ON COMPLETELY O-SIMPLE SEMIGROUPS

YUE-CHAN PHOEBE HO
Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO 64093

(Received March 17, 1994 and in revised form August 31, 1995)

Abstract

Let S be a completely 0 -simple semigroup and F be an algebraically closed field. Then for each 0 -minimal right ideal M of $S, M=B \cup C \cup\{0\}$, where B is a right group and C is a zero semigroup. Also, a matrix representation for S other than Rees matrix is found for the condition that the semigroup ring $R(F, S)$ is semisimple Artinian.

KEY WORDS AND PHRASES. Completely 0 -simple semigroups, 0 -minimal right ideals, right groups, zero semigroups, representation of semigroups, semisimple Artinian semigroup rings.

1991 AMS SUBJECT CLASSIFICATION CODES. 20M30, 20M25

1. INTRODUCTION.

A semigroup S is a set of elements together with an associative, binary operation defined on S. A nonempty subset A of a semigroup S is a left (right) ideal of S if $S A \subseteq A(A S \subseteq A) . A$ is a two-sided ideal of S if it is both a left ideal and a right ideal of S. A is said to be a minimal (left, right) ideal of S if, for any (left, right) ideal $B, B \subseteq A$ implies $B=A$. A (left, right) ideal A of S is said to be 0 -minimal if whenever there is a (left, right) ideal B of S contained in A, either $B=A$ or $B=\{0\} . S$ is a 0 -simple semigroup if $S^{2} \neq\{0\}$ and $\{0\}$ is the only proper ideal of S.

An element e in S is called an idempotent if $e^{2}=e$. Let E be the set of idempotents. Define $e \leq f$ if $e f=e=f e$. Then a nonzero idempotent is said to be primitive if it is minimal with respect to \leq and S is said to be completely 0 -simple if it is 0 -simple and contains a primitive idempotent.

Let F be a field. A semigroup ring $R(F, S)$ is an associative F-algebra with the semigroup S as its basis and with multiplication defined distributively using the semigroup multiplication in S. If I is a (left, right) ideal of S then the semigroup ring $R(F, I)$ is a (left, right) ideal of $R(F, S)$. For each \tilde{a} in $R(F, S), \tilde{a}=\sum_{x \in S, \alpha_{x} \in F} \alpha_{x} x$ such that only a finite number of α_{x} 's are nonzero. The set

$$
\begin{equation*}
\operatorname{Supp}(\tilde{a})=\left\{x \in S \mid \alpha_{x} \neq 0, \tilde{a}=\sum_{x \in S, \alpha_{x} \in F} \alpha_{x} x\right\} \tag{1.1}
\end{equation*}
$$

is called the support of \tilde{a} and by the length of \tilde{a} we mean the number of distinct elements in
$\operatorname{Supp}(\tilde{a})$ and denote it by $\ell(\tilde{a})$.
An $n \times n$ matrix $A=\left(a_{i}\right)$ is called a mono-row matrix if at most one row of A contains nonzero entries; i.e. $a_{\imath \jmath}=0$ for all i, \jmath except $\imath=\imath_{0}$ for some \imath_{0}. Let T be a semigroup and let $\mathcal{M}\left(n, T^{0}\right)$ be the set of all the $n \times n$ mono-row matrices over T^{0}. Then $\mathcal{M}\left(n, T^{0}\right)$ is a semigroup with matrix multiplication as its operation.

Throughout this paper, S denotes a completely 0 -simple semigroup, F denotes an algebraically closed field, $R(F, T)$ means the semigroup algebra gencrated by a semigroup T, and $R=R(F, S)$.

2. O-MINIMAL RIGHT IDEALS.

Since S is completely 0 -simple, it is shown in [1] that S is regular and contains at least one 0 -minimal right ideal. Let M be such a 0 -minimal right ideal. Then $M=e S$ for some primitive idempotent e which serves as a left identity in M. Suppose there exists a nonzero element a in S such that $a S=0$. Then $a \notin a S a=\{0\}$ which contradicts the regularity of S. Therefore for all nonzero a in $S, a S \neq 0$. Hence, $M=B \cup C \cup\{0\}$ where

$$
\begin{equation*}
B=\{b \in M \mid b S=M=b M\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\{c \in M \mid c S=M \text { and } c M=0\} \tag{2.2}
\end{equation*}
$$

PROPOSITION 2.1. B is a right group; i.e. $B \cong G \times E$ where G is a group and E is a right zero semigroup.

PROOF. B is a semigroup because, for all $b_{1}, b_{2} \in B$,

$$
\begin{equation*}
\left(b_{1} b_{2}\right) S=b_{1}\left(b_{2} S\right)=b_{1} M=M \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b_{1} b_{2}\right) M=b_{1}\left(b_{2} M\right)=b_{1} M=M \tag{2.4}
\end{equation*}
$$

In order to be a right group, B has to be right simple and contain a primitive idempotent. Obviously, the generator e of M is in B for $e S=M=e M$. So $B \neq \emptyset$. Given any $b \in B$, if $b m_{1}=b m_{2}$, for $m_{1}, m_{2} \in M$, then ebem $m_{1}=$ ebem m_{2}, since e is a left identity of M. But from [1] we know that $e S e$ is a group with 0 and identity e. So $e b e$ must have an inverse b^{\prime} in $e S e$. Thus

$$
\begin{equation*}
m_{1}=e m_{1}=b^{\prime}(e b e) m_{1}=b^{\prime}(e b e) m_{2}=e m_{2}=m_{2} \tag{2.5}
\end{equation*}
$$

Therefore $b m_{1}=b m_{2}$ if and only if $m_{1}=m_{2}$. Now given $a, b \in B, a \in M=b M$ implies $a=b m$ for some $m \in M$. m must be in B; otherwise $a M=b(m M)=0$ contradicts the assumption that $a \in B$. Hence $b B=B$ for all $b \in B$. Therefore, B is a right group and $B \cong G \times E$ where G is a group and E is a right zero semigroup.

Let g_{0} be the identity of G. Then $\left(g_{0}, e\right)$, for any $e \in E$, is a left identity of B and of M. Given any $b \in B$ and $c \in C,(b c) S=b(c S)=b M=M$ and $(b c) M=b(c M)=0$ imply that
$C=b C$. In particular, $\left(g_{0}, e\right) c=c$. Conversely, if $(g, e) c=c$ for some $g \in G$, then $c s=\left(g_{0}, e\right)$ for some $s \in S$ becausc $c S=M$. Hence

$$
\begin{equation*}
(g, e)=(g, e)\left(g_{0}, e\right)=(g, e) c s=c s=\left(g_{0}, e\right) \tag{2.6}
\end{equation*}
$$

i.e. $g=g_{0}$. So $(g, e) c=c$ for any $c \in C \Longleftrightarrow g=g_{0}$. Using this result and denoting $d_{g}=(g, e) d$ for $g \in G$ and $d \in C$, we get

$$
\begin{equation*}
d_{g}=d_{h} \Longleftrightarrow d=\left(g^{-1} h, e\right) d \Longleftrightarrow g^{-1} h=g_{0} \Longleftrightarrow g=h \tag{2.7}
\end{equation*}
$$

PROPOSITION 2.2. Fix an element $e \in E$. Then there exists a subset D in C such that every $c \in C$ can be uniquely expressed by d_{g} for some $g \in G$ and $d \in D$.

PROOF. For the fixed e, consider the collection

$$
\begin{equation*}
\mathcal{A}=\left\{A \subseteq C \mid(g, e) A \subseteq C \text { and }(g, e) a_{1} \neq(h, e) a_{2} \text { for all } g, h \in G \text { and } a_{1} \neq a_{2} \in A\right\} \tag{2.8}
\end{equation*}
$$

Suppose \mathcal{B} is a chain in \mathcal{A}. Then for any distinct a_{1} and a_{2} in $\cup \mathcal{B}$ there exist $A_{1}, A_{2} \in \mathcal{B}$ such that $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$. Without loss of generosity, assume $A_{1} \subseteq A_{2}$. Then $a_{1}, a_{2} \in A_{2}$. Then $(g, e) a_{1} \neq(h, e) a_{2}$ for all $g, h \in G$; i.e. $\cup \mathcal{B} \subseteq \mathcal{A}$. By Zorn's Lemma, \mathcal{A} contains a maximal element D and so every $c \in C$ can be uniquely expressed as $c=d_{g}$ for some $g \in G$ and $d \in D$. Otherwise $D \cup\{c\} \subseteq \mathcal{A}$ which is contradictary to the nature of D.

With the result of Proposition 2.2, let us denote $(g, d)=(g, e) d$ for each $(g, e) d \in C$. Then

$$
\begin{equation*}
(h, f)(g, d)=(h, f)(g, e)\left(g_{0}, e\right) d=(h g, d) \tag{2.9}
\end{equation*}
$$

for all $g, h \in G, f \in E$, and $d \in D$. We conclude that $(g, f)(h, x)=(g h, x)$ for all $g, h \in G, f \in E$, and $x \in E \cup D$.

According to the Rees Theorem in [1], a completely 0 -simple semigroup can be represented by a regular Rees $m \times n$ matrix semigroup, $M^{0}(H ; m, n ; P)$ over the group H, with an $n \times m$ sandwich matrix P. While the group H means the \mathcal{H}-class of an idempotent e, we can see that $G \times\{e\}=e S e=H$.

For each $s \in S, s M$ is either $\{0\}$ or a 0 -minimal right ideal. So $S=U s_{i} M$, where $s_{1}=\left(g_{0}, e\right)$ and $s_{i} M \neq s_{\jmath} M$ for all $i \neq j$. Furthermore, $s_{\imath} M=B_{\imath} \cup C_{\imath} \cup\{0\}$ for each i with

$$
\begin{equation*}
B_{\imath}=\left\{b \in s_{\imath} M \mid b S=s_{\mathbf{z}} M=b\left(s_{\imath} M\right)\right\} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\imath}=\left\{c \in s_{\imath} M \mid c S=s_{\mathbf{z}} M \text { and } c\left(s_{\mathbf{z}} M\right)=\{0\}\right\} \tag{2.11}
\end{equation*}
$$

Choose $s \in S$ so that $s M$ is 0 -minimal. Note that $s \in s M$; otherwise $s=t m$ for some other 0 minimal right ideal $t M$. If $m \in B$ then $s M=t m M=t M$; while $m \in C$ implies $s M=t m M=0$. So $s S=s M=s_{i} M$ for some i. Given $m \in M$, we have

$$
\begin{equation*}
s m \in B_{\mathbf{z}} \Longleftrightarrow(s m) S=s_{\mathbf{z}} M=s M=(s m) s M \Longleftrightarrow m s \in B \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\text { while } s m=0 \Longleftrightarrow(s m) S=0 \Longleftrightarrow s(m S)=0 \Longleftrightarrow m=0 \tag{2.13}
\end{equation*}
$$

Now if $m s \in C$ then $M=(m s) S=(m s) M=0$ causes a contradiction. So when $s m \in C_{t}$, $m s=0$. From here, we get

$$
\begin{equation*}
s m_{1}=s m_{2} \Longleftrightarrow\left(\left(g^{-1}, e\right) m\right) s m_{1}=\left(\left(g^{-1}, e\right) m\right) s m_{2} \tag{2.14}
\end{equation*}
$$

for some $m \in M$ such that

$$
\begin{align*}
m s=(g, e) & \Longleftrightarrow\left(g^{-1}, e\right)(m s) m_{1}=\left(g^{-1}, e\right)(m s) m_{2} \\
& \Longleftrightarrow\left(g_{0}, e\right) m_{1}=\left(g_{0}, e\right) m_{2} \Longleftrightarrow m_{1}=m_{2} \tag{2.15}
\end{align*}
$$

3. SEMISIMPLE ARTINIAN SEMIGROUP ALGEBRAS.

Now consider the semigroup algebra $R=R(F, S)$ where S is a completely 0 -simple semigroup. We learned from [2] that a simple ideal in a semisimple Artinian ring is isomorphic to a matrix ring. With this in mind, we would like to see if this matrix ring can help us find a matrix semigroup representing S.

First, let us look at two important properties.
PROPOSITION 3.1. (see [3]) If $R(F, S)$ is right Artinian, then S is finite.
PROPOSITION 3.2. (see [1]) $R(F, G)$ is semisimple Artinian if and only if char F does not divide $|G|$.

When S is finite, $w_{x}=\sum_{g \in G}(x)$ is an element of R. Let

$$
\begin{equation*}
J_{i}=\left\{s_{i} w_{x}=\sum_{g \in G} s_{\imath}(g, x) \mid x \in E \cup D\right\} \tag{3.1}
\end{equation*}
$$

for each i and $J=\cup J_{i}$ in R. For $t \in S$, if $\left(g_{0}, x\right) t=0$ then $\left(w_{x}\right) t=\sum_{g \in G}(g, x) t=0$ and if $\left(g_{0}, x\right) t=(h, y)$, for some $y \in E \cup D$ and $h \in G$, then

$$
\begin{equation*}
\left(w_{x}\right) t=\sum_{g \in G}(g, x) t=\sum_{h \in G}(h, y)=w_{y} \tag{3.2}
\end{equation*}
$$

because $G=G h$. In addition, $w_{e} w_{x}=\gamma w_{x}$ with $\gamma=|G|$ and $e \in E$. Consequently, each $\tilde{J}_{i}=R\left(F, J_{i}\right)$ is a right ideal and $\tilde{J}=R(F, J)$ is an ideal of R.

LEMMA 3.3. If R is semisimple Artinian, then \tilde{J}_{3} is a minimal right ideal of \tilde{J} such that $\tilde{J}_{i} \cong \tilde{J}_{j}$ for all i and j and $\tilde{J} \cong \oplus \tilde{J}_{i}$.

PROOF. Suppose \tilde{A} is a nonzero right ideal of \tilde{J} contained in \tilde{J}_{2}. Find a nonzero element $\tilde{a} \in \tilde{A}$ so that $\ell=\ell(\tilde{a})$ in \tilde{A} with respect to the basis J_{2} is minimal. Suppose $\ell>1$ and write $\tilde{a}=\sum_{\alpha, x} \alpha s_{z} w_{x}$. Then for any j and any $y \in E \cup D$,

$$
\begin{equation*}
\tilde{a} s, w_{y}=\sum_{\alpha, x} \alpha s_{\imath} w_{x} s, w_{y} \in \tilde{A} \tag{3.3}
\end{equation*}
$$

must be 0 otherwise $\tilde{a} s_{\jmath} w_{y}=\beta s_{z} w_{y}$ has length 1 in \tilde{A} contradicting $\ell>1$. So $\tilde{a} \tilde{J}=0$. But since R is semisimple, so is \tilde{J}. Then $\tilde{a}=0$, which is against the choice of \tilde{a}. So $\ell=1$ and then $\tilde{a}=\alpha s_{\imath} w_{x}$ for some $\alpha \in F \backslash\{0\}$ and $x \in E \cup D$. Since there exists $t \in S$ satisfying $\left(g_{0}, x\right) t \in B ;$ i.e. $\left(g_{0}, x\right) t=(h, e)$ for some $h \in G$, and $e \in E$, we obtain

$$
\begin{align*}
\tilde{a}\left(\alpha^{-1} \gamma^{-1} t w_{y}\right) & =\left(\alpha s_{z} w_{x}\right)\left(\alpha^{-1} \gamma^{-1} t w_{y}\right)=\gamma^{-1} s_{\imath} w_{x} t w_{y} \tag{3.4}\\
& =\gamma^{-1} s_{i}\left(w_{e} w_{y}\right)=\gamma^{-1} s_{i}\left(\gamma w_{y}\right)=s_{i} w_{y}
\end{align*}
$$

But $t\left(g_{0}, y\right) \in t M=s, M$ for some j implies $\alpha^{-1} \gamma^{-1} t w_{y} \in \tilde{J}$. So $s_{1} w_{y} \in \tilde{A}$, for all $y \in E \cup D$, and $\tilde{J}_{2}=\tilde{A}$. That is, \tilde{J}_{2} is a minimal right ideal of \tilde{J}.

Note that $J_{\imath} \cap J_{j}=\emptyset$ for all $i \neq j$ implies $\tilde{J}_{\imath} \cap \tilde{J}_{J}=0$. By mapping $s_{\imath} w_{x}$ to $s_{j} w_{x}$ from \tilde{J}_{\imath} to \tilde{J}_{J} we obtain an isomorphism, hence $\tilde{J}_{i} \cong \tilde{J}_{J}$. Also $J=\cup_{i=1}^{q} J_{2}$, hence $\tilde{J} \cong \oplus \tilde{J}_{i}$.

PROPOSITION 3.4. If R is semisimple Artinian, \tilde{J} is a simple ideal of R.
PROOF. Let \tilde{A} be a nonzero ideal of R contained in \tilde{J}. For each i, if $\tilde{A} \cap \tilde{J}_{1} \neq 0$ then $\tilde{A} \cap \tilde{J}_{\mathbf{2}}=\tilde{J}_{2}$. Given any $0 \neq \tilde{a}=\sum_{\alpha, \imath, x} \alpha s_{\imath} w_{x}$ in \tilde{A}, if $\left(g_{0}, y\right) \tilde{a}=0$ for all $y \in E \cup D$ then $\tilde{J} \tilde{a}=0$ and so $\tilde{a}=0$, contradicting $\tilde{a} \neq 0$. So there exists $y \in E \cup D$ such that

$$
\begin{equation*}
0 \neq\left(g_{0}, y\right) \tilde{a}=\sum_{\alpha, 2, x} \alpha\left(g_{0}, y\right) s_{i} w_{x}=\sum_{\beta_{x} \in F, x \in E \cup D} \beta_{x} w_{x} \in \tilde{A} . \tag{3.5}
\end{equation*}
$$

It follows that $s_{j}\left(g_{0}, y\right) \tilde{a} \in \tilde{J}, \cap \tilde{A}$ for each j and so $\tilde{J}=\oplus \tilde{J}_{i} \subseteq \tilde{A}$. Thus \tilde{J} is simple.
Under the assumption that F is algebraically closed, R is semisimple Artinian implies that \tilde{J} is a matrix ring such that $\tilde{J} \cong M a t_{n} F$. As was mentioned by Jacobson[4], there exists a set of matrix units $\left\{e_{i j}\right\}$ such that $\tilde{J}_{i}=e_{i t} \tilde{J}$. As we can see, each minimal right ideal \tilde{J}_{i} is an n-dimensional subspace of \tilde{J} with basis J_{2}. So $|E \cup D|=n$ and the number of the elements in $\left\{J_{2}\right\}$ is also n.

For each i, let \tilde{J}_{i} be isomorphic to the i th row-subspace in $M a t_{n} F$ and use \cong to denote the two correspoonding elements between the two sets. Then we have

$$
s_{1} w_{x} \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.6}\\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith where } a_{k} \in F \text { for each } x \in E \cup D
$$

Let us begin by studying the first row. For any $e \in E$, recall that $w_{e} w_{e}=\gamma\left(w_{e}\right)$ and suppose $w_{e} \cong\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{n} \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$. Then

$$
\begin{align*}
\gamma w_{e} & \cong \gamma\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{ccc}
a_{1} & a_{2} & \ldots \\
0 & 0 & a_{n} \\
\vdots & \vdots & \ddots
\end{array}\right) \\
& =a_{1}\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \Longrightarrow a_{1}=\gamma \tag{3.7}
\end{align*}
$$

As to $d \in D$, we know that $w_{d} w_{d}=0$. So

$$
\begin{align*}
w_{d} \cong\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \Longrightarrow 0 & =\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \\
& =a_{1}\left(\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \Longrightarrow a_{1}=0 \tag{3.8}
\end{align*}
$$

We conclude that, for $x \in E \cup D, w_{x} \cong \gamma\left(\begin{array}{cccc}\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$ where $\lambda_{x 1}=\left\{\begin{array}{ll}1, & \text { if } x \in E \\ 0, & \text { if } x \in D\end{array}\right.$.

In general, since $s_{i} w_{e} w_{x}=\gamma s_{\imath} w_{x}$ for each i, given $s_{\imath} w_{e}=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{1} & a_{2} & \ldots & a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$ ith we obtain

$$
\begin{align*}
\gamma s_{\imath} w_{x} & \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) i t h \cdot \gamma\left(\begin{array}{cccc}
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \\
& =a_{1} \gamma\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith. } \tag{3.9}
\end{align*}
$$

$$
\begin{align*}
& \text { Consequently, } s_{\imath} w_{x} \cong a_{1}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith. Suppose there exists } f \in E \backslash\{e\} \text { and } \\
& s_{1} w_{f} \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
b_{1} & b_{2} & \ldots & b_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith. Then } \\
& s_{2} w_{f} w_{x}=\gamma s_{\imath} w_{x} \Rightarrow a_{1}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith }=b_{1}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith }, \tag{3.10}\\
& \text { hence } a_{1}=b_{1} \neq 0 \text {. Now let } \gamma_{i}=a_{1} \text {. We get } s_{i} w_{x} \cong \gamma_{i}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith for each }
\end{align*}
$$

$x \in E \cup D$. In order to study $\lambda_{x i}$, we need to look at two different cases of $s_{i}\left(g_{0}, x\right)$ for each x and each i.

Case 1. If $s_{i}\left(g_{0}, x\right) \in C_{i}$ then $\left(g_{0}, x\right) s_{i}=0$ and $w_{z} s_{i} w_{y}=0$ for all $y \in E \cup D$. Thus

$$
\begin{align*}
0=w_{x} s w_{y} & \cong \gamma\left(\begin{array}{cccc}
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \gamma_{i}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{y 1} & \lambda_{y 2} & \ldots & \lambda_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) i t h \tag{3.11}\\
& =\gamma \lambda_{x i} \gamma_{i}\left(\begin{array}{cccc}
\lambda_{y 1} & \lambda_{y 2} & \ldots & \lambda_{y n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) .
\end{align*}
$$

But γ and γ_{i} are not zero. So $\lambda_{x i}=0$.
Case 2. If $s_{i}\left(g_{0}, x\right) \in B_{i}$ then $\left(g_{0}, x\right) s_{i} \in B$ and $\left(g_{0}, x\right) s_{i}=(h, c)$ for some $h \in G$ and $e \in E$.

So $w_{x} s_{z}=w_{e}$ and $w_{x} s_{i} w_{y}=w_{e} w_{y}=\gamma w_{y}$ for all $y \in E \cup D$. That is,

$$
\begin{align*}
\gamma^{2}\left(\begin{array}{cccc}
\lambda_{y 1}\left(\lambda_{y 2}\right. & \ldots & \lambda_{y n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) & =\gamma\left(\begin{array}{cccc}
\lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \gamma_{2}\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{y 1} & \lambda_{y 2} & \ldots & \lambda_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith } \tag{3.12}\\
& =\gamma \lambda_{x} \gamma_{2}\left(\begin{array}{cccc}
\lambda_{y 1} & \lambda_{y 2} & \ldots & \lambda_{y n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) .
\end{align*}
$$

Hence $\lambda_{x_{1}}=\gamma \gamma_{2}^{-1}$.
Let $\gamma_{1}=\gamma$, we obtain our next proposition.
PROPOSITION 3.5. $\quad s_{\imath} w_{x} \cong \gamma_{\mathbf{z}}\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{x 1} & \lambda_{x 2} & \ldots & \lambda_{x n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$ ith, where $\lambda_{x i}=\gamma\left(\gamma_{\mathbf{z}}\right)^{-1}$ if $s_{\imath}\left(g_{0}, x\right) \in B_{i}$; and $\lambda_{x i}=0$ if $s_{\imath}\left(g_{0}, x\right) \in C_{\imath}$. Thus, for all $x, y \in E \cup D$, either $\lambda_{x_{1}}=\lambda_{y_{1}}$ with both $s_{z}\left(g_{0}, x\right)$ and $s_{i}\left(g_{0}, y\right)$ are in B_{z} or $\lambda_{x_{i}} \lambda_{y_{1}}=0$.

With this result, we are ready to find a representation for each element of S. Given $x \in E \cup D$, let

$$
h_{x_{i}}=\left\{\begin{array}{ll}
g_{2}, & \text { if }\left(g_{0}, x\right) s_{i}=\left(g_{i}, e\right) \in B \tag{3.13}\\
0, & \text { if }\left(g_{0}, x\right) s_{\mathrm{t}}=0 .
\end{array} .\right.
$$

In particular,

$$
h_{x_{1}}= \begin{cases}g_{0}, & \text { if } x \in E \tag{3.14}\\ 0, & \text { if } x \in D\end{cases}
$$

Define a mapping $\phi: S \rightarrow \mathcal{M}\left(n, G^{0}\right)$ by

$$
\phi\left(s_{\imath}(g, x)\right)=g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.15}\\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith. }
$$

ϕ is well-defined for if $s_{\imath}(g, x)=s_{\jmath}(h, y)$ then $i=j$ and $(g, x)=(h, y)$.
PROPOSITION 3.6. S is isomorphic to a left ideal of $\mathcal{M}\left(n, G^{0}\right)$ and, for each i, there exists
$a \in S$ such that

$$
\phi(a)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.16}\\
\vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & \ldots & g_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith with } g_{\mathbf{1}} \neq 0 .
$$

PROOF. We first claim that ϕ is a monomorphism. By letting $s_{\imath}(g, x), s_{\jmath}(h, y)$ be any two elements in L, we have

$$
\begin{align*}
& \phi\left(s_{i}(g, x)\right)=g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith and } \tag{3.17}\\
& \phi\left(s_{3}(h, y)\right)=h\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{y 1} & h_{y 2} & \ldots & h_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) j t h . \tag{3.18}
\end{align*}
$$

So

$$
\phi\left(s_{\imath}(g, x)\right) \phi\left(s_{j}(h, y)\right)=g h_{x}, h\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.19}\\
\vdots & \vdots & \ddots & \vdots \\
h_{y 1} & h_{y 2} & \ldots & h_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \text { ith. }
$$

If $\left(g_{0}, x\right) s_{j} \in B$, then $\left(g_{0}, x\right) s_{j}=\left(h_{x_{j}}, e\right)$ and

$$
\begin{align*}
\phi\left(s_{i}(g, x) s_{j}(h, y)\right) & =\phi\left(s_{i}(g, e)\left(h_{x_{j}}, e\right)(h, y)\right) \\
& =\phi\left(s_{i}\left(g h_{x}, h, y\right)\right) \\
& =g h_{x_{j}} h\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{y 1} & h_{y 2} & \ldots & h_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) i t h . \tag{3.20}
\end{align*}
$$

But if $\left(g_{0}, x\right) s_{j}=0$ then $h_{x}=0$. In both cases, we see that

$$
\begin{equation*}
\phi\left(s_{\imath}(g, x)\right) \phi\left(s_{j}(h, y)\right)=\phi\left(s_{\imath}(g, x) s_{\jmath}(h, y)\right) . \tag{3.21}
\end{equation*}
$$

Suppose $\phi\left(s_{\imath}(g, x)\right)=\phi\left(s_{\jmath}(h, y)\right)$. Then

$$
g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.22}\\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith }=h\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{y 1} & h_{y 2} & \ldots & h_{y n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) j t h .
$$

First, $i=j$. Next, $g h_{x_{k}}=h h_{y_{k}}$ for all k. Then, for each k, either $h_{x_{k}}, h_{y_{k}} \in G$ or $h_{x_{k}}=0=h_{y_{k}}$. Consequently, $\lambda_{x_{k}}=\lambda_{y_{k}}$, for all k, and $x=y$ by Proposition 3.5. Thus $g=h$ and $s_{\imath}(g, x)=$ $s_{\boldsymbol{\jmath}}(h, y)$; i.e. ϕ is a monomorphism.

Now we want to show that $\phi(S)$ is a left ideal of $\mathcal{M}\left(n, G^{0}\right)$. Given any $s_{i}(g, x) \in S$ with

$$
\phi\left(s_{\imath}(g, x)\right)=g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.23}\\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith }
$$

and any $\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{1} & b_{2} & \ldots & b_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right) j t h \in \mathcal{M}\left(n, G^{0}\right)$, the product

$$
\begin{align*}
& \left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
b_{1} & b_{2} & \ldots & b_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) j t h \cdot g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith } \tag{3.24}\\
& =b_{1} g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{x 1} & h_{x 2} & \ldots & h_{x n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) j t h
\end{align*}
$$

is still in $\phi(S)$. Therefore $\phi(S)$ is left ideal of $\mathcal{M}\left(n, G^{0}\right)$.
For each i, there exists $x \in E$ such that $s_{i}\left(g_{0}, x\right) \in B_{i}$, hence $\left(g_{0}, x\right) s_{i}=\left(h_{x_{1}}, e\right)$ for some $e \in E$. Thus $\phi\left(s_{\imath}\left(g_{0}, x\right)\right)$ is an element in $\phi(S)$ whose $i i$ th entry is nonzero.

In order to show that R is semisimple Artinian, let us assume the following on a 0 -simple semigroup S :
(i) S is finite,
(ii) S is isomorphic to a left ideal of an $n \times n$ mono-row matrix semigroup over a finite group G, denoted by $\mathcal{M}=\mathcal{M}\left(n, G^{0}\right)$, such that for each i, there exists an element $a \in S$ with

$$
a \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & \ldots & g_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith and } g_{i} \neq 0
$$

(iii) the characteristic of F does not divide $|G|$.

By assumption(iii), $\tilde{G}=R(F, G)$ is a semisimple Artinian ring. Then it is stated in [2] that \tilde{G} is the direct sum of its minimal left ideals which are generated by a set of orthorgonal idempotents $\left\{f_{1}, f_{2}, \cdots f_{p}\right\}$ and the identity $1=f_{1}+f_{2}+\cdots+f_{p}$. Note that $\tilde{\mathcal{M}}=R(F, \mathcal{M})=\operatorname{Mat}_{n}(\tilde{G})$. Let

$$
\left(f_{i}\right)_{\jmath \jmath}=\left(\begin{array}{ccccc}
0 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \tag{3.25}\\
0 & \ldots & f_{2} & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0
\end{array}\right) j t h \text { for } 1 \leq i \leq p \text { and } 1 \leq j \leq n
$$

Then $\left\{\left(f_{i}\right)_{\jmath \jmath} \mid i=1,2, \ldots, p ; j=1,2, \ldots, n\right\}$ is a set of orthorgonal idempotents in $\tilde{\mathcal{M}}$ such that $\sum_{i, j}\left(f_{i}\right)_{j j}$ is equal to the identity matrix in $\tilde{\mathcal{M}}$.

LEMMA 3.7. $\tilde{\mathcal{M}}\left(f_{z}\right)_{\jmath \jmath}$ is a minimal left ideal of $\tilde{\mathcal{M}}$ for each i and j.
PROOF. For each i and j, the left ideal

$$
\begin{align*}
\tilde{\mathcal{M}}\left(f_{\imath}\right)_{j j} & =\left\{\left.\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(f_{i}\right)_{j j} \right\rvert\, a_{k l} \in \tilde{G} \text { for each } k \text { and } l\right\} \\
& =\left\{\left.\left(\begin{array}{ccccc}
0 & \ldots & a_{1 j} f_{2} & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & a_{n j} f_{2} & \ldots & 0
\end{array}\right) \right\rvert\, a_{k j} \in \tilde{G}, k=1, \ldots, n\right\} . \tag{3.26}
\end{align*}
$$

Also

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \tag{3.27}\\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{ccccc}
0 & \ldots & b_{1}, f_{i} & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & b_{n \jmath} f_{2} & \ldots & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & \ldots & a_{1}, b_{\jmath,} f_{i} & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & a_{n j} b_{\jmath j} f_{i} & \ldots & 0
\end{array}\right)
$$

for all $\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right) \in \tilde{\mathcal{M}}$. Since $\tilde{G} f_{t}$ is a minimal left ideal of \tilde{G}, either $\tilde{G} b_{j j} f_{i}=\tilde{G} f_{i}$ or $\tilde{G} b_{ر \jmath} f_{j}=0$. But if $\tilde{G} b_{\jmath_{\jmath}} f_{J}=0$ then $b_{\jmath \jmath} f_{\imath}=0$. So $\tilde{\mathcal{M}}\left(\begin{array}{ccccc}0 & \ldots & b_{1}, f_{2} & \ldots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \ldots & b_{n}, f_{i} & \ldots & 0\end{array}\right)$ is either 0 or $\tilde{\mathcal{M}}\left(f_{i}\right)_{\jmath \jmath}$ for any $\left(\begin{array}{ccccc}0 & \ldots & b_{1 j} f_{\imath} & \ldots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \ldots & b_{n j} f_{i} & \ldots & 0\end{array}\right) \in \tilde{\mathcal{M}}\left(f_{i}\right)_{j j}$. That is, $\tilde{\mathcal{M}}\left(f_{i}\right)_{j j}$ is a minimal left ideal of $\tilde{\mathcal{M}}$.

$$
\begin{gather*}
\text { Let } e_{i 2}=\left(\begin{array}{ccccc}
0 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0
\end{array}\right) \text { ith for each } i \text {. Then } \tilde{\mathcal{M}}=\oplus \tilde{\mathcal{M}}\left(f_{j}\right)_{i i} \text { because } \\
 \tag{3.28}\\
\tilde{\mathcal{M}} e_{i i}=\tilde{\mathcal{M}}\left(f_{1}\right)_{i i} \oplus \cdots \oplus \tilde{\mathcal{M}}\left(f_{p}\right)_{i i} \text { and }
\end{gather*}
$$

$$
\tilde{\mathcal{M}}=\tilde{\mathcal{M}} e_{11} \oplus \cdots \oplus \tilde{\mathcal{M}} e_{n n}
$$

Therefore $\tilde{\mathcal{M}}$ is semisimple Artinian.
PROPOSITION 3.8. $R \cong \tilde{\mathcal{M}}$.
PROOF. For each i, there exists an element $a \in S$ such that

$$
a \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.30}\\
\vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & \ldots & g_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith }
$$

and $g_{2} \neq 0$ by assumption (ii). Then

$$
\begin{equation*}
\left(e_{i z}\right)=\left(\right) \text { ith } \cdot a \in R(F, \phi(S)) \tag{3.31}
\end{equation*}
$$

hence $0 \neq R(F, \phi(S))\left(f_{j}\right)_{\mathfrak{v}}=\tilde{\mathcal{M}}\left(f_{j}\right)_{\mathfrak{n}}$. It follows that $R \cong \tilde{\mathcal{M}}$.
With all the properties found here, we obtain the major result,
THEOREM 3.9. Let F be an algebraically closed field and S be a 0 -simple semigroup. Then R is semisimple Artinian if and only if the following hold:
(1) S is finite;
(2) S is isomorphic to a left ideal of a mono-row matrix semigroup $\mathcal{M}\left(n, G^{0}\right)$ where $G=e S e$ and e is an idempotent of S, such that for each i, there is an element $a \in S$ with

$$
a \cong\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{3.32}\\
\vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & \ldots & g_{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith and } g_{i} \neq 0
$$

(3) The characteristic of F does not divide $|G|$.

According to Theorem 5.20 in [1], the sandwich matrix P in the regular Rees matrix semigroup, $\mathcal{M}(G ; h, k ; P)$, is nonsingular (in particular, $h=k$). Here $h=k$ means the number of distinct 0 -minimal right (and left) ideals of S. So the size of P is the same as that of the mono-row matrices found in this part.

Some readers may find that the representation described in Theorem 3.9 is a special case of the dual Schutazenberger representation mentioned in [1]. But the approaches are different.
4. RELATION TO REES MATRIX REPRESENTATION.

Hereafter, we would like to check if we can find the Rees matrix representation from the Main Theorem directly. First let us look at the left ideals generated by elements from $E \cup D$.

LEMMA 4.1. $S\left(g_{0}, x\right) \neq S\left(g_{0}, y\right)$ for all distinct $x, y \in E \cup D$.
PROOF. Suppose there exist $x, y \in E \cup D$ such that $S\left(g_{0}, x\right)=S\left(g_{0}, y\right)$. Then

$$
\begin{equation*}
\left(g_{0}, x\right)=\left(g_{0}, e\right)\left(g_{0}, x\right) \in S\left(g_{0}, x\right) \Longrightarrow\left(g_{0}, x\right)=s\left(g_{0}, y\right) \tag{4.1}
\end{equation*}
$$

for some $s \in S . s \in M$ for if $s M \neq M$ then $\left(g_{0}, x\right) \notin M$ is a contradiction. If $s \in C$ then $\left(g_{0}, x\right)=s\left(g_{0}, y\right)=0$ which causes another contradiction. So s must be in B and $s=(g, f)$ for some $g \in G$ and $f \in E$. Hence

$$
\begin{equation*}
\left(g_{0}, x\right)=(g, f)\left(g_{0}, y\right)=(g, y) \Longrightarrow g_{0}=g \text { and } x=y . \tag{4.2}
\end{equation*}
$$

Since the set $E \cup D$ is finite, we can list the elements in an order with one of the element $e \in E$ to be the first. Using the same notations in [1], let $\left(g_{0}, x_{\lambda}\right)=q_{\lambda}, s_{\imath}\left(g_{0}, e\right)=r_{\imath}$, and

$$
p_{\lambda_{2}}= \begin{cases}q_{\lambda} r_{2}, & \text { if } q_{\lambda} r_{2} \in H_{11} \tag{4.3}\\ 0, & \text { otherwise }\end{cases}
$$

The lemma above helps us obtaining the nonsingular sandwich matrix $P=\left(p_{\lambda_{1}}\right)$ over H_{11}^{0} (which is the same as G^{0}). Note that for each $i, p_{\lambda_{t}}=\left(g_{0}, x_{\lambda}\right) s_{\mathbf{z}}\left(g_{0}, e\right)=h_{x_{\lambda^{2}}}$. So

$$
P=\left(\begin{array}{cccc}
h_{e 1} & h_{e 2} & \ldots & h_{e n} \tag{4.4}\\
\vdots & \vdots & \ddots & \vdots \\
h_{x_{\lambda 1}} & h_{x_{\lambda} 2} & \ldots & h_{x_{\lambda n}} \\
\vdots & \vdots & \ddots & \vdots \\
h_{x_{n} 1} & h_{x_{n} 2} & \ldots & h_{x_{n} n}
\end{array}\right)
$$

and for each $s \in S$

$$
\begin{align*}
s & =g\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
h_{x_{\lambda 1} 1} & h_{x_{\lambda} 2} & \ldots & h_{x_{\lambda} n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { ith } \tag{4.5}\\
& =s_{i}\left(g, x_{\lambda}\right)=s_{\imath}\left(g_{0}, e\right)(g, e)\left(g_{0}, x_{\lambda}\right) \\
& =r_{\imath}(g, e) q_{\lambda}=(g)_{i \lambda} ; \text { the Rees matrix. }
\end{align*}
$$

This shows the relation between the Rees matrix and the matrix described in this article.

REFERENCES

1. Clifford A. H. and G. B. Preston, The Algebraic Theory of Semigroups I, Amer. Math. Soc., Providence, R.I., 1961.
2. Hungerford T. W., Algebra, Springer-Verlag, New York, 1974.
3. Okniński J., Semigroup Algebras, Dekker, New York, 1991
4. Jacobson N., Structure of Rings, Amer. Math. Soc., Providence, R.I., 1964.
5. Stenström B., Rings of Quotients, Springer-Verlag, New York, 1975.
6. Zel'manov E.I., Semigroup Algebras with Identities, Sibirskii Matematicheskii Zhurnal, Vol 18, No. 4, pp. 787-798, 1977.
