follows For $f \in X'$ and $x \in B$, $T^*f(x) = \langle x, T^*f \rangle = \langle Tx, f \rangle$

LEMMA 1. Let B be a reflexive Banach space and X be a locally convex space $T: B \to X$ is a linear operator, not necessarily bounded Suppose that there exists a subspace $H \subset X'$ such that $T^*(H) \subset B^*$ Then given $v \in X$, there exists $u \in B$, $||u|| \le c$ such that $\langle Tu, f \rangle = \langle v, f \rangle$ for every $f \in H$ if and only if $|\langle v, f \rangle| \le c ||T^*f||$

PROOF. Let $\langle Tu, f \rangle = \langle v, f \rangle$ with $||u|| \le c$ and $f \in H$ Then $|\langle v, f \rangle| = |\langle u, T^*f \rangle| \le ||u||$ $||T^*f|| \le c ||T^*f||$

Conversely, define the linear functional S on the subspace $T^*(H)$ so that, for $g \in T^*(H)$, $Sg = \langle v, f \rangle$ where $g = T^*f$ for some $f \in H$

S is well-defined, for, if $g = T^* f_1$, for some other $f_1 \in H$, then $|\langle v, f \rangle - \langle v, f_1 \rangle| = |\langle v, f - f_1 \rangle| \le c ||T^*(f - f_1)|| = 0$

It is clear that S is a bounded linear functional on the subspace $T^*(H) \subset B^*$ with $||S|| \leq c$ and hence by Hahn-Banach theorem extends as a bounded linear functional on B^* , preserving the norm

This implies, since B is reflexive, that there exists $u \in B$ such that for every $h \in B^*$, $\langle u, h \rangle = Sh$ and ||u|| = ||S|| = c

In particular, if $h = T^{\star}f$, $f \in H$, we have $\langle u, T^{\star}f \rangle = S(T^{\star}f) = \langle v, f \rangle$

Thus, for any $f \in H$, $\langle v, f \rangle = \langle u, T^*f \rangle = \langle Tu, f \rangle$

This completes the proof of the lemma

REMARK 2.1. The above lemma is inspired from section 1 6 of M Schechter [1] where the existence of a weak solution of a differential operator in the Hilbert space $L^2(\Omega)$ is investigated

DEFINITION 2.1. Let B be a Banach space and X be a locally convex space A linear operator $T \cdot B \to X$, is said to be admissible if there exists a weak^{*} dense subspace $M \subset X^*$ such that $T^*(M) \subset B^*$

PROPOSITION 2.1. Let B be a Banach space and X be a Fréchet space Let $T: B \to X$ be a linear operator Then T is continuous if and only if T is admissible

PROOF. If T is continuous, then for any $f \in X^*$ clearly $T^*f \in B^*$ and hence T is admissible

Conversely, let T be admissible with $T^*(M) \subset B^*$ where M is a weak^{*}-dense subspace of X^- We will prove that T is continuous by showing that T is closed (W Rudin [2], p 50)

Let $x_n \in B$ be a sequence such that $\lim_n x_n = x$ and $\lim_n Tx_n = y$. Then for any $f \in M$, $\langle x_n, T^*f \rangle = \langle Tx_n, f \rangle$

Taking limits $\langle x, T^*f \rangle = \langle y, f \rangle$ which implies that $\langle Tx, f \rangle = \langle y, f \rangle$ for every $f \in M$ and consequently $\langle Tx, h \rangle = \langle y, h \rangle$ for every $h \in X^*$, since M is W^* -dense in X^* .

This implies that Tx = y since X^* separates X, that is, T is closed

THEOREM 2.1. Let B be a reflexive Banach space and X be a locally convex space Let $T: B \to X$ be an admissible linear operator with $T^*(M) \subset B^*$ Then, for any given $v \in X$ there exists $u \in B$ such that $||u|| \leq c$ and Tu = v if and only if $|\langle v, f \rangle| \leq c ||T^*f||$ for every $f \in M$

PROOF. In view of Lemma 1 (where we take H = M), it is enough to prove that the condition $\langle Tu, f \rangle = \langle v, f \rangle$ for every $f \in M$ is equivalent to the fact that Tu = v

Now, the condition above is equivalent to the fact $\langle Tu, h \rangle = \langle v, h \rangle$ for every $h \in X^*$, since M is dense in X^* with its W^* -topology

Since X^* separates points on the locally convex space X, the latter condition is equivalent to the fact Tu = v

3. WEAK SOLUTIONS IN $L^{P}(\Omega)$

Let Ω be a domain in \mathbb{R}^n , $n \ge 1$. Let $A = \sum_{\substack{|k| \le m \\ p \ rate m \ rate$

THEOREM 3.1. With the above assumptions on A and p, let $f \in L^p(\Omega)$ be given Then there exists a weak solution of Au = f, $u \in L^p(\Omega)$ and $||u||_p \leq c$ if and only if $|\langle \phi, f \rangle| \leq c ||A^*\phi||_q$ for all $\phi \in C_0^{\infty}(\Omega)$

PROOF. Suppose $f \in L^p$ and Au = f has a weak solution $u \in L^p$, $||u|| \le c$

Define, for $\phi \in c_0^{\infty}(\Omega)$ and $g \in L^p(\Omega)$, $\langle \phi, g \rangle = \int_{\Omega} \overline{g}(x)\phi(x)dx$

 $\text{Then, } |\langle \phi, f \rangle| = |\langle \phi, Au \rangle| = |\langle A^*\phi, u \rangle| \leq \|u\|_p \, \|A^*\phi\|_q \leq c \|A^*\phi\|_q$

Conversely, define the linear functional S on the subspace $A^*(c_0^{\infty}(\Omega))$ such that $S(A^*\phi) = \langle \phi, f \rangle = \int_{\Omega} \overline{f} \phi dx$

Then, as in Lemma 1, S is a well-defined linear functional on $A^*(c_0^{\infty}(\Omega)) \subset L^q(\Omega)$ with $||S|| \leq c$ and hence extends as a continuous linear functional on $L^q(\Omega)$, so that there exists $u \in L^p(\Omega)$ satisfying the condition $S(v) = \langle v, u \rangle$ for all $v \in A^*(c_0^{\infty}(\Omega))$ and $||u||_p = ||S|| \leq c$ In particular, for any $\phi \in c_0^{\times}(\Omega)$, $\langle \phi, f \rangle = S(A^*\phi) = \langle A^*\phi, u \rangle = \langle \phi, Au \rangle$ Hence u is a weak solution of Au = f

THEOREM 3.2. Let $f \in L^1_{loc}(\Omega)$ Then there exists a bounded weak solution u of the equation Au = f if and only if $\left| \int_{\Omega} \overline{f}(x)\phi(x)dx \right| \leq C ||A^*\phi||_1$, for every $\phi \in c_0^{\lambda}(\Omega)$

PROOF. In view of the above theorem, we will give here only a few details of the proof

On $A^*(c_0^*(\Omega))$, considered as a subspace of $L^1(\Omega)$, define the linear functional S such that $S(A^*\phi) = \langle \phi, f \rangle = \int \overline{f} \phi dx$ Then S extends as a bounded linear functional on $L^1(\Omega)$ so that there exists $u \in L^*(\Omega)$ such that $Sg = \langle g, u \rangle$ for every $g \in L^1(\Omega)$

This leads to the fact that u is a weak solution of Au = f

In the context of the above theorem where we were looking for a bounded weak solution of a differential equation, the following proposition concerning the bounded solutions of the Laplacian in \mathbb{R}^n is of interest

PROPOSITION 3.1. Let $f \in C_0^{\infty}(\mathbb{R}^n)$, having compact support K, be given in \mathbb{R}^n Then, if $n \ge 3$, there always exists a bounded $u \in c^{\infty}(\mathbb{R}^n)$ such that $\Delta u = f$, if n = 1 or 2, such a bounded c^{∞} -solution exists if and only if $\int_K f(x)dx = 0$

PROOF. Since \triangle is an elliptic differential operator with constant coefficients, there always exists some $u \in c^{\infty}(\mathbb{R}^n)$ such that $\triangle u = f$ Here we are looking for a bounded function u in $c^{\infty}(\mathbb{R}^n)$ Let

Let

$$E_n(x) = egin{cases} |x| & ext{if } n=1 \ \log |x| & ext{if } n=2 \ -rac{1}{|x|^{n-2}} & ext{if } n>3 \end{cases}$$

Now, using the results in [2], we can show that for a fixed $y \in K$ and any $x \in K^c$,

$$u(x) = \left(\int f(x)dx
ight)eta_n E_n(x-y) + l(x)$$

where l(x) is a bounded harmonic function in K^c if $n \ge 2$ (and affine bounded if n = 1)

Here $\beta_1 = \frac{1}{2}$, $\beta_2 = \frac{1}{2\pi}$ and $\beta_n = \frac{1}{(n-2)\alpha_n}$ if $n \ge 3$, α_n being the measure of the unit sphere in \mathbb{R}^n Consequently, using the fact that $E_n(x)$ is bounded in a neighborhood of the point at infinity if and

NOTE. Since a bounded harmonic function outside a compact set in \mathbb{R}^n , $n \ge 2$, tends to a limit at infinity, if u is a bounded solution of $\Delta u = f \in c_0^\infty$, we can choose $u_0 \in c^\infty(\mathbb{R}^n)$ so that u_0 tends to 0 at infinity and satisfies the condition $\Delta u_0 = f$. In this case, u_0 is unique

4. SURJECTIVITY ON THE SOBOLEV SPACES

only if $n \ge 3$, we arrive at the conclusion of the proposition

We conclude this article with a remark on the solutions of a differential operator on the Sobolev spaces $H^{s}(\mathbb{R}^{n})$

We make use of the following properties.

i) For each real $s, H^s(\mathbb{R}^n)$ is a Hilbert space such that $H^s \subset H^t$ if $t \leq s$

- ii) H^s is the completion of c_0^{∞} in the norm $\|\cdot\|_{H^s}$
- iii) For any s, H^{-s} represents the topological dual of H^s
- iv) If $s > \frac{n}{2} + k$ where k is a nonnegative integer, then $H^s \subset c^k$
- v) If A is a differential operator of order m with c^m -coefficients, $A^*(c_0^\infty) \subset L^2 \subset H^s$ for any $s \ge 0$
- vi) If A is a differential operator of order m with c^{∞} -coefficients, $A^*(c_0^{\infty}) \subset H^s$ for every real s Then, with arguments similar to those utilized to prove some of the earlier results, we obtain

THEOREM 4.1. Let T be a distribution in \mathbb{R}^n , $n \ge 1$ Suppose that A is a differential operator of order m satisfying one of the following two sets of assumptions

a) A has c^m -coefficients and $s \ge 0$

b) A has c^{x} -coefficients and s is any real number

Then T = Au in the sense of distribution, for some $u \in H^s$, if and only if $|T(\phi)| \le c ||A^*\phi||_H$, for all $\phi \in c_0^{\infty}(\mathbb{R}^n)$

REMARK 4.1. Let A be a differential operator of order m with coefficients either constants or from the Schwartz's space (i e rapidly decreasing c^{∞} -functions) Then if $|T(\phi)| \le c ||A^*\phi||_H$. for all $\phi \in c_0^{\infty}$, we have as in the above theorem, $T = Au, u \in H^s$

But, in this special case, $T \in H^{s-m}$ and consequently, if $s > \frac{n}{2} + m$, then T = Au in the classical sense i e u is a strong solution of the differential equation

 $\begin{array}{ll} H^k(\Omega) \text{-spaces} & \text{Let now } \Omega \text{ be an open set in } \mathbb{R}^n, n \geq 1 & \text{Recall that for any positive integer } k, \\ H^k_0(\Omega) \text{ is defined as the closure of } c^\infty_0(\Omega) \text{ in } H^k(\Omega) & \text{For any } v \in L^2(\Omega), \text{ define } \|v\|_{-k} = \sup_{u \in H^k_0(\Omega)} \frac{|\langle v, u \rangle|}{\|u\|_{H^{\kappa(\Omega)}}} \\ \end{array}$

Then, if $H^{-k}(\Omega)$ denotes the completion of $L^2(\Omega)$ in the norm $\|\cdot\|_{-k}$, $H^{-k}(\Omega)$ is the topological dual of $H_0^k(\Omega)$ for any integer $k \ge 0$ (see Al-Gwaiz [4], p 191)

With this background, we can state an analogue of Theorem 4 1 as follows

THEOREM 4.2. Let T be a distribution in an open set Ω in \mathbb{R}^n , $n \ge 1$ Suppose A is a linear differential operator with $c^{\infty}(\Omega)$ -coefficients Then, for any integer $k \ge 0$, there exists $u \in H^{-k}(\Omega)$ such that Au = T if and only if $|T\phi| \le c ||A^*\phi||_{H^k(\Omega)}$ for all $\phi \in c_0^{\infty}(\Omega)$

REFERENCES

- [1] SCHECHTER, M, Modern Methods in Partial Differential Equations, McGraw-Hill Inc, 1977
- [2] RUDIN, W, Functional Analysis, McGraw-Hill Inc, 1973.
- [3] ANANDAM, V., Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier 22 (1972), 97-160
- [4] AL-GWAIZ, M, Theory of Distributions, Marcel Deker Inc., New York, 1992