Internat. J. Math. & Math. Sci. 563
VOL. 19 NO. 3 (1996) 563-574

CLOSE-TO-STARLIKE LOGHARMONIC MAPPINGS

ZAYID ABDULHADI

Department of Mathematical Sciences
P O Box 223, KFUPM, Dhahran, SAUDI ARABIA
E-Mail FACL004@SAUPMO00 BITNET

(Received February 22, 1994 and in revised form October 31, 1994)

Abstract
We consider logharmonic mappings of the form f = z|z|*hg defined on the unit disc U which
can be written as the product of a logharmonic mapping with positive real part and a univalent
starlike logharmonic mapping. Such mappings will be called close-to-starlike logharmonic map-
pings. Representation theorems and distortion theorems are obtained. Moreover, we determine
the radius of univalence and starlikeness of these mappings.
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1 Introduction

Let H(U) be the linear space of all analytic functions defined on the unit disc U = {z;|z| < 1} and
let B be the set of all functions a € H(U) such that |a(z)] < 1 for all z € H(U). A logharmonic
mapping is a solution of the non-linear elliptic partial differential equation
fz= a.§.f, (1.1)
where the second dilatation function a is in B. Observe that nonconstant logharmonic mappings are
open and orientation preserving on U. If f does not vanish on U, then f is of the form
f=HT

where H and G are in H(U). On the other hand, if f vanishes at 0, but has no other zeros in U,

then f admits the representation
f(z) = 2™z h(2)g(2)

where

a) m is nonnegative integer

b) B = a(0)(1 + a(0))/(1 — |a(0)|*) and therefore, Re 8 > —1/2.

¢) h and g are analytic in U, g(0) = 1 and A(0) # 0.

If f is a univalent logharmonic mapping on U, then either 0 ¢ f(U) and log f is univalent and har-
monic on U or, if f(0) = 0, then f is of the form f = z|z|?’hg where Re § > —1/2 and 0 ¢ h.g(U) and
where F(() = log f(e°) is univalent and harmonic on the half-plane {¢; Re ¢ < 0} (for more details
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see [1]).If in addition, f(U) is starlike domain then F is closely connected with nonparametric minimal
surfaces over domains Q of the form @ = {w =u +iv: —00 <u < up(v), v € R and up(v + 27) =
ug(v) for all v € R}, whose corresponding Gauss mapping is periodic. Indeed, there induces a non-

parametric minimal surface (u,v,s = G(u,v)) over () defined by the defferential relations:
Iz = AF,, (5.(2))" = —A(2)(F,(2))?

where A € B such that A(z + 27i) = A(z). For elementary facts concerning minimal surfaces, we

refer the reader to [4] and [5].

Let S7, denote the set of all univalent logharmonic mappings f defined on U such that f(0) =0,
h(0) = g(0) = 1 and such that f(U) is a starlike domain. Also, let S* = {f € S}, and f € H(U)}. A
detailed study of these mappings can be found in [2]. In particular, the following is a representation

theorem for mappings in Sj,.

Theorem A [2,Theorem 2.1].

a) If f = z|z*’h*g" € S}y, then ¢(z) = % es.

b) For any given ¢ € S* and a € B, there are h* and g* in H(U) uniquely determined such that

i) 0 ¢ h*.g°(U); h*(0) = g°(0) = 1

i) 8(:) = =

iii) f(2) = z|2|*h*(2)g*(2) is a solution of (1.1) in Sj,, where

B = a(0)(1 + a(0))/(1 — [a(0)*).

In Section 2, we include representaion theorems and a distortion theorem for logharmonic map-
pings with positive real part.

In Section 3, we shall deal with close-to-starlike logharmonic mappings. Representation theorems

are given. We obtain the radius of starlikeness and univalence of these mappings. Moreover, distortion

theorems for close-to-starlike logharmonic mappings are included.

2 Logharmonic mappings with positive real part

Let Py, be the set of all logharmonic mappings R defined on the unit disk U which are of the form
R = H.G where H and G are in H(U), H(0) = G(0) = 1 and such that Re R(z) > 0 for all z € U.
In particular, the set P of all analytic functions p(z) in U with p(0) = 1 and Re p(z) > 0in U is a
subset of Pry.

We begin by observing that the set Py, is logarithmically convex. In other words, for given
A € (0,1) and given functions R,(z) and R,(z) in Pr; which are solutions of (1.1) with respect to the
same a € B, the mapping S(z) = R;(z)*R,(z)'~* belongs also to Py, and satisfies (1.1) with respect
to the same a.

Our first result of this section connects P, and P.
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Theorem 2.1. Let R = H.G € Ppy. Then p= H/G € P. Conversely, given p € P and a € B, then
there ezists nonvanishing functions H and G in H(U) such that p = H/G,R=HG € P, and R is

a solution of (1.1) with respect to the given a.

Proof: The first assertion is obvious. Suppose that p € P and a € B are given. Define

- P _a P,
G(z) = ezp( b T=aps) ) (2.1)
Then
R(z) = p(2)|G(2)* (22)

has the desired properties. O

The previous theorem allows us to give an integral representation for mappings in Prs. Indeed,

for p € P, there is a probability measure u defined on the Borel o — algebra of QU such that

P = [, T du(o). (23)

vl—

On the other hand, there is for each a € B, a probability measure v defined on the Borel o — algebra
‘of QU such that

a(z) _1-]a(OP n”_, a(0)
1—a(z) J1-a(O)f /aul v(n) + 7=y T=a(0) (2.4)

Substituting (2.3) and (2.4) into (2.1) and (2.2), we get

Theorem 2.2. A function f belongs to the class Py if and only if there are two probability measures
p and v on the Borel sets of OU and an a(0) € U such that

R()= [ Ui“ T du(C)eap (2Re [ Ka(s,a(0))ds)

where

Ky(2,0(0)) = [l — |a(0)? nz du(n) + a(0) | Jow (T‘S‘,le‘(()
[1—a(0)]? Jov 1 —nz 1-a(0)) foui - (,d#(C)

As one observes, this integral representation does not look to be a very promising tool to solve
extremal problems. However, we shall see in Theorem 2.3 that if a(0) = 0, then Jjpax |1f(2)] is
attained for p = v = §;, where §, is the Dirac measure concentrated at the point 1. Also, :’2}»?.. I1f(2)]
occurs if g = v = é_;, where §_; is the Dirac measure concentrated at -1. Finally, let us observe that

f(2) € Py and |n] < 1 imply that f(nz) € Pps.

Next, we obtain a distortion theorem for the set Pp,.

Theorem 2.3. Let R(z) = H(z).G(z) € Py, and suppose that a(0) = 0. Then for z € U we have
i) e~ 20 < |R(z)| < e2W/0=ls)

2
i) |Ru(2)] € e ealel/1= )
) 1R:(2)] =T
V4
it1) |Re(z S——————ezlﬁ/(l—ltl)_
) 1B < T =R

Egquality occurs for the right hand side inequalities if R(z) is one of the functions of the form
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Ry(¢2), |¢] =1, where
1-2

Ro(2) = i

and for the left hand side inequality if R(z) is one of the functions of the form

142
1-=2

2
eReiss

Gy K1

Proof: i):From Theorem 2.1, it follows that R admits the representation

R(s) = lejeap (2e [ 120204, ), 29)

wherea € Band p € P.

Fix |z| = r. Then we have

Ip(2)] < =T (26)
1 1
Il_—T(-z_) ST~ (27)
and
2 2r
2] 2

To see the last inequality, define b = h Then b is a Schwarz function (i.e. b € H(U), ¥0) =0
and |b] < 1 on U) and we get

zp(2)| _
p(z)

Therefore, we obtain

20'(z) 1- b(z)

()| o
"= T+ 5)

ST RGP ST-7

1+r T 1 2t r
< e —=_dt) = e,
IR(z)| < § -r“”’(2/o 1-t1 —tzdt) €

Equality occurs if and only if a(z) = (z and p(z) = :—fg, I¢] = 1, which leads to R(z) = Ro((z).

It remains to show the left hand side inequality. Observe that R € P implies that Tli € Ppy.

Applying the right hand side inequality to the function —, we obtain

R,

3r

1
_<_ el-r

R(z)
Hence, |R(z)| 2 €277, The case of equality is attained by one of the functions of the form

— 1 =
Re) = gy 1)

ii) and iii): Differentiation R(z) in (2.5) with respect to z and Z respectively yields

1 P'(2)
R = ROGT=25) o) 29)
and
Fx(2) = Re)g “(:22)) p((:)) (2.10)

(ii) and (iii) follow immediately from substituting Theorem 2.3(i), (2.7) and (2.8) in to (2.9) and
(2.10). O
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3 Close-to-starlike logharmonic mappings

Let F = z|z|*’hg be logharmonic mapping. We say that F is a close-to-starlike logharmonic mapping
if F'is the product of a starlike logharmonic mapping f = z|z|* .h"g" € S;, which is a solution of
(1.1) with respect to a € B and a logharmonic mapping with positive real part R € Pr, where its
second dilatation function is the same a.

The geometrical interpretation is the following:under a close-to-starlike logharmonic mapping
F(z), the radius vector of the image of |z| = r < 1, never turns back by an amount more than =.

Denote by C'STy, the set of all close-to-starlike logharmonic mappings. It contains in particular
the set CST of all analytic close-to-starlike functions which has been introduced by Reade 1955 [6].
Also, the set Sy, of all starlike univalent logharmonic mappings is a subset of CSTy, (take R(z) = 1

in the product). Furthermore, if F = z|2|*hg is a logharmonic mapping with respect to a € B

satisfying h(0) = ¢g(0) = 1 and Re 21;‘2('23 >0, then F is a close-to-starlike logharmonic mapping

exp < /0 ) l“is—i{:)ds)

_be necessarily univalent. For example, take F(z) = 2(1 + z) where 2 € S* and 1+ z € P.

2
where f(z) = z|z|% . On the other hand, a mapping F' € CSTLs need not to

We start this section with a representation theorem. We associate to each F = zlzlm hg € CSTyp,

the analytic function ¥ = zh/g € CST.
Theorem 3.1. a) Let F be in CSTyy, then v € CST.

b) Given any y € CST and a € B, there are h and g in H(U) uniquely determined such that
i) 0 ¢ h.g(U); h(0) = g(0) =1

i) Y = zh/g

iti) F = z|2|*hg is in CSTys which is a solution of (1.1) with respect to the given a.

Proof: a)Let F = z|2[*’hgbein CSTy,. Then there exists f = z|z|*h*g" € Si, and R(z) = HG €
such that
F(2) = f(2)R(2) = z|2|*h*.g". H.G.

* H
We deduce from Theorem A that ¢ = Zh. € S and from Theorem 2.1 that p(z) = rel € P. Therefore,
ﬁ:g is an close-to-starlike analytic map.
g‘
b) Let ¥ be in CST and let a € B be given. Define
ey [ SIS + als)-Babls) ~ Buls), .
o) = ean | G —a(s)) @)
h(z) = ¥(2)g(2)/ =
and
F = 2|zh(2)g(2) = 9(2)|2[*|g(2)]". (3.2)

Then k and g are nonvanishing analytic functions defined on U, normalized by h(0) = g(0) = 1 and f
is a solution of (1.1) with respect to the given a. It is left to show that f € CSTy,,. Since ¢ € CST,
there exists ¢ € S* and p € P such that

P = ép. (3.3)
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Substituting (3.3) in (3.1) and then in (3.2) we obtain

F(z) = ¢(2)Ie[*|g"(2) "P(2)IG(2)

where

*(2) = ex 7 sa(s)4'(s) + a(s).B. ]
7 (2) “’(/o 2Lt al feke) - Bot), )

G(z) = exp (/Oz %%ds) .

and

From Theorem A, it follows that

f(2) = $(2)|=|"g"(2)|” € Sia
and from Theorem 2.1,
R(z) = p(2)|G(2)[* € Pya.
This implies that F(z) = f(z)R(z) € CSTps. O
It is well known that f € §* if and only if f(rz)/r € S* for all r € (0,1) and that the same

ptoperty holds for the class P. Therefore, we have ¢ € CST if and only if ¥(rz)/r € CST for all
r € (0,1). Applying Theorem 3.1 we get immediately

Corollary 3.2. F € CSTy, if and only if F(rz)/r € CSTyy for all r € (0,1).

In (2] it was shown that mappings belong to Sj, if and only if there are probability measures A

and v on the Borel o-algebra of QU and there is an a(0) € U such that

Sz = zlePeapf [ Kalzn,Gia(@)du(n)a(C), (3.4)
where

B = a(0)(1 + a(0))/(1 — |a(0) "),

K2(z,n,(;a(0)) = —2log(1 — 9z) + 2Re log(1 — nz) + T(z,1,¢; a(0));

T(z,m, ¢;a(0)) = 2Req 120N —a@)n + (1 + a(0)(1 — a(0))¢, (1 = =),
. (n=Qlt —a(0) T =nz)’
ifl=Kl=1,n#¢}

and

T(z,n,7;a(0)) = 4Re ( ”an Ill——IZEg;:z)

Together with Theorem 2.2 one can characterize mappings in CSTys by an appropriate integral

representation.
In the next two results we determine the radius of univalence and the radius of starlikeness for

the mappings in the set C STy, and for the mappings in the logarithmic convex combination of the

sets CSTL, and S;,h'

Theorem 3.3. Let F = z|z[*°hg € CSTis. Then F maps the disk |z} < R, R < 2 — /3 onto a
starlike domain. The upper bound is best possible for all a € B.
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Proof: Let F = z|z|*’hg € CSTys with respect to a given a € B. Then there exists a function
f = z|z[*’h*g" € S}, and a function R(z) = H.G € Prs such that both functions are logharmonic
with respect to the same a and that

F(z) = f(2)R(2). (3.5)

and then

Now, Theorem A implies that ¢(z) =

_ 28 * a(s) ¢'(s)
£(2) = $(2)|2|*ezp 2Re /o ETAETAL (3.6)
Also, it follows from Theorem 2.1 that p(z) = H(z)/G(z) € P and then
: _a(s) p(s)
= . N
R(z) = p(z)ezp 2Re/° T a(s) 2(5) ds (3.7
Substituting (3.6) and (3.7) into (3.5), then simple calculations lead to
zF, —zF; 2f, —Zfs zR, —ZRz
_ 3.8
Re 7 Re 7 + Re R (3.8)
z¢’
= Re— + Re—
¢
Since
z¢ 1 —|z| —2)z|
Re— > —— and Re— 21 ne
6 “T+l” = |=?
we have
2F, —7F; _ 1—|z| 2|z| |22 — 4|z + 1
> —_ = 3.9
Re—F— 21 " To1F 1|z (3.9)
Thus, Reza—;iﬁ- >0 if 1 —4|z|+ |2J* > 0. The radius of starlikeness p is the smallest positive

root (less than 1) of p? —4p + 1 = 0 which is 2 — V3. Therefore, F is univalent on |z| < 2 — v/3 and
maps {z; |z| < 2 — V/3} onto a starlike domain, The analytic function f (z) = ‘zil )3 belongs to the
set CST and hence to the set CSTy, and we have f'(V3 — 2) = 0. Hence, the upper bound 2 — /3
is best possible for CST. Since f = z|z|*h*g* € S}, if and only if zh*/g* € S* (Theorem A) the
same bound is best possible for all a € B. D

Remark. The minimum of the first term on the right hand side of equation (3.8) is attained for the
function f(2) = {fo(¢2), || = 1, where

z(1+7%) —4z
ote) = g tesp (Re=%)

plays the rule of the Koebe mapping in the set of univalent logharmonic mappings. Indeed, by simple
2 —2fs _ p 1-(2
f 14¢2

Theorem 3.4. Let F = z|z|*’hg € CSTy,, with respect to a givena € B and let f = z|z[h*F € S},

calculations we obtain that Re

with respect to the same a. Then S(z) = f(2)*F(2)'™*,0 < A < 1 is univalent and starlike in 2| <2 -
The bound is best possible for all a € B.
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Proof: Let S(z) = f(z)*F(2)'™*,0 < A < 1 where f = z|z|*h"g" € S}, and F = z|z|*’hg € CSTa.
Both mappings are logharmonic with respect to the same a. Then S(z) is a logharmonic mapping

with respect to the same a. Moreover, we have

ZS,—ES;_ Zfz—fff
Re——S—— = ARe 7
Substituting from (3.6) and (3.9) into (3.10), we deduce

28, —z5; 1—|z| |2> — 4|z +1
20 TE s (X - ol N o B
ReZT 2 (1) + 00 (MR

zF, —-zZF5

1-)AR
+( )Re 7

(3.10)

_ P+ (A —4)z] +1
B 1—|z? ’
ZS; - ESZ . 2 . . . .
Thus, ReT- > 0if |z]* + (2A —4)|z] + 1 > 0. The last inequality is satisfied for [z] <2 — A — v
Therefore, S(z) is univalent in |z| <2 — A— v/A?2 — 4\ + 3 and maps that circle onto a starlike do-
main. The function

S(z) = folz)*Fo(2)' ™,

where
fo(Z) (l +Z)2
and
_z(1-2)
Fo(2) = (1+2)

satisfies the hypothesis of the theorem because fy(z) belongs to the set S* and therefore, to the set
51, and also since Fy(z) belongs to the set C'ST and hence to the set CSTs. But for this function
§'(2 = A = VA2 41 ¥ 3) = 0. Therefore, the upper bound 2 — A — V/AZ — 4X + 3 is best possible for
the set {S(2)|S(z) = f(2)*F(2)'"%; f € S}, and F € CSTy,}. From Theorem A and Theorem 3.1,
we deduce the same bound is best possible for alla € B. O

Our next result is a distortion theorem for the subset S}, for which 8 =0, i.e. a(0) = 0.

Theorem 3.5. Let f = zh*g* € S},. Then for every z € U we have

. 4]z 4)z|
letesn (L) < 17(o) < et (2L )

A —fzl) [ 4l A4le) [ 4
e "(1+||)5'f‘( N Ty ”(l—lzl)
il fe(e) < ELEED P( k|

(1—|z|)? 1—1|z| )0
The equalities hold if f(z) is one of the functions of the form { fo(Cz), |(| = 1, where

2(1-7%) 4z
fo(z) = ) exp (Rel — z) .

Proof:i) Let f = zh"g" € Sj,. Then it follows from Theorem A that f admits the representation

:_als) 0,
J(2) = #(2)ezp (‘me L ey ae s) (3.11)
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where a € B with a(0) = 0. For |z| = r we have

l2¢'(2)/d(2)| < (1 +7)/(1 =), (3.12)
la(2)/[z(1 — a(2))]] < 1/(1 =), (3.13)
and
[$(2)] < r/(1—r)2
Therefore,

[f(2)] < ﬁezp (2/0" 1+t)/(1 —t)’dt) = rezp(l‘i_rr) .

Equality occurs if and only if a(z) = (z and ¢(2)/(1 —(z)?, || = 1, which leads to f(z) = Cfo(¢z2).
For the left hand side inequality, consider the integral representation (3.4) with 8 = 0(resp. a(0) =
0). Then

J@)=zep [ Kazn,;0)dv(m)dA(Q)

where

T
i

K log 1) _ 2Im a"g‘;‘%; In] = I{l=1andy #¢
2(2177’C;0) = IOg -0z +4R8

1-n

For |z| = r we have

log|f(2)/=| = {Re [ Kalz¢,m;0)au(m)N(C)}

>m n{mmRe/aU Ka(z,¢,n; 0)dv(n)A({)}

|z|=r
(1 + ele) ezil z

= m'n{o IIRLI}I’/Z -2 (1 2[) Tg[ 1—2 ]; —47‘/(1 + ”)},

where e** = (. Put

z

®,(¢) = { ming)=, —2Im (}—5};) arg (l‘f_;“) if0< [¢) <7/2and
—4r/(1+7) ife=0.

Then ®,(£) is a continuous and even function on |[¢| < 7 /2. Hence

f ( ) -
> .
log o<r?<1£rl/2<I> (6 = o<ltlé£/2 ®.(6)
Since
1 — ez rsin £
1":1;)'( arg ( T ) = 2arctan (m) ,
we get

log

in £
@ > inf —A4cot L.arctan AL
z 0<t<n/2 1+ rcost

and using the fact that |arctan z| < |z|, we have
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I )

. —4rcos { —4r
0<127r/2 l4+rcost) = (1+4r)

The case of equality is attained by one of the functions of the form {fo(¢z); |¢] = 1.

i1) and iii) Differentiation f(z) in (3.11) with respect to z and Z respectively leads to

L 46
f:(2) = f(&) = ) 30) (3.14)
and
(e) = S =S EE, (3.15)

The result follows from substituting from Theorem 3.5(i),(3.12) and (3.13) in to (3.14) and (3.15). O

Combining Theorem 2.3 and Theorem 3.5 together with (3.5) we deduce the following distortion
theorem for the set CSTp,.

Theorem 3.6. Let F = zhg € CSTL,. Then for every z € U we have
9 een [ 25 - 7] st < e (25
.. zZ[* + 42| +1 6|z
1846 < e (1o
2
1) |F(2)| < I(le(_l_zllzl-;;‘(illlez})) ezp (16—|z|lz|) .
Equality holds for the right hand side inequalities if F(z) is one of the functions of the form

=B et (5 2

where |n| = |¢| = 1, and for the left hand side inequality if F(z) is one of the functions of the form

2(1 —72) (1 +¢2) 4nz 2(z
(T—12) (1 -C2) "”(Re[l—nz’l—a])’

1—(z

Fﬂv((z)= 1+(Z

1-(z

Foe(z) = 1+¢(z

where o] = |¢] = 1.
Finally, we prove the following theorem.

Theorem 3.7. Let F = z|2|*hg € CSTyh. Then we have

argf‘gll < 2arcsin |z| 4 arcsin (T+|-_Z|Iz—|§ +2Im(p) In|z|.

Equality holds if and only if

zh _z(1+12)
#e) = 2= T =1
and
Pe) = e Il =1,

Proof: Let F = z|z|*’hg € CSTys. Then o = zh/g € CST by Theorem 3.1. But since ¥(z) =
#(2)p(z), where ¢ € S* and p € P. The result follows immediately from
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F) e
arg =2 = arg™ 4 21m pinfz) = arg?) 4 arg p(2) + 21m gin:|

and from [3, p.71]. O
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