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Einstein’s connection in a generalized Riemannian manifold X, has been investi-
gated by many authors for lower-dimensional cases n = 2,...,6. In a series of pa-
pers, we obtain a surveyable tensorial representation of 7-dimensional Einstein’s
connection in terms of unified field tensor, with main emphasis on the derivation
of powerful and useful recurrence relations which hold in X7. In this paper, we
give a brief survey of Einstein’s unified field theory and derive the recurrence rela-
tions of the first kind which hold in a general X;,. All considerations in this paper
are restricted to the first and second classes only since the case of the third class,
the simplest case, was already studied by many authors.

2000 Mathematics Subject Classification: 83E50, 83C05, 58A05.

1. Introduction. In Appendix II to his last book, Einstein [16] proposed a
new unified field theory that would include both gravitation and electromag-
netism. Although the intent of this theory is physical, its exposition is mainly
geometrical. Characterizing Einstein’s unified field theory as a set of geomet-
rical postulates in the space time X4, Hlavaty [17] gave its mathematical foun-
dation for the first time. Since then Hlavaty and number of mathematicians
contributed for the development of this theory and obtained many geometri-
cal consequences of these postulates.

Generalizing X, to n-dimensional generalized Riemannian manifold X,,, n-
dimensional generalization of this theory, so called Einstein’s n-dimensional
unified field theory (n-g-UFT hereafter), had been investigated by Wrede [20]
and Mishra [19]. On the other hand, corresponding to n-g-UFT, Chung [1] intro-
duced a new unified field theory, called the Einstein’s n-dimensional * g-unified
field theory (n-*g-UFT hereafter). This theory is more useful than n-g-UFT
in some physical aspects. Chung et al. obtained many results concerning this
theory [2, 5, 6, 7, 8, 12, 13], particularly, proving that n-*g-UFT is equivalent
to n-g-UFT so far as the classes and indices of inertia are concerned [3]. The
case of the third class, which is the simplest case of both unified field theo-
ries, was completely studied for a general n by many authors (e.g., [8, 19, 20]).
However, in the cases of the first and second classes of both n-dimensional
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generalizations, it has not been possible yet to represent the general n-dimen-
sional Einstein’s connection in a surveyable tensorial form in terms of the
unified field tensor ga,. This is probably due to the complexity of the higher
dimensions.

However, the lower-dimensional cases of the Einstein’s connection in n-g-
UFT were investigated by many authors, 2-dimensional case by Jakubowicz
[18] and Chung et al. [4], 3-dimensional case by Chung et al. [9, 10, 11], and
4-dimensional case by Hlavaty [17] and many other geometricians. Recently,
Chung et al. also studied the Einstein’s connection in 4-* g-UFT [1], in 3-and
5-*g-UFT [8], and in 6-g-UFT [14, 15], and obtained respective Einstein’s con-
nection in a surveyable tensorial form.

The purpose of the present paper, the first part of a series of three papers, is
to introduce a brief survey of Einstein’s n-g-UFT and derive several recurrence
relations of the first kind which hold in n-g-UFT. In the second and third parts,
we derive powerful and useful recurrence relations of the second and third
kind which hold in 7-g-UFT, prove a necessary and sufficient condition for the
existence and uniqueness of the 7-dimensional Einstein’s connection, establish
alinear system of 66 equations for the solution of the 7-dimensional Einstein’s
connection employing the powerful recurrence relations, and finally solve the
system. We hope that the results obtained in this series of papers, especially
the 7-dimensional recurrence relations of the second and third kind in part
II, will contribute to the study of generalizing the corresponding results in a
general n-dimensional case when 7 is odd.

All considerations in this and subsequent papers are dealt with for the first
and second classes only.

2. Preliminaries. This section is a brief collection of basic concepts, nota-
tions, and results, which are needed in our subsequent considerations. They
are due to Chung [1, 8], Hlavaty [17], and Mishra [19]. All considerations in this
section are dealt with for a general n > 1.

2.1. n-dimensional g-unified field theory. The Einstein’s n-dimensional
unified field theory, denoted by n-g-UFT, is an n-dimensional generalization
of the usual Einstein’s 4-dimensional unified field theory in the space-time Xj.
It is based on the following three principles as indicated by Hlavaty [17].

PRINCIPLE 2.1. Let X;,, be an n-dimensional generalized Riemannian mani-
fold referred to a real coordinate system xV, which obeys the coordinate trans-
formation x” — x"' (throughout the present paper, Greek indices are used
for the holonomic components of tensors, while Roman indices are used for
the nonholonomic components of a tensor in X;,. All indices take the values
1,2,...,n and follow the summation convention with the exception of nonholo-
nomic indices x, v, z, t) for which

det(ax ) +0. 2.1)
ox
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In n-g-UFT, the manifold X, is endowed with a real nonsymmetric tensor g,
called the unified field tensor of X,,. This tensor may be decomposed into its
symmetric part hy, and skew-symmetric part ky,

9au = hay +kay. (2.2)

For the case of n = 4, the gravitational field is described by 10 components
of a symmetric quadratic tensor, while the electromagnetic field is defined
by a quadratic skew-symmetric tensor described by 6 components. Therefore,
we may expect that a unified theory comprising gravitation and electromag-
netism to be based on 16 field quantities. Several attempts in this direction
were made by Einstein and ultimately discarded. As given in (2.2), his last at-
tempt, which he regarded as final, was to introduce the unified field by a real
nonsymmetric tensor g, the gravitational field by its symmetric part h,,, and
the electromagnetic field by a skew-symmetric quadratic tensor &y, which may
be represented as a linear combination of its skew-symmetric part k,,, where

g =det(gay) =0, h =det(hry) =0, k= det (kay)- (2.3)
We may define a unique tensor h” = hV? by
ha hY =63 (2.4)

In n-g-UFT, the tensors ha, and hA will serve for raising and/or lowering
indices of tensors in X,, in the usual manner.

PRINCIPLE 2.2. The differential geometric structure on X, is imposed by
the tensor gy, by means of a connection r{u, defined by a system of equations

Dwgau = stuung- (2.5)

For 4-dimensional case, the tensor field g, imposes a differential geomet-
ric structure on space-time X, through the Einstein’s connection 1"2‘\’“, which
Einstein originally defined by the following system of 64 equations, called Ein-
stein’s equations:

awg/\u _r)(\xwgau —F&,gm =0. (2.6)

The equivalence of (2.5) and (2.6) was proved by Hlavaty [17, page 50]. This
system of 64 equations is similar in structure to the system of 40 equations
which defines the Christoffel symbols in the gravitational theory. The only
striking difference between these two systems is the position of the indices
wu in I}y, However, this peculiar order of the indices wu has a profound
geometrical meaning, which Einstein interpreted in his book, “Generalization
of Gravitation Theory.” (A reprint of Appendix II from the fourth edition of the
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Meaning of Relativity), Princeton University Press, 1953, as follows: “this fact
is the mathematical expression of the indifference of the theory to the sign of
electricity.” This is an intuition of genius, since Einstein was not in possession
of the tensor k), of Electromagnetism.

Here D, denotes the symbolic vector of the covariant derivative with respect
toIy,, and Sa,” =7}, is the torsion tensor of Iy,. The connection Iy, satisfying
(2.5) is called the Einstein’s connection. Under certain conditions the system
(2.5) admits a unique solution Iy),.

PRINCIPLE 2.3. In order to obtain g, involved in the solution for Iy, certain
conditions are imposed. These conditions may be condensed to

Sa=S\% =0, Ripuay = 0puXag, 2.7)

where X, is an arbitrary nonzero vector, and Ry, 2" and R, are the curvature
tensors of Iy, defined by

Reomn” = 2(01uTia) w1 + Ta” (ulA1%w1)s Rua = Ry (2.8)

2.2. Algebraic preliminaries. In this subsection, we introduce notations,
concepts, and several algebraic results in n-g-UFT.

2.2.1. Notations. The following scalars, tensors, and notations are fre-
quently used in our further considerations:

Rl 2

g=g k=
Kp = Kiag ke, - - k1™, (p=0,1,2,...),

Ok, =6y, WY =ka, Pl = PV %kyY, (p=1,2,...), 2.9)

Kwuv = vvkwu + vwkvu + Vukwv,

B 0, if niseven,
a 1, if nis odd,

where V, is the symbolic vector of covariant derivative with respect to the
Christoffel symbols {,} defined by ha,. It has been shown that the scalars
and tensors introduced in (2.9) satisfy

Ko=1, K,=k ifniseven, K, =0 if pisodd,
g=1+Ko+---+Ky o, (2.10)

(p)kAu — (_1)17(10)](“)“ PRV = (Z1)P @) A,
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Denoting an arbitrary tensor T, skew-symmetric in the first two indices,
by T, we also use the following useful abbreviations:

par  par

T =T wm = TaBy(’”kw"‘“”k,,ﬁ(”k;\y,
000
T=Toun=T,
par par par (2.11)
2 T [Au] = T WA — T WUA s
(p@)r par qapr
2 T wapg=T wau+ T wau, etc.
We then have
par apr
T wap=—T rcwp- (2.12)
2.2.2. Classification, basic vectors, and basic scalars
DEFINITION 2.4. The tensor gy, (or ky,) is said to be
(1) of the first class, if K,—s + 0,
) of the second class with the jth category (j = 1), if
K>j#0, Kpjio=Kpjya=--=Ky =0, (2.13)

) of the third class,if Kz =Ky =---=Ky_¢ =0.

The solution of the system of (2.5) is most conveniently brought about in a
nonholonomic frame of reference, which may be introduced by the projectivity

V=kyA¥, (M ascalar). (2.14)

DEFINITION 2.5. An eigenvector A" of k,, satisfying (2.14) is called a basic
vector in X, and the corresponding eigenvalue M is termed a basic scalar.

It has been shown that the basic scalars M are solutions of the characteristic
equation

MO (M7 + KoM 2% 4+ 4Ky 2 ¢M?>+Ky, ) =0. (2.15)

2.2.3. Nonholonomic frame of reference. In the first and second classes,
we have a set of n hnearly independent basic vectors Av (i=1,...,n) and a

unique reciprocal set AA (i=1,...,n), satisfying
J A ; i
ANAY =681, AAY =6). (2.16)
1 1

With these two sets of vectors, we may construct a nonholonomic frame of
reference as follows.
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DEFINITION 2.6. If T}~ are holonomic components of a tensor, then its

nonholonomic components T}_‘_‘_‘ are defined by

T =TV Ay - AN (2.17)

TV =TECAY - Ay (2.18)

Furthermore, if ]\;I is the basic scalar corresponding to é", then the nonholo-

nomic components of (P k," are given by
(n)kxi — ¥p5)i(, (n)kxi — %phxi, (P) Xt = IL/Iph’”'. (2.19)

Without loss of generality we may choose the nonholonomic components of
hay as

hlZ = h34 == hnflfo',nfg = 1; (2-20)

O hni, = 8y, the remaining h;; = 0, (2.21)

where the index ig is taken so that Det(h;;) # 0 when n is odd.

2.3. Differential geometric preliminaries. In this subsection, we present
several useful results involving Einstein’s connection. These results are needed
in our subsequent considerations for the solution of (2.5).

If the system (2.5) admits a solution FXH, it must be of the form

T = L] + S + U, (2.22)
where
001
Uvap =2 S viaw- (2.23)

The above two relations show that our problem of determining Iy, in terms of
Jau IS reduced to that of studying the tensor Sy,”. On the other hand, it has
been shown that the tensor S,," satisfies

(110)
§S=B-3 S, (2.24)

where

2By = Kewpv + 3K [apv ke kP, (2.25)
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Therefore, the Einstein’s connection Iy, satisfying (2.5) may be determined if
the solution S,,,” of the system (2.24) is found. The main purpose of the present
paper is to find a device to solve the system (2.24) when n = 7.

Furthermore, for the first two classes, the nonholonomic solution of (2.24)
is given by

XA;IZS"J’Z =Byxyz (2.264a)
or equivalently
2 M Sxyz = Kiyz + 3Kixyz MM, (2.26b)
where
Xl\j/,[Z:1+1\;H\y/[+]§)/IJ\Z/I+I\Z/H§C/I. (2.27)

Therefore, in virtue of (2.26), we see that a necessary and sufficient nonholo-
nomic condition for the system (2.5) to have a unique solution in the first two
classes is

M +0 Vx,y,z. (2.28)
xXyz

3. The recurrence relations of the first kind in n-g-UFT. This section is
devoted to the derivation of the recurrence relations of the first kind and two
other useful relations which hold in n-g-UFT. All considerations in this section
are also dealt with for a general n > 1.

The recurrence relations of the first kind in n-g-UFT are those which are
satisfied by the tensors (?’k,”. These relations will be proved in the following
theorem.

THEOREM 3.1 (the recurrence relations of the first kind in n-g-UFT). The
tensors (P kv satisfy the following recurrence relations:
For the first class:

P eV + Ky P20V oo 4 Ky 2 PO R + Ky PPk =0 (3.1a)

which may be condensed to

n-o
> K rhkv =0, (p=0,1,2,...). (3.1b)
f=0

For the second class with the jth category:

Ci+p) eV 4 Ky GIHP=D v 4L +K2J'(p)k;\v =0 (3.2a)



784 MI AE KIM ET AL.

which may be condensed to

2j
S KDY =0, (p=1,2,...). (3.2b)
=0

PROOF

THE CASE OF THE FIRST CLASS. Let J\;I be a basic scalar. Then, in virtue of
(2.15), we have
n-o
> KM =0. (3.3)
f=0 =

Multiplying 8% to both sides of (3.3) and making use of (2.19), we have

n-o )
> K Pki=0 (3.4)
£=0
whose holonomic form is
n-o
> K Py =0. (3.5)
f=0

The relation (3.1) immediately follows by multiplying *’ k" to both sides of
(3.5).

THE CASE OF THE SECOND CLASS WITH THE jTH CATEGORY. When g,,
belongs to the second class with the jth category, the characteristic equation
(2.15) is reduced to

2j 2j
> KeM™ =M Y KMl = 0. (3.6)
f=0 f=0

Hence, if 1}(/[ is a root of (3.6), it satisfies

2j 2j
2j—f _ 2j—f+1 _
J\g}%[{f}\g fzoKfzy 0. 3.7)

In virtue of (2.19), multiplication of 5% to both sides of (3.7) gives

2j
> KRk =0, (3.8)
f=0

The holonomic form of (3.8) is
2j ,
ZKf(zf’f“)k;\“:O. (3.9
£=0
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Consequently, the relation (3.2) follows by multiplying »Vk," to both sides
of (3.9). O

REMARK 3.2. When g, belongs to the second class with the first category,
the relation (3.2), is reduced to

PR + K P kY =0, (p=1,2,...). (3.10)
In the following two theorems we prove two useful relations.

THEOREM 3.3 (for the first and second classes). In the first two classes, a
tensor Twuv, Skew-symmetric in the first two indices, satisfies

(ra)r x Y z
T wuv= 2. TuyzMPMPM"A,ALA,, (3.11)
X,z X y z
M e = S Tety MMM A, A A (3.12)
viwpu] X[yZ]y X vAwAu- .
xX,¥,z

PrROOF. Making use of (2.18) and (2.20), the relation (3.11) may be proved
as in the following way:

(ra)r (pa)r x ¥ z
T wuv = Z T xyzAwAuAv
xX,¥,z
1 P i@y Jo @y i 10 ky x4
=5 2 Tl Pkt Wk T+ Pk Pk 1]k A AU AL (3.13)
xX,¥,z
1 x Y z
JE— Para qanrp v
2)%27‘”2(1\){4 M+ MOIMP )M AwAuAy.

The second relation can be proved similarly. O
THEOREM 3.4 (for all classes). The tensor Bwyyv, given by (2.25), satisfies

(po)r  (pa)r (P'aw ('@ (pa )’
B —

=S+ S + S + S, (3.14)
(pa)r (pa)r (p'a")r (p'a)r’ (pa')r’
B wuy = K wpv + K wpv T K viwp] T K viwpuls (3-15)
where
p'=p+l, q' =q+1, v =r+l (3.16)

PROOF. Invirtue of (2.11) and (2.24), the relation (3.14) may be shown as in
the following way:

(pa)r  (pa)r
B = B uuw= %Baﬁy[(mkwu(q)kuﬁ_,_(q)kwu(p)kuﬁ](r)kvy
1
=5 [Sepy + SenyKa“kp™ + Sepnkaky™ + Suenkpky"] (3.17)

X [(”)kw"‘(q)kyﬁ+(Q)kw"‘(”)ku5]<”kv".
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After a lengthy calculation, we note that the right-hand side of the above equa-
tion is equal to (3.14). The relation (3.15) may be proved similarly. O
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