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ABSTRACT. The process of changing a topology by some types of its local discrete expansion preserves
s-closeness, S-closeness, semi-compactness, semi-T, semi-R, E {0,1,2}, and extremely dis-
connectness Via some other forms of such above replacements one can have topologies which satisfy
separation axioms the original topology does not have
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1. INTRODUCTION
Throughout the present paper (X, 7-) is a topological space (or simply a space X) on which no

separation axioms are assumed unless explicitly stated. For any B C X, clTB (resp int7 B) denotes the

closure (resp interior) of/3 A subset B is said to be regular open (resp regular closed) if B int,

(clT(B)) (resp B -clT (int(B))) A subset B of a space X is said to be r-semi open [12] (resp 7--

regular semi-open [2]) if there exists a r-open (resp. r-regular open) set U satisfying U c/3 c clTU B
is r-semi-closed [3] if the set X- B is r-semi-open. The family of all regular open (resp regular semi-

open, semi-open) sets in X is denoted by RO(X, 7-) (resp RSO(X, 7-),SO(X, 7-)) The union (resp

intersection) of all 7--semi-open (resp r-semi-closed) sets contained in B (resp containing/3) is called the

7--semi-interior [3] (resp 7--semi-closure [3]) of B, and it is denoted as s-intB (resp s cluB) A space
X is said to be extremely disconnected (denoted by E.D if for every open set U of X, clU is open in 7-

The concept of local discrete expansion of a topology was first introduced by S P Young in 1977 [17],
"Let (X, 7-) be a topological space and A be any subset of X The topology

7-[A] {U- H U E 7-, H c A} is called the local discrete expansion of 7- by A A space X is semi-

T2 [13] (resp semi-T [1]) iff for x, y E X, x :/: y there exist U and V SO(X, 7-),x U and y V
such that U n V (resp cl.U fqclV---). Semi-T0 and semi-T1 were introduced to topological

spaces [13] by replacing the word "open" by "semi-open" in the definitions ofT0 and T1 respectively A
space X is semi-R0 [6] iff for each semi-open set U and x E U, s cl{x} c U A space X is semi-R1
[6] iff for x, y E X such that s- clT{x} : s- cl{y} there exist disjoint semi-open sets U and V such

that s- clT{x} c U, and s- cl.{y} C V. A space X is called cid [15] if every countable infinite

subspace ofX is discrete. A space X is semi-compact [7] (resp s-closed [5], S-closed [16]) if for every

cover {V,:i I} of X by semi-open sets of X, there exists a finite subset I0 of I such that

X t2 {V E I0} (resp X t2 scl(V,): E Io},X t2 cl(V): E I0}).
REMARK 1.1. For a subset A of a space (X, 7-) we say that A satisfies condition (C1) if

A t_J U , for every U 7- {X}.
Listed below are theorems that will be utilized in this paper
THEOREM 1.1 [14] If 7- and 7-’ are two topologies on X such that 7- c 7-’, then RO(X, T)

RO(X, 7-’) iffclG cl,,G for every G 7-’ [equivalent iffint,F int-,F, for every F
THEOREM 1.2 [11] IfX is a space, and A c X satisfying (C1) Then, climlG cloG, for every

G E 7-[A]
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THEOREM 1.3 [4] If X is a space, and A E SO(X,7-) such that A C B c cl,A Then.
B SO(X, 7-)

THEOREM 1.4 [10] IfX isa space, and B C X, then s cl, B BUint,cl, B
THEOREM 1.5 [8] A space X is E D iff for every pair U and V of disjoint 7--open sets, we have

clU cl, V

THEOREM 1.6 [5] A space X is s-closed iffevery cover ofX by regular semi-open sets has a finite
subcover

THEOREM 1.7 15] (a) A space X is cid if every countable infinite subset is closed
(b) Any infinite cid space is T
THEOREM 1.$ 17] Let A be any subset ofX Then (A, 7.[A] A) is discrete
TItEOREM 1.9 17] Let A be a closed subset ofX Then (A, 7- A) is a discrete subspace ofX ff

r -[A]
THEOREM 1.10 [9] Let X be a T-space Then X is cid iff countable subsets have no limits

points

2. ON LOCAL DISCRETE EXPANSION
THEOREM 2.1. If (X, "r) is a space and A c X, then

(i) SO(X, 7-[A]) C {t3- H: 13 80(X,7.),H C A}
(ii) If A satisfying (C), then the inclusion symbol in (i) is replaced by equality sign

PROOF. (i) Let W SO(X,-r[A]), then there exists V 7.[A] such that V C W c CLIAI V
Then (U H) c W c cl-rIal(U- H), where U 7-, H C A Put H U H, then H2 C A,
and (U- H1)UH c W UH C clr[Al(U- H)UH Then U c W UH c cl.,-[AIU C cl-U,
and (WUH2)SO(X, 7-) Put B=WUH2, and H=H1-WcA Then B-H=
WU(UfqH1)-(HI-W) =W.

(ii) By Theorem 1.2, the proof is obvious

REMARK 2.1. From Theorem 2. l, it is easy to prove that, for any A C X
SO(X, T) c SO(X, T[A])
TIIEOREM 2.2. If (X, 7-) is a space, and A c X satisfying (C1) Then"

(i) SO(X, 7-) SO(X, T[A]).
(ii) RSO(X, T) RSO(X, T[A]).

PROOF. In general SO(X, 7-) c SO(X, T[A]). To prove the converse, let W SO(X, T[A]),
then there exists V E "r[A] satisfying V c W C cl.[AlV. Then (U H) C W c cllAl(U H),
U E T, H C A. There are two cases.

(a) U X, then U H U Since cltAlU cl,U, then W SO(X, 7-).
(b) U=X, then (X-H) CWCcl,tAI(X-H) Ccl,(X-H). Since AfqU=, then

cl-A c (X U), and cl,A O U , implies to cl,H fq U , for each U e T {X} Hence
U cl,H, and int.cl,H , and H is a T-semi-closed set Thus (X-H) SO(X,T) From
Theorem 3, W SO(X, T)
(ii) By Theorems 1.1 and 2, the proof is obvious

COROLLARY 2.1. IfX is a space, and A c X satisfying (C1) Then

(i) (X, r) is semi-T iff (X, 7.[A]) is semi-T, (i {0,1, 2}).
(ii) If (X, r) is semi-T, then (X, r[A]) is semi-T.
(iii) If (X, r) is semi-R, then (X, r[A]) is semi-R (i {0, 1})

PROOF. By Theorem (2 2), the proof is obvious

TIIEOREM 2.3. If X is a space, and A c X satisfying (C1). Then s cl,-[A]G s cl.,-G, for

every G T[A]
PROOF. Let G 7.[A], then s clqA]G G U int-[a] cl.,-[A]G G int.,-cl.,-[A]G G intcl.,-G

cl-G [by Theorems 1, 12 and 14]
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THEOREM 2.4. IfX is a space, and A c X satisfying (C1). Then (X, 7.) is E.D. iff (X, 7.[A]) is E D

PROOF. Let (X, 7.) be E.D., W E 7.[A] Then W U H, U E -, H c A.
But cl.[A](U H) cl.[AiU clU, and cl.U 7.. Thus cIT[A]W 7.[A], and (X, 7.[A]) is E.D

Conversely, let (X,7.[A]) be E.D., and U,V 7. such that clTU fqcl.V =/= . By Theorem 1.2,

c/[A]U N cl-[A] V , then U N V [by Theorem 1.5]. Hence (X, 7.) is E.D.

THEOREM 2.5. IfX is a space, and A c X satisfying (C1). Then (X, 7.) is semi-compact (resp s-

closed) iff (X, 7.[A]) is semi-compact (resp. z-closed).
PROOF. By Theorem 2.2, the proof is obvious.

THEOREM 2.6. IfX is a space, and A c X, and (X, 7-[A]) is S-closed (resp. z-closed), then (X, 7.)
is S-closed (resp. z-closed).

PROOF. Since SO(X, 7.) c SO(X, 7.[A]), the proof is obvious.

3. L- Ti AND Q L- Ti SPACES
Let R be a topological property which is preserved under expansions
DEFINITION 3.1. A topological space (X, 7-) is called L- R if there exists a subset S c X and

S X, such that (X, 7-[S]) has R.
PROPOSITION 3.1. If T- c -r’, then for any S C X, 7-[S] c "F[S].
REMARK 3.1. If 7- C T’ and 7- is L R, then 7-’ is also L R, e. any expansion of L R

topology on X is also L R.
DEFINITION 3.2. Let 1, 2, 2.5 and j 0, 1, 2, 2.5. We say that (X, 7-) is Q L T,, if it is

L T, and T where j < i.

Now we are going to show that some of the properties L T, and Q L T, are satisfied for some

spaces but not for some other spaces.
PROPOSITION 3.2. For a space X, the following diagram is easily obtained.

T2 = Q L- T2 =:> T2 = Q L- T2 => T1 =>Q-L-T1 =:>To.
EXAMPLE 3.1. Let X- {a,b,c,d} and T- {,X, {a,b}, {c,d}} is not To if A- {a,c}, then

7-[A] {,X,{b},{d},{b,d},{a,b},{c,d},{b,c,d},{a,b,d}} isTo. This example is Q- L- To.
The following is an example of a Q L T2. but not T2..
EXAMPLE 3.2. Let X N x Z U { 1, 0), 1, 1)} where N is the natural numbers and Z

the integers. The topology has as its base sets ofthe following forms:
{(re, n)}, n0, m- -1

u,,((,,o)) {(,,o)} u {(,,,,)[ I,1 > ,,,},

U,.,((-1,1))={(-1,1)}u{(,mlla_>..,m>O}, heN

U,.,((-1,-1))={(-1,-1)}U{(a,m)[a>_n,m<O}, ne.N.

This space is T2 but not T..5 as 1,1) and 1, 1) do not have disjoint closed neighborhoods.

Choosing A N x (Z {0}), the discrete expansion is the discrete topology and thus T2.
EXAMPLE&& LetX {a,b,c,d} and T= {,X,{b},{d},{b,d},{a,b},{c,d},{a,b,d},

{b, c, d} }, then T[A] Discrete. This example is Q L- Tl but not T1 and is an example of a space

which is not Q L T2.
EXAMPLE 3.4. Let X {a,b,c} and T {,X, {a,b}}. If A {a,b}, then 7-[A] Discrete

This example is not Q L T1.
The excluded point topology on an infinite set X is the family consisting of and all subsets ofX not

containing a point p ofX.

EXAMPLE 3.5. The excluded point topology is L- T1 and not L- T2 (also is an example of

Q L T1 but not T1).
PROOF. IfX is an infinite set and p is the excluded point and A C X, then:

(i) Ifp A, we have 7-[A] T U {X B B C A}. Thus 7-[A] is T1 but not T2.
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(ii) Ifp E A, then A is closed, and there are two cases

(a) If B c A, p E B in this case any open set in -[A] is open in 7., e 7. -[A]
(b) IfBc A,pBas(i) Thus7.[A]-7-L{X-B-Bc A}
EXAMPLE 3.6. Let X-[0,1] and 7.={q,X, AcX.X-A is finite} If we takeS= (0,1],

then "r[S] is the Discrete space This example is Q L T_, but not T.,,
THEOREM 3.1. (X, 7.) is cid space ifft. 7.[A] whenever A is a countable infinite subset ofX
PROOF. We assume that (X, 7.) is cid, then A is closed and discrete subspace By Theorem 9 we

have that 7- "r[A] Conversely we assume that "r "r[A] By Theorem 8, we have that (A, "r FI A) is a

discrete subspace ofX and (X, 7-) is cid space
TtIEOREM 3.2. Every space (X, 7.) is L To
PROOF. Assume that zo X We aim to prove that 7-IX- {To}] is To For this purpose let

z,t X,x /, ifU G "r is an open set containing z, then U- {/} is an open set in "r[X- {zo}] and not

containing If x0 :r, then X- {//} is an open in 7.[X- {x0}] and not containing V This completes
the proof

The following example illustrates a Q L space but not T2
EXAMPLE 3.7. (Countable complement topology [16]) If X is an uncountable set, we define the

topology of countable complements on X by declaring open all sets whose complements are countable,
together with $ and X (X, 7-) is T but not T2 Let A C X such that X-A is countable For
x0 X A, A tO {To} is T-open, and so (A tO {:r0}) A {To} E r[A] For a:o A, A is r-open,
which means that A (A {To}) {a:0} is r[A]-open Thus r[A] is discrete and consequently T2

UNSOLVED PROBLEM. If (X, "r) is a space which does not have a property P, what are the

properties of the subset A that make (X, r[A]) have P (for P fixed property)
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