
Internat. J. Math. & Math. Sci.

VOL. 19 NO. 4 (1996) 643-656
643

GENERATING NEW CLASSES OF ORTHOGONAL POLYNOMIALS

AMiLCAR BRANQUINHO

Departamento de Matemtica
FCTUC

Universidade de Coimbra
Apartado 3008
3000 Coimbra

Portugal

FRANCISCO MARCELLN
Departamento de Ingenier/a
Escuela Politcnica Superior

Universidad Carlos III
C. Butarque, 15

28911 Legan(s-Madrid
Spain

(Received September 28, 1994 and in revised form December 15, 1994)

ABSTRACT. Given a sequence of monic orthogonal polynomials (MOPS), {Pn}, with respect
to a quasi-definite linear functional u, we find necessary and sufficient conditions on the parameters
an and bn for the sequence

P,(x) + a,Pn-l(x) + b,Pr,_2(x), n >_
Po(x) 1, P-1 (X) 0

to be orthogonal. In particular, we can find explicitly the linear functional v such that the new

sequence is the corresponding family of orthogonal polynomials. Some applications for Hermite
and Tchebychev orthogonal polynomials of second kind are obtained.

We also solve a problem of this ’type for orthogonal polynomials with respect to a Hermitian
linear functional.

KEY WORDS: Orthogonal polynomials, Linear functionals, Quasi-orthogonality.
MATHEMATICS SUBJECT CLASSIFICATION (1991). Primary 33C45 and Secondary
42C05.

1 INTRODUCTION

We consider two positive Borel measures 1, 2 supported on a set I C IR with infinitely many

points and such that d# dulq- where q(x) l"I(x x,) has their zeros outside I. We denote by

{Pn} and {R} the MOPS with respect to 21 and #:, respectively. Then, it is well known that

Pn(x) Pn_(x)
Qn(xl) Qn-l(Xl)

Qn(x,) Q,_(x) (1)Rn(x)=
Qn_i(xi)... Qn_l(xi)

Qn-l(Xl) Qn_(z)

where

Qn(s)= f Pn(t)
_--d#l

(see [15] and [18]). This means that

R,(x) P,(x) + al)pn_,(z) + + (2)

with a(t) # O.
We are interested in some partial converse of the above result when 2 as well as some

extensions for more general families of orthogonal polynomials.
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If u and u2 denote the linear functionals on the linear space IP of polynomials with complex
coefficients, defined respectively by

for every p IP, then

1,2

(q(x)u2, p(z)> q(x)p(x)dp2(x)

fp(x)d#,(x)= (u,,p(x))

i.e. qu2 u in the space of linear functionals on IP.
If q is a polynomial of degree two and u is a quasi-definite linear functional our first problem

is to find necessary and sufficient conditions in order to u2 defined by qu2 u be a quasi-definite
linear functional.

Maroni studied this problem when p is a polynomial of degree (see [13]) and in the case when
p is a polynomial of degree 2 with Zl z2 (see [14]). In this last case, he does not give the proof
of this result. The conditions that we give here are basically different from that ones.

On the other hand, we consider the following inverse problem:

Given a MOPS {P,} with respect to a quasi-definite linear functional ul, to characterize the
sequences (an), (bn) of real numbers, such that the sequence of monic polynomials

Rn Pn + anPn-1 + bnPn-2, n >_ (3)

is orthogonal with respect to some quasi-definite linear functional u=. As an immediate
consequence, to find the relation between ul and

A first attempt to propose an inverse problem was made by J.L.Geronimus in [6]. In fact, he
obtained information about the quasi-definite linear functionals u and v associated to two MOPS
{Pn} and (R,) related by (2). Furthermore, he gave necessary and sumcient conditions on the
family {R,} in order to be orthogonal with respect to v.

This problem is also connected with positive quadrature formulae (see [19]).
Geronimus gave also in that paper a proof of the Hahn’s theorem for the clsical MOPS, i.e.

the only MOPS {P} such that the is also a MOPS are the classical ones. He used the factn+l
that the classical MOPS satisfy

<+ () ++ () ++ (z),P+=(x)
n + 3 n + 2

P(x) T()+ (),P0(z)=l.

We have proved that this relation characterize classical MOPS (see [3]).
This problem is connected to another stated by Geronimus (see [7]):

Construct a MOPS, {P,}, which satisfy

xPn+s+l Pn+s+2 + ]nTs+lPnTs+l At" "[n+sPn+s, n C: IN.

When ,+,+1 0
n E IN he gave a representation of the measure with respect to {P,,}

7n+s
is orthogonal. This is because {P} is a finite linear combination of second kind Tchebychev
orthogonal polynomials.

Finally, we study an inverse problem for orthogonal polynomials with respect to Hermitian
linear functionals on the linear space of Laurent polynomials. This represents a generalization of
the theory of orthogonal polynomials with respect to a measure supported on the unit circle.
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The structure of this work is the following:

(a) In Section 2 we present the basic tools concerning linear functionals as well as the concept
of quasi-orthogonality which will play a central role in our paper.

(b) Section 3 is devoted to the direct problem, i.e. the relation between orthogonal polynomials
associated with two quasi-definite linear functionals u, v satisfying a relation

u p(x)v

where degp 2. Furthermore, we give in Theorem 3 the connection between the corre-

sponding parameters of the three term recurrence relation.

(c) In Section 4 we study the inverse problem (3) and we consider some examples. Theorem 4.1
gives the characterization of such sequences by a constructive approach.

(d) In Section 5 we give necessary conditions on the sequence a, in order to

n(Z) Cn(Z) -" anCn--l(Z) (4)

be a MOPS with respect to an Hermitian linear functional if {.} is a MOPS with respect
to an Hermitian linear functional.

2 QUASI-ORTHOGONALITY
We now introduce the algebraic tools that we use in this paper, (see [5] and [12] for more details).
Let {P,} be a MOPS with respect to the quasi-definite (respectively, positive definite) linear

functional u defined on IP, i.e.

(u,P,(x)Pm(x)> k,5,,r,, with k,, 0 (respectively, k, >_ O) for n,m G IN, (5)
where (.,.) means the duality bracket. Furthermore, {Pn } satisfies the following three term recur-
rence relation

xP,(x) P,,+a(x) + ,,P,,(x) + %P,,-I(x) for n 1,2,...
Po(x) 1, Pl(x)= x o. (6)

where (/3,) and (%,) be two sequences of complex numbers with "7,+a 0 in the quasi-definite case
and "/+1 > 0, (/3,) C IR in the positive definite case, for n IN.

Since {P,} is an algebraic basis in IP, we can define its dual basis (a,,)in IP* (the algebraic
dual space of IP) as

If v is an element of IP*, we can express it as v y A,a, where A, (v,P,), IN. As an
I--O

i--1
immediate consequence, if v IP* satisfies (v, P,) 0 for > l, then v A,a,. In particular,

--O
u g0a0. We can represent the elements of the dual basis in terms of {P,,} and u. In fact, since
(cn, Pro) 6n P.u Pra) n, m e IN, we have(u,PZn)’

’ <u, p.> " ()

Let define some linear operators on IP:

p (qp)(x) q(x)p(x), q IP

p .-- (Ocp)(x) p(x) p(c), c 6 C

By transposition, we introduce the following linear operators on IP*"

1. (qa, p) <a, qp) where
deg

<qe, x’) Y a,<a,x’+’) n e IN

(s)

(9)
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deg

for q(x)- a,x’ and o C *;
1--0

2. ((x c)-la, p) (o, Ocp) where

0,ifn-0

c"-1-’ (a, x’+n) if n >

Given a polynomial p(x) -I(x- x,)"u, for every f E IP, we define

(Ox fl(x) f(x) (Cf)(x)

where,

(i0)

mt

(f)(x) y f(k-1)(x,)L,k(x)
=1 k=l

is the Lagrange-Sylvester (Hermite) interpolation polynomial of f with nodes x,, 1,... ,s and

the L,k verify the following conditions:

{ lifu=k-1 andj=i
,k (x) 0 elsewhere

(11)

for k 1,2,...,m, and 1,...,s. Then:

DEFINITION 1 p-lu is the linear functional given by

<p-’(x)u, f) (u, Oxf). (12)

DEFINITION 2 ([5]) Let {P,,} be a MOPS with respect to the quasi-definite linear func-
tional u. We say {p(1)} is the first associated MOPS for the MOPS {P,} if it satisfies

(1) P(1) (x) for n 2,xp(ni)(x) - n+i(/) " n+lp(ni)(x)+/n+l n-i

po(i)(x)- 1, pl(i)(x) x- l.
(3)

DEFINITION 3 ([4]) The MOPS defined by

(14)

is called a co-recursive sequence of the MOPS {P,, }.

Notice that these polynomials verify the same three-term recurrence relation as {P,} with
initial conditions P0(x; c) and Pl(X; c) Pl(X) c.

Next we introduce a basic definition in our work"

DEFINITION 4 ([14]) Let {p,} be a MPS with degp, n and u be a linear functional.
We say that {p, is strictly quasi-ovthogonal of order s if

(U, pmp.) O, In- ra >_ s -4-
/r >_ s (u,p,._sp,.) O. (15)

THEOREM 5 ([16]) Let {P,} be a MOPS with respect to the quasi-definite linear functional
u; then, {p,, is strictly quasi-orthogonat of order s with respect to u if and only f

-a,,kP, O<_n <_s-1

p.(z)
.,P,n>_

k=n-s+l

where a..... : O, Vn >_ s. (16)
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3 DIRECT PROBLEM

This section is motivated by some modifications considered in the literature of orthogonal polyno-
mials. As an example, the Bernstein-Szeg6 polynomials (see [5], [9] and [10]) are orthogonal with
respect to the weight functions

(1 x2)-l/2(p(x))-I
w(x) (1 x2)’/2(p(x)) -’

-)’/((x))-’
(7)

where p is a positive polynomial in [-1, 1] of fixed degree. These polynomials can be represented
in an easy way in terms of the Tchebychev Polynomials of first and second kind as can be deduced
from (1) (see also [17, Theorem 2.6]).

Here we solve a more general problem:

THEOREM 6 ([2]) Let u be a quasi-definite hnear funct,onal with uo and X X2 E C.
The linear functional v defined by u (x xl)(x x2)v s quasi-definite if and only if vo 0 and

Vl are such that

X21)0--Vl (X Vl) + 1)I--Xl’0 (X ’01) #
X2 --Xl 2 --rl (18)

Here
P,(xa;Pn+l(Xl;-vl-fv) P,(x; o)d,

P,+(x2;-,,,-*,,,o -,,,-*

and vo,v are the first and second moments of v, respectively. In this situation the MOPS with

respect to v is given by

+() P.+() + ..+P.+, () + .+P.(),
hi(x) Pl(X) + .1o() (19)
m() Po()

where
an+2 _d-l vl "xvo ,nE]N
b,+: P,+:(x:; 1-,0

and a o va. The coefficients of the corresponding recurrence relation

,() - o, ()=

(20)

(21)

are given by

n /n --(an+l --a,), n ( IN (22)

"---- nE]N }n+3 b.+2 r’n+l

+ .l(Z0 6), - + a(/ 6) ( )
(23)

LEMMA 7 Let u, v be the linear functionals defined in the above theorem; then

V (X-- Xl)-I(x-- x2)--I?A-- ?31 XlV0X2Vo v
6 +5

X X X2 X

where 5, means the Dirac mass at x,.

PROOF OF THE LEMMA. We only need to determine

(X- XI)-I(x- X2)-I((x- Xl)(X- X2)U)

(24)
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((X Xl)-I(x X2)-I((x- Xl)(X- x)v),f(x))
()-() ()-()

((x- x,)(-/), -’ -X X

X --X X X
(v, f(x) 4- f(xl) f(x:))

X X X2 X

Yl X2UO} XlVO

flY2 Xl X2 Xl

so, we get (24). ["]

PROOF OF THE THEOREM. From the above lemma, it seems natural that the neces-

sary and sufficient conditions for the quasi-difiniteness of v were given in terms of xl, x2, v0 and
Vl.

-’n+lAs {P,} is a basis of IP, we have R,.,+2(x) P,.,+2(x) + z...,=o a,,,P,(x), where the coefficients

an,k can be obtained as follows:

(u,P:)a,.,,k (v,(z- Xl)(X- x2)n,+:P,)
0 if k 0, 1,...,n-
R,+) if k n

(v, (x- Xl)(X- x)R,+P,,+I) if k n +
and so,

Rn+2(x) Pn+2(X) 4- an+2Pn+l(X 4- b,.,+2P,.,(x), (25)
where an+2 a,,,+l and b,,+2 a.,,; so, a necessary condition for the quasi-definitnes of the linear
functional v is that b.+: # 0 for n (by (5)).

Taking into account theorem 5, the MOPS with respect to v is a strictly qui-orthogonal MPS
of order two with respect to u. Now, if we substitute in definition 4 u by (x z,)(z z2)v we

obtain that v is quasi-definite (because v is strictly quasi-orthogonal of order two with respect to

u, i.e b.+2 # 0, n ), if and only if:

i.1 (v, n+l) 0 for n ,
i.2 (v, xR,+:) 0 for n ,
i.3 (v, R) # 0.

Expressing these conditions in terms of the data:

1. From i.1 with n 0 we obtain al fl0 Vl.

2. From i.3 and taking into account the lt expression for al we get *=-’(Xl v) +
-0( v) # 1.

{ (V,+2) 0 {(v,(x-xl)R.+2)=O for n ..3. From
(v, x+2) 0

n e we conclude that
(v, (x- x2)R.+) 0

These two expressions are enough in order to determine a.+2 and b.+2:
Substituting x by x in (25) and substracting from (25) the equation we have found, we get,
after dividing by x- X

,R+(x) P+(x) + a.+P.+l(X) + b.+O,P(x). (26)

Applying the quasi-definite functional u to both members of (26) and so on, we get

,(1) (1) + a.+P2)(l) + .+:PPl(Xl), e ;(., ( z:)(R.+:()- R.+(I))) -.+1

but we know that (v, (z x2)R.+2(x)) 0, so

o(1) (), n . (e)(v, z:v0)R+:(l) ..+,(,)++’(’)P2)(Xl) + .+:..-1

Using the same process described above with x2 instead of xl we get

b p(1)(.1 vo)n+() P(),() + a+P(1)() + .+: _(x:), Z (28)
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and taking into account (25) we obtain

P,+l(Xl; v,)2vo)a.+ + p.(xl;_)b.+: -P+(xl,

Pn+l(X )an+2 + P,(x2,- P.+:(x:;

and from this, we get (20).
Hence

(29)

bn+: ]dnl
,n E IN. (30)

As a conclusion:

The linear functional v is quasi-definite if and only if (18) is verified.

Concerning the determination of the coefficients of the recurrence relation (21)"

Substituting R,,+, in (21) by Pn+l(x)Tan+lPn(x)+bn+lPn_l(X) and applying the recurrence

relation (6) we get, after comparing the coefficients of the Pk with k n 2,n 1,n,n + 1,

b"---3’,_, n > 2(a) 0n+l bn

(b) an+l"[n nt- bn+ltn-1 n+lbn+l + On+lan, U

_
(C) ")’n+l q- an+lfln -t- bn+a bn+2 -b n+lan+l -I- On+l, n >_ 0

(d) ,+ fl.+a -(a.+=- a.+l), n > -1

As a limit case we have:

COROLLARY 8 ([21,[141) Let u be a quasi-definite linear functional with uo and Z

C; the linear functwnal v defined by u (x xa)v is quasi-definite, if and only if vo 0 and vx
are such that

("-’")
o (3)

where d, is the matrix

The corresponding MOPS with respect to v is given by

RnT2(x) PnT2(X) 3t- n+2Pn+l() - b.+P,,(x), n e IN, (32)

where
an+2 _d_l P.+: (x,; ,,,-,,vo (33)bn+2 (Vl xlvo)P+2(Xl, -o) + voP.+2(x,)

and a o The coecients of the recurrence relation that R, satisfies (1) are related with
vO

the ones of (6) by the following formulas

(34)

On+3 ’)’n+l, n t IN )
1 "[1 - al(0 1 b2, -r + a(Zx 6) ( :)

4 REAL INVERSE PROBLEM

The answer to the main problem is the following:

(35)
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THEOREM 9 Let P be a MOPS wdh respect to u and R,} be a stmctly quasi-orthogonal
MPS of order two wth respect to P,}; {Rn} is a MOPS f and only f, the parameters n (16)
an, a and a.... b satzsfy

a.+, 3 + a3
(36)+ + (, ) ++ ++(+ + ++ +),bn+

where the nztal con&tzons are

a =0 and a3 o + a 7
(a) a,a,b,b3 if

al O, b aa 0 and a3

(b} a, a, a3, b3 zf a 0 and b aa.

Furthermore, a, a, a3, b, b3 verify

+ (1 + ) + o
(37)+ (o + ) o

In this case, the coecients of the recurrence relation that {R} satisfies are 9ven by

(+
.+1 7.+ + a+(. .+) (.+ +1)

with the restrictions ao b O.
In additwn, the linear functional v such that {R} is the correspondm# MOPS is #iven by

u=p(x)v, (38)

where p(x) + ,,0) o( + (,, + 0,0.
) e,()+ P:()

REMARKS:

1. From (38) and taking into account theorem 6 and its corollary we have determined a. and

If ("’22 a) 4( ’’ + 2 + b: 7) 0 then (33)

If (b a2) 4( ’1’2 + ,2 + b2 7) 0 then (20) holds.

2. (36) provides an algorithm for the computation of (a., b.). In hct, from the first relation we
can calculate the a+4 in terms of (- +3 (b+)= in the secondu)k= and and substituting a+4
one we get b+4.

PROOF. From theorem 5, there exist two sequences (a), (b) C such that

R.+:(z) P.+:(x) + a+:P+l(X) + b+:P.(x) (39)

with b+: 0, n . Multiplying the equation (39) by z and using (6) we obtain

xR.+ P.+ + +:P.+ + 7+:P.+l + a.+:(P+: + +IP.+I + 7.+lP)+
b.+(P+l + .. + 7.P-1)
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Applying two times (39) we have

XRn+2 Rn+3 + n+2Rn+2 + r/n+2Rn+ +
(an+2"Yn+l an+r]n+2 + bn+2(n n+2))Pn -4- (bn+2n bn+lrln+2)Pn-1

where

r/n+l ")’n+i + an+l(fln n+) (bn+2 b,,+)
n G IN. (40)

So, {R,} is a MOPS if and only if

"n+l 3t- an+l(n n+l) (b.+2 bn+a) # 0

an+2n+l an+lln+2 3V bn+2(tn %n+2) 0 n IN
b,+3%+ bn+2rln+3 0

(41)

Now if we substitute r/n+3
of (40) we get

b.+z./l in the second equation of (41) and in the expression of
bn+2

an+2an+3

b-+2n+l -- (an+4 an+3) (n+3 ]n+l 0
bn+3

bn+ "[n+
7n+3 + an+3(n+2 fin+3" + an+4 an+3) (an+4 an+3)

bn+2

and from this, the algorithm (36) follows.
Now {R,} is a MOPS associated with the quasi-definite functional v. We search for a relation

between these two functionals-

If we apply the functional u in (39) we obtain (u, R,,+) 0, n E IN. Hence

u E$,a, (42)

where (a,,) is the dual basis associated with {R,} and A, (u,R,), 0,1,2.

As {Rn} is a MOPS associated with v we have by (7) an (v,m.)v for all n E lN; and so

(42) can be rewritten as

u + alRl(x)ll + R2(X)rhr/2 <v, 1)"

Taking into account Rn for n =-1, 2 we get (38). [-1

EXAMPLES. We will construct two MOPS strictly quasi-orthogonal of order 2 with respect
to:

(1) Second kind Tchebychev MOPS, {U,,}.

It is well known that in this case
/3, 0

n IN (see [5, Exercise 4.9]).

Hence, if we choose as initial conditions al a 2a and b b3 -c # 0, with

a,c C, we obtain by induction from (36) and considerations about initial conditions,
an+3 2a n lN.
bn+4 --c

It is straightforward to prove that (37) holds.

The coefficients of the three term recurrence relation (ttrr) verified by {R} are

{ {sXo=-2a, and r/ = c
,nE]N.,+ 0 r/,+
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This is an example of A1-Salam and A. Verma (see [1]). There they found a measure such that
{R,} is the corresponding MOPS. We can say that the condition for the positive definitness
of the new linear functional is c > - and a E IR.

Now, we give the quasi-definite (not positive definite, because ?1 < 0) linear functional, v, in
terms of the second kind Tchebychev linear functional, u, in the particular case a 0 and

16 6 v0

3Vo
v + x)-au + -(,5_1/4, + 61/4,).

From this representation we get (- a6 v 1) v0, i.e v0 -; hence3vo

(6_ + ,)
8

(2) Hermite MOPS, {H,}.

It is well known that " 0
,+1 n E ]N (see [5, Exercise 1.6]).

"/sT

Hence, if we choose as initial conditions al a2 0 and b2 b3 we obtain from (36) and

considerations about initial conditions a3 0, / a,+4 0

bE+4 (b,+2 _1) + ,+3 n IN.
bE+2

It can be seen b2+2 b2+3 k + for k IN. In fact,

k 0 b2 b3 1. Using induction,

if b2+2 b2k+3 k -4- for k < p

then b2+: b2k+z k + for k p + 1. In fact

b21o+4= 2P+3+p+l ( --)p+l P+ 1- =p+2
and

b2v+ v+l P + p + 2.

(37) can be deduced easily.

The coefficients of the ttrr verified by {R,,} are given by

-ifn=0
and n+l k + if n 2k + n IN.

if n 2k + 2

The quasi-definite (not positive definite) functional v is given in terms of the Hermite linear
functional, u, by:

2
v x-u + Vo6o.

Vo

,1) V0,From this representation we get (-v i.e vo -2; hence

v x-2u 2(50.

5 COMPLEX INVERSE PROBLEM

Before working out the problem (4) we will state some basic definitions.
CO Cl ]

Let f14 CO ] be an infinite Toeplitz and Hermitian matrix. A linear functional

u on the linear space of Laurent polynomials span {z n G } is said to be Hermitian if

ca (u, z"), n E IN and , (u, z-"), n IN. Here 7Z denotes the set of integers {0,-t-1, +2,...}.
The linear functional u is said to be quasi-definite when the principal submatrices of .M are

non-singular.



GENERATING NEW CLASSES OF ORTHOGONAL POLYNOMIALS 653

THEOREM 10 ([8]) M represents the Gram matriz for the generalized znner product:

(p(z),q(z))

associated with u in IP.

In these conditions, we can define a MOPS {,,} with respect to the matrix . or with respect to
the quasi-definite Hermitian hnear functional u by

Co Cl an
c Co c,.,_

()=/x_ _""
Cn- Cn- C

z z

where A,,_I means the principal minor of order n for .A/[. This family will be called a MOPS on

the umt circle T since the shift operator on IP is unitary with respect to the above inner product.
Now, if we denote Kn a._ for n _> and Ko co, it can be seen that g._ --I.(0)1;

so I,(0)1 # for n > 1.
For a MOPS {q,} on the unit circle, T, Szeg6 recurrence relations follows (see [17, T. 11.4.2]),

i.e.

+.+(t .()+ .+(0)<() (44)

*n+l () *n() -" Cn+l (o)ZCn(z) (45)

where ICn+(0)l :fi and ,](z) znc--(z-) for n lN. Conversely, if 1.+1(0)1 1, n fi IN the
sequence defined by (44) is orthogonal with respect to a quasi-definite Hermitian linear functional

(see [8]). The values (.(0)) are called reflection parameters.
We define a MPS {.} by

b,(z) ,(z) + a,,_(z) for n > 1. (46)

But, {n} is a MOPS on the unit circle if and only if verifies the following recurrence relation

Cn+l(Z) gCn(Z)"+" Cn+l(0):(Z), n E IN and [n+l(0)[ 1.

So, using (46) we get

Cn+l(Z) -[- an+lCn(z) zCn(z) "9I- anzCn--l(Z) "4- (n+l(0) -- an+xCn(O))((Z) 4- -nZ_I(Z))

for n > 1. Applying two times (44) we obtain

[an+ a a.+ll.(0)l2] z._,(z) [n+l(0) - an+lCn(O)]-nZ_l(Z) (47)

for n > 1. We can state the followingresult,

THEOREM 11 Let {n be a MRS defined by (46). If {n is orthogonal with respect to a

Hermitian linear functional u then Cn(Z) Zn-22(Z), n >_ 2, where 2 is a polynomial of degree
two.

PROOF. From (47) and taking into account [11, proposition 2.3 (c)] we have

a2(1 -11(0)12) (2(0) + a2l(0))x + aa
a.(.+(0) + .+.(0)) a..+(0) 0, r, _> 2

a,+l(1 in(0)12
gn

=a,,n>_2.

(48)
(49)

(50)

Now we consider three cases"

(a) If a 0 (= a2 0 (= an 0, n > 1. So ,(z) n(Z), for n e IN.

(b) If al - 0 and a2 0 then by (48) we get 12(0)1 1; which contradicts the quasi-definiteness
of the linear functional associated with {}.

_5_ for n > 2.(c) If axe2 # 0 then (50) gives an+a s--an; so an+a Kn
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Now, because a, 0 for n >_ 2 we have from (49) .+,(0) 0 for n > 2. Applying the
recurrence relation that {V.} satisfies we get

G+,(z) z.(-), > 2; (51)

and so a representation for these polynomials

follows. Hence, in order to determine {.} we need a,,a2, ,(0) as initial conditions because 2(0)
is defined by (48).

SOME EXAMPLES.

1. If , (0) 0 we have from (48)

a2 (0)1 + al (53)

then, we can consider two situations:

a) al a2

In this case (0)1 0 and as a consequence 2(0) 0. From (49) ,,(0) 0, for
n > and from (50) a, hi, n _> 1.

This situation means that

.(z) z"
a, al, n _>

i.e. (,) take the form ,(z) z"-l(z + al), n _> and is orthogonal with respect to
dO

the Poisson measure d# [exp(i0)+ al[ 2’
[all # 1.

(b) a # a

Then, taking conjugates in (53)

and al 1_12(0)12

In this way, we can deduce

a2 2(0)al -+- al
a2 2(0)al + al

KIa2,,+x(0) a,,+,,,(0) --K"(0

and, thus because fi K, A,, we have,

Cn+l(0) (-Kla2)"n- /, 2.

Remark that 2(0) 0 because of, otherwise, al a2 in contradiction with our hy-
pothesis. Then Cn(z) z"-22(z) with 2(0) =fl 0.
If we take 2(0)=qanda= 1-qthenal= By inductionl+q"

+ (n 3)q
a.- l+(n_2)q,n>_2

,(0) (-1)"
q

+ (n 2)q ’n
> 2 and 1(0) 0.
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2. If 1(0) # 0, we will consider two cases:

0(0) 0

From (49) this implies that ,(0) 0, n _> 2. Then, ,(z) zn-l)l(Z), 1.
Moreover, a, a2 and from (48) a2(1 -11(0)12) a2fi,l(0) + aa. Taking conjugates

a(1 -I+(0)1=) a(0) + a,

and thus

(21 2

Observe that in this situation

(1 -Ia(0)1=)(1 aa(0))

.(z) z"-(z) + .z"-(z)
z"-,(z)(z + )
z"-(z + (0))(z + ), > 2

This situation corresponds to the case when {,,} is a MOPS with respect to the measure
dO

d/
exp(i0)+ 1(0)121 exp(i0 + a212 la21 1.

(b) (0) # 0

Then Cn(0) 0, n 6 lN. This seems to be the more interesting situation.

An algorithm can be dedu(ed in order to compute all the reflection parameters. In fact,
from (48) we have

2(0) a2(1 --11(0)12) al ala2l(0).

Now, using sucessivelly (49) and (50)we get

(22

a2 fian+a 1_i=1(1 ]k(0)]2 ,+1(0) (-1)"+1 akl(0) for n > 1.
k=2

Again, we can consider th particular situation 2(0) q and a2 -q. As before,
we can deduce

+ (n- 3)q
+ (n 2)q

,,,(0) (--1)"
q

+ (n 2)q

for n > 2; if we take (0) in (48) then al -iz_. Hence

+ (n 3)q
+ (n 2)q

,,(0) (-1)"
q

+ (n 2)q

for n > 1. !--I
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