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ABSTRACT. A strictly barrelled disk B in a Hausdorff locally convex space E is
a disk such that the linear span of B with the topology of the Minkowski
functional of B is a strictly barrelled space. Valdivia’s closed graph theorems
are used to show that closed strictly barrelled disk in a quasi-(LB)-space is
bounded. It is shown that a locally strictly barrelled quasi-(LB)-space is
locally complete. Also, we show that a regular inductive limit of quasi-(LB)-
spaces is locally complete if and only if each closed bounded disk is a strictly
barrelled disk in one of the constituents.
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1. INTRODUCTION.

Throughout this paper, we use the word space to denote a Hausdorff locally

convex space. An absolutely convex set will be called a disk. If A is a disk in a

space E, its linear span EA may be endowed with the semi-normed topology
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given by the Minkowski functional of A. When distinction is needed, we will

denote this topology by PA. When A is a bounded disk, it is easy to see that EA is

normed and that id: EA E is continuous. If EA is a Banach space (resp. Baire

space), we call A a Banach (resp. Baire) disk. If every bounded subset of E is

contained in a bounded Banach (resp. Baire) disk, we say that E is locally

complete (resp. locally Baire). Locally complete spaces are also called fast

complete, and according to [1; 5.1.6, pg. 152], a space is locally complete if and

only if every closed bounded disk is already a Banach disk.

DEFINITION 1.1: Following [2], a space E is strictly barrelled if given any

ordered absolutely convex web @Won E there exists a strand (W(k))= {W(k):k E

IV} of 4/ such that for each positive integer k, the closure W(k) is a zero

neighborhood in E, where W(k) denotes the kth member of a strand (W(k)).

bEFINITION 1.2- Let A be a disk. If EA is a strictly barrelled space, we will say

that A is a strictly barrelled disk. If every bounded set is contained in a

strictly barrelled disk, we say that E is locally strictly barrelled.

REMARK 1.3: Using [1; chapt. 9] and [2; Prop. 6.17, pg. 160],

locally complete locally Baire locally strictly barrelled.

These implications cannot be reversed; the first by [1; 1.2.1 2 pg. 7], the second

by [2; Prop. 17, pg. 160 & Note 4, pg. 162]. Valdivia defines quasi-(LB)-spaces

in [2], and proves a webbed-space equivalence in [2; Th. 4.1, pg. 153]. We will

use this equivalence as our definition below.

DEFINITION 1.4: A space with an ordered, absolutely convex strict web is called

a quasi-(LB)-space.

2. QUASI-(LB)-SPACES AND STRICTLY BARRELLED DISKS.

The following generalizes [3; Th. 3, pg. 73] and [4; Th. 1, pg. 222].

THEOREM 2.1: Let B be a closed strictly barrelled disk in a quasi- (LB)-space.

Then B is bounded.

PROOF: Let (E, 3)be the quasi- (LB)-space that contains B. Denote by q the
topology induced on EB by the following system of neighborhoods" {(n- 1B)fV "V

isa r-closed zero neighborhood, n N}. Using the ordered strict web on (E, 3) and the
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construction in [4; Th. 1, pg. 222], we have that (EB, i) is a quasi-(LB)-space.

The map id: (EB, ri) (EB, PB) is continuous and (EB, PB) is strictly barrelled.

Therefore, by [2; Th. 6.5(a), pg. 163], this map is open, implying that for any

zero neighborhood v, i](BfV) is a neighborhood of zero in (EB. pB ). In

particular, there exists , > 0 such that oB c BfV cV. We conclude that B is

bounded.

The result that follows uses the closed graph theorem of Valdivia [2].

THEOREM 2.2: Any locally strictly barrelled quasi-(LB)-space

complete.

PROOF: Assume (E, t)is such a space and suppose A is bounded in E.

,bounded disk B D A such that (EB, PB)is strictly barrelled. Because

is locally

There is a

id: (EB, PB)

(EB, t) is continuous, [2; Th. 7.6 pg. 164] shows that there is a FrEchet space F

for which EB id(EB) C F and the following injections are continuous: (EB. PB)

F (EB, t). Hence, there is a bounded Banach disk D in F, with A C B C D, and D

is a bounded Banach disk in E as well.

3. INDUCTIVE LIMITS.

In this section we consider sequences (En, tn), n (E 1N of spaces with E1 C E2 C

and for every positive integer n, En injects continuously into En+1. We put E

indnEn for the inductive limit. Recall that an inductive limit is called regular if

for any of its bounded subsets, there is a constituent space such that the subset

is contained in and bounded in that constituent.

THEOREM 3.1: Let E indnEn be an inductive limit of quasi-(LB)-spaces. Suppose

B is a disk in (En, tn). Then:

(a) If there exists m >_ n such that B is a closed strictly barrelled disk in (Em,

tin), then B is a closed bounded strictly barrelled disk in both (En, n) and (Em, tin).

Moreover, B is contained in a bounded Banach disk in (En, n) and (Em, tin).

(b) If (a) holds for every bounded disk in En, then En is locally complete.
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(c) If E is regular and locally complete, then En is locally complete for every

positive integer n.

PROOF: (,: If the assumptions are satisfied, then from the continuity of id:

n) ---(E,n. t,), B is zn- closed. As a strictly barrelled, closed disk in rE,,. h,), B is

zn- bounded by Theorem 2.1. We use Theorem 2.2 in both (Em, t,,) and (E,. t,) to

conclude that B is contained in a bounded Banach disk in both spaces.

(h): Obvious consequence of

(c): Let E be any fixed natural number and let A C: E be bounded. By the

assumptions and topology on E, A is bounded in E, and contained in an E- closed,

bounded Banach disk D, where D itself is contained in and bounded in some

tin); clearly m > n. As /: (Er. try) E is continuous, O is m- closed and of

course is a bounded Banach disk there. We apply part (u) to the disk D N En and

we are done.

In [5] we have that if each (En. tn) is webbed and locally complete, then is E

iMnEn regular if and only if it is locally complete. One can ask what happens if

the inductive limit is regular but the spaces (En. tn)are not locally complete; see

for example [6] and [7]. It is not difficult to prove a similar type of result using

quasi-(LB)-spaces; the details follow. Compare also [4; Th. 3, pg 223] and [3;

Th.5, pg. 174].
THEOREM 3.2: Suppose each (En, n) is a quasi-(LB)-space and E indnEn is

regular. Then E is locally complete if and only if for each closed, bounded disk

B c En, there is an m N such that B is a strictly barrelled disk in (Em, tm).

PROOF: If E is locally complete, the conclusion follows directly from from 3.1

(c). Conversely, take a closed, bounded disk B in E. There is an n N such that

cEhand is n- bounded, and there is an mN with BEm andBis a strictly

barrelled disk. If m >n, we use 3.1 (a). On the other hand, if n > m, then 2.1 tells

us that n m and (a)of 3.1 applies. In either case, Eis locally complete.

We want to construct a regular inductive limit of non-locally complete quasi-

(LB)-spaces, but first we need:

LEMMA 3.3: A finite product of locally convex spaces is locally complete if and

only if each space is locally complete.
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PROOF: One may use bornologies, [8; 3.2(3), pg 43], to prove that any product of

locally complete spaces is locally complete. Conversely, let E F x G, and

assume that E is locally complete. Suppose, without loss of generality, that F

is not locally complete. This means there is a disk B, closed and bounded in F,

and B is not a Banach disk in F. Then B’= B x {0} is an E- closed and bounded

disk that is not a Banach disk, a contradiction. Hence, F is locally complete.

The proof for general finite products can is done by induction.

EXAMPLE 3.4: Let Eo be an non-regular (LB)-space. Then E0 is a quasi-(LB)-

space by [2; Prop :3.5, pg 52]. For each positive integer n, put
En =(R){E0 =1,2,...}, ]-[{E0 =1,2,...}. Thelemma, the non-regularity of

Eo and [2; Prop 3.3, pg 51] imply that each En is a non-locally complete quasi-

(LB)-space.
Set E indnEn {E0 n G N }. As a direct sum, if A C E is bounded, then

there is a finite subset IofN such that A is bounded in {E0 1}. If

n rx{i 1}, then A is bounded in En, and E is therefore regular. Next, we use

3.2. Let B c E Eo be a closed, bounded disk that is not a Banach disk. Using

the defintion of the direct sum topology of E and the fact that induces on Eo

its own topology, we have that B is a closed bounded disk in E, also. The disk B

cannot be a Banach disk in E, so E is not locally complete. From 3.2, we see that

B is in fact a really bad disk; not only is it a non-Banach disk in E, it cannot be a

strictly barrelled disk in any En.
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