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ABSTRACT. Let X be an arbitrary non-empty set, and let 1;, 121, 1;2 be lattices of subsets ofX
containing 0 and X..A(1;) designates the algebra generated by 1; and M(1;), these finite, non-trivial,

non-negative finitely additive measures on A(1;). I(/3) denotes those elements of M(/3) which assume

only the values zero and one. In terms of a # E M(1;) or I(/3), various outer measures are introduced.

Their properties are investigated. The interplay of measurability, smoothness of #, regularity of # and

lattice topological properties on these outer measures is also investigated.
Finally, applications of these outer measures to separation type properties between pairs of

lattices 1;1, 1;2 where 1;1 C /32 are developed. In terms of measures from I(/3), necessary and sufficient

conditions are established for 1;1 to semi-separate 1;2, for/31 to separate /32, and finally for/;1 to

coseparate 1;2.
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1. INTRODUCTION.
Let X be an arbitrary non-empty set and 1; a lattice of subsets of X with O, X E/3..A(1;) is the

algebra generated by 1;, and M(1;) is the set of finite, non-negative, non-trivial, finitely additive measures

on ,A(E). 1(/3) consists ofthose elements of M(1;) that just assume the values zero and one. Associated

with a # in M(E) or I(1;), or a # in certain subsets of these sets we consider certain outer measures #’,
/2,/z". We use these outer measures to investigate certain weak regularity properties of measures. Also
we investigate certain cases in which #’ #" on various lattices.

We next consider a pair &lattices 1;1 and 1;2 with 1;I C/32, and we use the above mentioned outer

measures to characterize separation properties between 1;1 and 1;2. In particular, we investigate in detail

necessary and sufficient conditions for/31 to coseparate 1;2, and for 1;1 to either separate or semi-

separate 1;2. The material developed here extends the work done in [4,5,6,8].
We begin in Section 2 with a brief review of the notations and some basic terminology used in the

paper. We also introduce in this section, the associated outer measures indicated above. Section 3 is

devoted to first reviewing some of the basic properties of these outer measures and then to developing
new results, in particular pertaining to equality of #’ and #" on various lattices. Also we extend in this

section the work done in [3,4] on various types of weak regularity which can be expressed in terms of #’
and #". Finally, Section 4 is devoted to a consideration of separation between the two lattices/31, E2
where/31 C 2 in terms of#’,/ Several applications of these results as well as of those in Section 3 are

given.
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2. BACKGROUND AND NOTATIONS.
We consider in this section the notation and some terminology that will be used. We follow

standard usage as found, for example, in 1,2,3,6]. We will not review all this terminology and notation,

but we will only consider those used extensively throughout the paper.
X is an arbitrary non-empty set and E is a lattice of subsets ofX such that 0, X E E..A(E) is the

algebra generated by E, and M(E,) consists of those non-trivial, finite, non-negative, finitely additive

measures on ,A(E). Mo(E) consists of those # E M(E) such that L, 0, L, E, imply #(L,) 0;

we refer to these as the a-smooth measures on E. In contrast, M(E) consists of those # E M(E,)
which are a-smooth on .A(E)" i.e, if A, O, A,, E .A(E) then #(A,) 0; in our case, this is ofcourse

equivalent to # being countably additive. Mn(E,) consists of those # E M(E) which are C-regular, i.e.,

#(A) zup{#(L) lL C A, L E E,} where A .A(E,), and M(E,) MR(E,) f3 Mo(E,).
If # E Mn(E) N Mo(E,), then it is easy to see that # e M(E,) In the case of measures which just

assume the two values zero and one, we denote the above sets: I(E,), Io(E,), I(E,), In(E,) and In(C)
respectively.

Throughout E’(L’IL E,} where, in general, for E C X, E’ X E.
We also denote by 6(E), the lattice of countable intersections of sets of E. is a delta lattice if

6(E) E, i.e., E, is closed under countable intersections.

We adhere to the usual lattice-topological terminology such as E being countably compact (c.c.),
disjunctive, normal, countably paracompact (c.p.), etc.

If# E M(E), then for any E C X, define

#’(E) inf{u(L’) IE c Z’,Z E E} (2.1)

It is clear that #’> 0, #’()= 0, #’ is monotone, #’(X)= #(X), and #’ is finitely subadditive.

Analogously, we define/2 by replacing in the definition of #, the coveting class by E,;/2 has the same

properties as #. If we replace the coveting class E, in definition (2.1), by .A(E) this gives rise to "which also enjoys the same fundamental properties as #’ and p.
If# M(E), then for E C X, define

# (E) inf #(L) E C L,, L, e E (2.2)

#" is an outer measure in the usual sense and #"(X)= #(X) if # e Mo(E). If/2 e I(E) and if

# Io(E), then #" --0. For this reason, in the two-valued case, when considering #" we assume

For the most part we will consider the two-valued case, since our main goal is to characterize

separation properties in terms of the above set functions, and for this purpose the two-valued measure

suffice. We will, however, indicate extensions to the more general case.

# 6 J(E,) if # 6 I(E,) and # is strongly a-smooth on E,, i.e., if L, I L where L,, L E,, then

#(L,) -- #(L). We could, of course, consider such measures in the general case, but they will not play a

part in our discussion so we restrict our attention to just the two-valued case for this property.

Let #,v be either measures or outer measures, then we write/2 < v(E,) if #(L) < v(L) for all

LEE.
In this notation, we have, for/2 6 M(E),

# <_ #’(E) and # #’(E,) if and only if # MR(E,) (2.3)

We now summarize some known facts (see [3,4,5]) which will be used throughout the paper. If v

is an outer measure (finitely or countably subadditive) we denote by S the v-measure sets.
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Then if

# E I(), Su, {E C X[ E D L, L E 12, #(L) 1 or
E’DL, LE12,#(L)=l}.

Similarly, we obtain S by replacing L by L’ and 12 by 12’ Also,

Su" {E C XIE D NL,, L, 12, #(L,) 1

or E’ D N Ln, Lr, 12, #(L,) l}

An outer measure u is regular if for any E C X, there exists an M S such that E c M and

u(E)=u(M)
Clearly, for # I(12), ’, p, are regular, and if G(12), t" is regular

Furthermore, we have for

# /o(12), # < " < #’(12), and " < g’= (12’). (2.4)

Of course, #"(E) < ’(E) for all E C X

# In(12) if and only if #’ < p. (2.5)

These results extend readily to the more general case of# Mo (12) and MR(Z.).
Next, we recall (see [3,4]) and sketch a proof ofthe following.

THEOREM 2.1. Let 121,122 be lattices of subsets of X such that 12 C 122 and 12 separates 122
and let u

_
IR (122) extend # In (121).

Then,
a) u is 121-regular on F_4, and

b) u is unique.
PROOF. Let L2 122 and u(L’2)= 1, then L D/2 where /7,2 122 and u(/-2)- 1 since

u In(122). But L2 CI/7,2 , and 12 separates 122; hence there exist L,/ 12 such that L D L2,

and/_; /7,, and L /7, . Therefore, u(/7,) 1 and/_7,1 C L] C L. This proves a) from which

b) follows trivially.

Again, this result can be easily extended to the more general case.

We will extend Theorem 2.1 considerably in the course of our investigation. We will also

investigate other relationships between the pair of lattices 12 and 122. Finally, if u M(122) and if we
restrict u to .A(12) where 12 c 122, we write ult: or simply u[ if the two lattices are fixed in the

discussion. Similar notations will be used for the corresponding restrictions of u’ and u".

3. BASIC PROPERTIES OF THE OUTER MEASURES
We will list in this section some known and some new properties and characterizations of the outer

measures introduced in Section 2. We will restrict our attention to the zero-one valued case although

many results do extend to the more general case; however, our major interest is in separation properties,

and for this the special case is enough. We will indicate some extensions in Section 4.

We note first for # E 1(12) that # < #’(12), and # #’ on 12’. While for/.t
(1) u _< u" < u’(z:), and

(2) #" _< U #’(12’).
Also, # #’ (12) if and only if# IR (12).
Continuing we have.

TREOREM 3.1. a) Let # 6 I(12), then # 6 Ia(12) if and only if#’ _< ft.
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b) Let be delta and normal, and let # E/0(/2), then #’ #"(/2) This result is also true if is

c.c or if E is normal and c p

c) For Z(:), S., {L Z:: (L) ’(L)}
d) If # E ,J(), then #’= #"() and, conversely, if # I(’) and if #’ #"(’), then

PROOF. a) see [5] b), c), d) see [3], and the case where is c c is clear. Next, we recall the

following well known theorem

THEOREM 3.2. Let i and 2 be lattices of subsets ofX such that i C 2.
a) If , In(/22), then its restriction to .A(/21 ), denoted by vie In(/21) if/21 semi-separates

b) Any # In(/21) can be extended to a , E In(/22), and if/2x separates /22 the regular

extension is unique.
PROOF. Both parts are straightforward to prove.

DEFINITION 3.1. Let # I(/2) (or more generally M(/2)), then # is said to be:

a) Weakly regular if #(L’) up{#’() [/S, C L’,/, /2}, and where L e/2.

b) Vaguely regular if# Io() and if#(L’) zup{#"() [/ C L’,/_ /2} where L .
The sets of weakly and vaguely regular measures are denoted by I,(/2) and I(/2), (respectively

M(/2), M(/2) in the more general case).
We note that if/2 is normal, then I(/2)= In(/2). Also, it is not difficult to show that

L,(/2) c d(/2). We now consider some new results and extensions of some ofthe preceding theorems.

TIIEOREM 3.3. Let/2 C/22 be two lattices of subsets ofX. Then:

a) Let t, In(/22) extend # E I(/21), then t,’[z: #’[z: if and only if# In(/2).

b) Let , In(/22) be any regular extension of# In(/2). Then t, #’(/22) ifand only ift, is

/21-regular on f_. Also, if# I(/2), then , #’ (/22) implies t, E Io (1).
c) If , I,(/22), and if/21 semi-separates/22, then #- ’[z: I(/21). The corresponding

statement is also true if t, a I,(/22).
PROOF. a) Clearly, /< #’ so, in particular, /< #’(/2). Suppose t/= #’(/21). Since

u /(/22), we have , ,’ #’(/2) but ’[z: #, hence # #’(/21) and # In(/21). Conversely, if

# I(/2), then # #’(/2), but , ,’(/22) so , [c # [c-
b) For the first part see [4]. If#I(/2), let B’, 0, where the B, /2. Ift,(B) 1for

all n, then since , is/2-regular on , there exist A, , A, c B’, and #(A,) 1 for all n, and

since we may assume that the A, 0, this gives a contradiction.

) Let , E Iw(/22), and # ’l. If #(L) 1, L1 c/21, then u(L) 1, and, therefore

L D L2 /22, and /t(L2) 1 since t, Iw(/22). By the semi-separation L2 c if,1 /21 and

L Iq 1 O. Hence ,’ (/1) 1, but ,’ < #’ so #’(1) 1 and # I(/2). A similar proof holds with

, e Iv(), and e .,,().
DEFINITION 3.2. Let/21 C f- be two lattices of subsets of X. /22 is/21 countably compact

(c.c.) ifB /22, and B C U A, A, /2implies that there exists a finite subcovering.
n----1

Clearly, if/22 if/2 c.c., then/21 is e.c., and if # E I(/21) I0(/21), then it is easy to see that

#’ #" (/2). We will return to this property in Section 4.

TIIEOREM 3.4. Suppose/21 separates -2, and suppose t,1, 2 I(/22), both extend #

then/’1 :/2-

PROOF. Suppose there exists a B /22 such that tq(B) 0 but t,2(B) 1, then ,I(B’) 1.

Hence, there exists / (/22),/ C B’, and (/) 1. Now, there exist A, A E/21 with B C A,
/ c A, and A Iq O. Now ,2(B) 1 implies 9(A) #(A) 1, so #(A’) 0 or t,1 (A’) 0
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and A’ D/, so v (/) 0, a contradiction. Hence, we must have v2 < vl (2). Similarly, we get

v _< v2(/2) so Vl v2.

THEOREM 3.S. Let 1 c/2 be lattices of subsets ofX such that 1 semi-separates 122 and

is a delta lattice. Let # Io(/21), and #’ #"(/21), then #’ 9"(/22).
PROOF. Of course, 9" <_ #’(/22). Suppose L2 /22 and #’(L2) 1, but #"(L2) 0 Then,

there exists A, /21 such that L2 C L.J A’,, and #(A) 0, for all i. Hence L D ["] A, /21 Now there

exists an A /21 such that L2 C A and A r’l ("] A, 0. Consequently, #’(A) 1, thus #"(A) 1, but

A C L.J A,, so (A) 0, and we are done.

Next we have:

TtlEOREM 3.6. Let /21 c/22 be lattices of subsets of X such that /21 separates /22. If

L,,(/21) I,(/21), then I=(/22)
PROOF. Let v I=(/22), then # v] Iw(/21)= In(/21) by hypothesis and by Theorem

3.3 c). Now let L2 /22 with u(L)= 1. Then, there exists /,2 /22 such that L D/-2, and

u’(/,2) 1. Hence, there exist L1, Il /21 with L2 C L1, and/,2 C/,1, and L1 f3 1 0. Hence,

v’(.(.q) 1, so /.it(if-,1)--1, and also #(1)= 1 since # In(/2). But #(if.q)= V(./-l), therefore

u

We close this section with the following useful result.

THEOREM 3.7. Let # I(/2), then #’ is countably additive on Su, if and only if# Io(.).
PROOF. If/z’ is countably additive on Su, and if # Io(/2), then there exist A, I 0, A, /2, and

#(A,) 1 for all n, then #’(A,) 1 for all n. But then A, So, by Theorem 3.1 c). Then #’ is not

countably additive on Su,. Conversely, suppose # 6 Io(/2) then # _< #" _< #’(/2), and, for E E

u’(x) u(x) u’(E) + u’(F’) >_ u"(,) + U"(E’) >_ U"(X) u(X),

thus E c:_ ’.-qu" by the regularity of #" and #"ls, #’]s,, but #" is countably additive on Su,; hence, #’
must be countably additive on ’-qu’-

REMARK. Similarly if # I(/2), then/ is countably additive on ,_q if and only if/z Io(/2’).
This follows by duality between/2 and 12’ and #’ and/2. Clearly, we could make such variations in all our

theorems, but we do not since it is a routine matter.

4. APPLICATIONS OF THE OUTER MEASURES TO SEPARATION PROPERTIES

We consider mainly in this section two lattices of subsets ofX,/21 and 2 such that/21 ( /22. We

will characterize various separation properties between /21 and 2 in terms of the outer measures

previously introduced, and then we shall give several applications ofthese results.

THEOREM 4.1. Let/2a and be lattices of subsets ofX such that/2 c E2. Let/z
and let u E In(/22) be an extension of #. Then a) /21 semi-separates /22 if and only if for every

f ( IR(/21), /.t: (/22)"
b) 1 separates if and only iffor each/z It(/21), u fi(/22).
PROOF. a) The proofof a) is generally known (see [4,5,6,8]).
b) In general, we have v _< #t _</(L2), since # In(L1) (see (2.5)). Now, suppose

separates 2. If u(L2) 0, and/(L2) 1 where L2 2, then v(L) 1. Consequently, there exist

an L1 E/21, LI c L, and p(LI) I by Theorem 2.1. Since Lz tq L1 , there exists an a /21 such

that L2 C/-7,1, and /, f)L1 [. Now clearly fi(L2)--I implies #(1)= 1; however, #(L)= 1, a

contradiction. Hence, u =/’ =/(/22).
Conversely, if u =/(/22), then u #’(/29.) and #’ =/(/22). Hence, by Theorem 3.3 b) u is/21

regular on f-2, and by a) of the present theorem,/21 semi-separates/22. If/21 does not separate/22, then

there exist L2, 2 /22 such that L2 f3/-2 }, and 7-/= {L1 /21 ILl D L2 or L1 D/7,1} has the finite
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intersection property. Hence, there exists a # 5 IR(/21) such that #(L1) 1 for all L1 ( 7 Now, let

v E IR(/22) be an extension of #. Since L’ N L X, either v(ff2) 1 or v(ff,’2) 1 If v(L) 1,

then there exists A1 E/21, A1 c L, and/2(A1) 1 Now A1 iq L2 0 Consequently, there exists

B1 /21, B1 D L2 and A1 B1 0. Now B1 7-(, whence/2(B1) 1, and we have a contradiction

Similarly ifv(ff2) 1, and we must have/21 separates/22.
We now consider questions of coseparation of lattices. We first show:

THEOREM 4.2. Let /21, /22 be lattices of subsets of X such that /21 ([ /22. ALSO, let vl,

/’2 IR(/22) with # _< V (/21), and # _< v2 (/21) where # 1(/2). Then/21 coseparates/22 if and only

iful v2.

PROOF. Suppose /21 coseparates /22. If Vl # v2, then there exist B1, B2 2 such that

vl(B1) 1, v2(B1) O, vl(B2) O, v2(B2) 1, and BI NB2 0. Hence, there exist A1, A2 /21
with B1 C A], B2 c A’ and A’ A. 0. Hence either #(A1) 1 or/2(A2) 1. Iru(A) a, ten
#(A]) 0 so vl(A]) 0, and, therefore vl(B1) 0, a contradiction. Similarly, if#(A2) 1, thus we

must have Pl V2.

Conversely, suppose the condition of the theorem holds. If/21 does not coseparate/22, then there

exist B1, B2 /22 such that BI CI B2 0, and

W {A’ E ’1 B1 C A’ or B2 c A’}

has the finite intersection property. Hence, there exists a # E 1(1) such that #(A’) 1 if A’ D B1, or

A’ B2. Now, if#(L) 1 where L /21, then #(L’) 0. Hence, {LnB11/2(L) 1, L e 1} has

the finite intersection property and {L N B2 [#(L) 1, L /21 } has also the finite intersection property.

Therefore, there exist Vl, v2 IR(/22) with I(B1) 1 and v2(B2) 1. But B10B2 =.
Consequently Vl vg, a contradiction. Hence 1 coseparates f_.

THEOREM 4.3. Let/2 I(/21), and suppose/21 c/22 where/21 coseparates/22. If/2 < v(/21)
where v I(2), then ifv(L) 1, L2 E 2, there exists an L1 E 1, L1 C L, and/2(L1) 1.

PROOF. u(L) 1 = L D if,2 f, and v(ff,2) 1. Now, by coseparation, there exist L1,

/-1 1 such that L2 C L,/7,2 C L and L f L 0. Hence,/-7,2 c L C L1 C L.
Then v(/2)= 1 == v(ffl)= 1, therefore/2(L-’1) 1. Consequently/2(L1) 1.

Finally, we have:

THEOREM 4.4. Let 1 C/22 be lattices of subsets ofX. Let v I(/22), and # _< v(/21) where

/2 ( -/’(/21 ). Then v v’ =/2’(2) if and only if1 coseparates ’2.
PROOF. Suppose 1coseparates/22. Now clearly v d(/22) since v E Ia(/22), and, of course,

d </2’. Suppose v(L2)= 0, where L2 ’2, then v(Lt2)= 1, and, therefore, by Theorem 4.3,

L D L1 1, and /2(L1)= 1, or L2 C L, and /2(L)=0. Hence /2’(L2)=0. Consequently

"= u’().
Conversely, assuming the condition of theorem holds, then suppose u, u In(/22) and

/2 < vii (/21) and/2 < v21(/21), thenvl v =/2’(E2) and v2 v =/2’(E2). Therefore, V V2, and,

by Theorem 4.2,/31 coseparates/22.
If v E I(E2), we can prove even more.

THEOREM 4.5. Let E1 C/32 and suppose 1 coseparates 2. If v I(/22) and if/2 < v(/21)
where/2 1(/21), then v" =/2" (/22).

PROOF. Clearly/2 E/’o(/21). ALso v =/2’(/22) by Theorem 4.4.

But v _< v"(2) and v" _</2" </2’. Therefore, clearly v"=/2"(/22).
REMARK. A number of our results extend to the more general case of measures in M(/2). We

will not pursue these matters in detail here, but just indicate a few ofthese extensions:
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1) If E1 C 2 are lattices of subsets of X, and if u E MR(132) extends # E Mn(1), then

u #’ (13) if and only if u is 1-regular on

2) If u #’(122) where u Mn(2) is any regular extension of # Mn(131), then u is

unique. Clearly, this condition is equivalent (since # Mn(121)) to u #’(132) where for E C X,

#’(E) inf{#(a) lE C A, A
We note for completeness that the converse of this is known, namely, if for/ E Mn(13) the

regular extension v e Mt(122) is unique, then u ’(132) (see [7])
3) If1 C 122 and if E1 semi-separates 122, then for/z Ma(121), fi
We conclude this section by indicating just a few of the applications of our previous results

THEOREM 4.6. Let 13 C 122, and suppose 121 separates 132 and let # I(121) be extended to

v, It(122). If a) 131 is delta and normal, or if b) 132 is/21 countably compact, then

and v E J(12).
PROOF. In case b), #’= #"(122) by the remark after Definition 3.2, while in case a) we get

#’ #" (122) by Theorems 3.5 and 3.1 part b), and, in both cases, v #’ (132) since/21 separates 122.
Finally, we observe that v #’ (122) implies v E Io() by Theorem 3.3 part b).
Now let B, T B, where B,, B E 122, then #"(B,) T #"(B) since #" is a regular outer measure

from which it follows that v J (13).
TItEOREbl 4.7. Let 121 C 122 where 121 and 122 are lattices of subsets of X. If 2 is 121

countably compact, and if 121 is complement generated and normal, then 121 semi-separates 122.
PROOF. Let # 5 In(121), then #’ </2 by (2.5). Suppose #’(L) 0 where L 12. Then,

there exists L1 G 131, with L2 C L], and #(L) 0.

ButL1 [’1 A, A, 6 131soL] U A,. By normality of 121, L1 C C’, c B, cA’,
n=l nol

with C’,, B,, E 121 Thus, L2 C U A, c [.J B’, c I..J C’,, c L1 Hence,/-,2 CUB’ c
n=l n=l n=l

where the union is over a finite number of indices. Let C’ [,.J G’,,, then C’ /21 and/z(G’) 0.

Hence :(L2) 0, a contradiction.

Consequently, #’ =/2(122), and by Theorem 4.1,121 semi-separates 122.
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