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In a sequence of independent Bernoulli trials, by counting multidimensional lat-
tice paths in order to compute the probability of a first-passage event, we derive
and study a generalized negative binomial distribution of order k, type I, which
extends to distributions of order k, the generalized negative binomial distribution
of Jain and Consul (1971), and includes as a special case the negative binomial dis-
tribution of order k, type I, of Philippou et al. (1983). This new distribution gives
rise in the limit to generalized logarithmic and Borel-Tanner distributions and, by
compounding, to the generalized Pólya distribution of the same order and type.
Limiting cases are considered and an application to observed data is presented.
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1. Introduction. In five pioneering papers, Philippou and Muwafi [22],

Philippou et al. [21], Philippou [17], and Philippou et al. [19, 20] introduced

the study of univariate and multivariate distributions of order k. Since then,

the subject matter received a lot of attention from many researchers. For com-

prehensive reviews at the time of publication, we refer to Johnson et al. [9, 10].

Consider a sequence of Bernoulli trials with success (S) probability p (0 <
p < 1), and let Tk,r denote the number of trials until r (r ≥ 1) nonoverlapping

success runs of length k (k ≥ 1) appear. Philippou et al. [21] (see also Philip-

pou [18]) derived, for x = kr ,kr +1, . . . , the following exact formula for the

probability distribution of Tk,r :

P
(
Tk,r = x

)= ∑
Σjjxj=x−kr

(
x1+···+xk+r −1

x1, . . . ,xk,r −1

)
px
(
q
p

)Σjxj
. (1.1)

The probability distribution (1.1) is known as negative binomial distribution

of order k, type I, with parameters r and p and it is denoted by NBk,I(r ;p).
A different sampling derivation of the (suitably shifted) negative binomial dis-

tribution of order k, type I, say NBk,I(r ;p), was given by Antzoulakos and

Philippou [2] (see also Tripsiannis and Philippou [25]). The Poisson and the

logarithmic series distributions of order k, say type I, were obtained as limit-

ing cases of NBk,I(r ;p), by Philippou et al. [21] and Aki et al. [1], respectively.

Panaretos and Xekalaki [15] derived and studied a hypergeometric, a negative
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hypergeometric, and a generalized Waring distribution of order k by means of

the methodology of Philippou and Muwafi [22], and Philippou et al. [21]. They

also stated, without further details, the derivation of a Polya and an inverse

Polya distribution of order k, of which the preceding three are proper special

cases. Ling [11] rederived the above-mentioned inverse Polya distribution of

order k, say type I, and introduced, allowing runs of length k to overlap, a new

inverse Polya distribution of order k, say type III. A different sampling deriva-

tion of the (shifted) inverse Polya distribution of order k, type I, was given by

Tripsiannis and Philippou [25].

Jain and Consul [6] introduced and studied the generalized negative bino-

mial distribution (see also Mohanty [13]). The generalized logarithmic series

distribution and the Borel-Tanner or generalized Poisson distribution were ob-

tained as limiting cases of the generalized negative binomial distribution by

Jain and Consul [6], and Jain and Singh [8], respectively (see also Jain [5], Jain

and Gupta [7], and Haight and Breuer [4]). Recently, Sen and Mishra [23] ob-

tained the generalized Polya distribution, which unifies the usual Polya and

inverse Polya distributions.

In this paper, we extend the above-mentioned generalized distributions to

distributions of order k. In Section 2, we derive a generalized negative bino-

mial distribution of order k, type I, say GNBk,I(·), which includes as a spe-

cial case the negative binomial distribution of order k, type I, of Philippou

et al. [21]. We do it by counting multidimensional lattice paths in a general-

ized sampling scheme employing a first passage approach (see Theorem 2.1

and Definition 2.2). Another genesis scheme of GNBk,I(·) is given next (see

Proposition 2.3), which indicates potential applications and provides its prob-

ability generating function (PGF), mean and variance (see Proposition 2.4). We

next obtain two limiting cases of GNBk,I(·) (see Propositions 2.5 and 2.7), which

provide, respectively, a generalized logarithmic series distribution of order k,

type I, say GLSk,I(·), and a Borel-Tanner distribution of the same order and

type, say BTk,I(·) (see Definitions 2.6 and 2.8). By means of a generalized sam-

pling scheme and a first-passage approach (see Theorem 2.9), and by com-

pounding the GNBk,I(·) with the Beta distribution (see Proposition 2.11), we

introduce a generalized Polya distribution of order k, type I, say GPk,I(·) (see

Definition 2.10), which includes as a special case the inverse Polya distribution

of order k, type I, of Panaretos and Xekalaki [15]. In Section 3, we introduce,

as special cases of GPk,I(·), several distributions of order k, most of which are

new. In Section 4, we relate asymptotically GNBk,I(·) to the Poisson distribu-

tion (Pk,I(λ)) of order k, type I, of Philippou et al. [21] (see Proposition 4.1),

and GPk,I(·) to GNBk,I(·), BTk,I(·), Pk,I(λ) and to the negative binomial distri-

bution (NBk,I(n;p)) of order k, type I, of Philippou et al. [21] (see Propositions

4.2, 4.3, 4.4, and 4.5). An application to observed data is also presented.

In order to avoid unnecessary repetitions, we mention here that in this paper,

x1, . . . ,xk are nonnegative integers as specified. In addition, whenever sums
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and products are taken over j, ranging from 1 to k, we will omit these limits

for notational simplicity.

2. Generalized negative binomial distribution of order k, type I. In this

section, we introduce a new distribution of order k, type I, by means of a gen-

eralized sampling scheme and a first-passage approach, and we obtain its PGF,

mean and variance. Furthermore, we derive three new distributions of order k:

the generalized logarithmic series, Polya distributions of order k, type I, and

the Borel-Tanner distribution of the same order and type. First, we consider

the following theorem.

Theorem 2.1. In a sequence of independent Bernoulli trials with success (S)
probability p (0<p < 1), consider the random variables Xj (1≤ j ≤ k) and Lk
(k≥ 1) denoting, respectively, the number of events

ej = S ···S︸ ︷︷ ︸
j−1

F, ẽk = S ···S︸ ︷︷ ︸
k

. (2.1)

Let X be a random variable denoting the number of occurrences of failures and

the total number of successes which precede directly the occurrences of failures

but do not belong to any success run of length k, that is, X = ΣjjXj . Trials are

continued until n+µΣjXj (n > 0 and µ ≥ −1) nonoverlapping success runs of

length k appear for the first time, that is, at any trial t (1 ≤ t ≤ ΣjjXj+k(n+
µΣjXj)−1), the condition A = {L[t]k < n+µΣjX[t]j , where X[t]j and L[t]k are the

numbers of events ej and ẽk, respectively, in the first t trials}, is satisfied. Then,

for x = 0,1, . . .,

P(X = x)

=
∑

Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)
pk(n+µΣjxj)+x

(
q
p

)Σjxj
,

(2.2)

where q = 1−p.

Proof. For any fixed nonnegative integer x, a typical element of the event

(X = x) is a sequence of outcomes Σjjxj+k(n+µΣjxj) of the letters F and S,

such that the event ej appears xj (1 ≤ j ≤ k) times and the event ẽk appears

n+µΣjxj times, satisfying the condition A and Σjjxj = x.

Fix xj (1≤ j ≤ k) (n and µ are fixed), and denote the event ej (1≤ j ≤ k) by a

unit step in Zj-direction and the event ẽk by a unit step in Z0-direction. There-

fore, we represent a sequence of xj events ej (1≤ j ≤ k) and n+µΣjxj events

ẽk by a (k+1)-dimensional lattice path from the origin to (n+µΣjxj,x1, . . . ,xk),
which does not touch the hyperplane z0 = n + µΣjxj except at the point
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(n+µΣjxj,x1, . . . ,xk). Then, the number of such lattice paths is

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)
(2.3)

(see [14, Example 10, page 25]) and each one of them has probability

pk(n+µΣjxj)+x
(
q
p

)Σjxj
. (2.4)

Then the theorem follows since the nonnegative integers x1, . . . ,xk may vary

subject to Σjjxj = x.

By means of the transformations xj = rj (1≤ j ≤ k) and x = r+Σj(j−1)rj ,
and by the multinomial theorem and relation (2.3) of Jain and Consul [6], it

may be seen that the above derived probability function is a proper probability

distribution.

For k = 1, this distribution reduces to the generalized negative binomial

distribution of Jain and Consul [6]; with β= µ+1, and for µ = 0, it reduces to

the (shifted) negative binomial distribution of order k, type I, of Philippou et

al. [21]. We, therefore, introduce the following definition.

Definition 2.2. A random variable (RV) X is said to have the generalized

negative binomial distribution of order k, type I, with parameters n, µ, and p
(n>0 and µ≥−1, both integers, and 0<p<1) to be denoted by GNBk,I(n;µ;p)
if, for x = 0,1, . . . , P(X = x) is given by (2.2).

The following proposition, which is a direct consequence of Definition 2.2,

indicates that GNBk,I(·) may have potential applications whenever there are

multiple groups of items and we are interested in the distribution of the total

number of items.

Proposition 2.3. Let Xj , 1≤ j ≤ k, be random variables and setX = ΣjjXj .
Then, X is distributed as GNBk,I(n;µ;p) if and only if X1, . . . ,Xk are jointly dis-

tributed as multivariate generalized negative binomial distribution with param-

eters n,µ, . . . ,µ and Q1, . . . ,Qk, where Qj = pj−1q (1≤ j ≤ k).
The PGF, mean and variance, of the generalized negative binomial distribu-

tion of order k, type I, may be readily obtained by means of Proposition 2.3

or by means of Definition 2.2, the transformations xj = rj (1 ≤ j ≤ k) and

x = r +Σj(j−1)rj , and simple expectation properties.

Proposition 2.4. LetX be a RV following the generalized negative binomial

distribution of order k, type I. Then,

(i) the PGF of X is given by:

gX(t)=
(

1−ϑ(y1, . . . ,yk
)

1−ϑ(y1t, . . . ,yktk
))n, |t| ≤ 1, (2.5)
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where

ϑ
(
y1, . . . ,yk

)= ∞∑
x1=0

···
∞∑

xk=0

Γ
(
(1+µ)Σjxj−1

)
Γ
(
µΣjxj

)
x1!···xk!Πjy

xj
j ,

yj = qpkµ+j−1 (1≤ j ≤ k).
(2.6)

(ii) The mean and variance of X are given by:

E(X)= nq
pk−µ(1−pk)Σjjpj−1;

Var(X)= nq
pk−µ(1−pk)
×
(
Σjj2pj−1+ q

pk−µ(1−pk)
[

2µ+1+µ(1+µ)
(
1−pk)

pk−µ(1−pk)
](
Σjjpj−1)2

)
.

(2.7)

For k = 1, Proposition 2.4(i) reduces to the PGF of the generalized negative

binomial distribution (see Jain [5]) and (ii) reduces to its mean and variance

(see Jain and Consul [6]).

Jain and Consul [6] obtained the generalized logarithmic series distribution

as a limit of the generalized negative binomial distribution. We extend this

result to the generalized negative binomial distribution of order k, type I, and

we name the limit distribution accordingly.

Proposition 2.5. Let Xn (n > 0) be a RV distributed as GNBk,I(n;µ;p), and

assume that n→ 0. Then, for x = 1,2, . . . ,

P
(
Xn = x |Xn ≥ 1

)
�→α

∑
Σjjxj=x

1
(1+µ)Σjxj

(
(1+µ)Σjxj

x1, . . . ,xk,µΣjxj

)
pkµΣjxj+x

(
q
p

)Σjxj
,

(2.8)

where α=−(k logp)−1.

Proof. For x = 1,2, . . . , we have

P
(
Xn = x |Xn ≥ 1

)
= P

(
Xn = x, Xn ≥ 1

)
1−P(Xn = 0

)
= npkn

1−pkn
∑

Σjjxj=x

1
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

)
!/n!(

n+µΣjxj
)
!/n!

1
Πjxj !

pkµΣjxj+x
(
q
p

)Σjxj

�→ 1
−k logp

∑
Σjjxj=x

1
(1+µ)Σjxj

(
(1+µ)Σjxj

x1, . . . ,xk,µΣjxj

)
pkµΣjxj+x

(
q
p

)Σjxj
,

(2.9)

which establishes the proposition.
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For k= 1, the above derived distribution reduces to the generalized logarith-

mic series distribution of Jain and Consul [6] and for µ = 0, it reduces to the

logarithmic series distribution of order k, type I, of Aki et al. [1]. We, therefore,

introduce the following definition.

Definition 2.6. A RV X is said to have the generalized logarithmic se-

ries distribution of order k, type I, with parameters µ and p (µ ≥ −1 is an

integer, and 0 < p < 1) to be denoted by GLSk,I(µ;p), if for x = 1,2, . . . , and

α=−(k logp)−1,

P(X = x)=α
∑

Σjjxj=x

1
(1+µ)Σjxj

(
(1+µ)Σjxj

x1, . . . ,xk,µΣjxj

)
pkµΣjxj+x

(
q
p

)Σjxj
.

(2.10)

It is well known that the usual Borel-Tanner distribution may be obtained

as a limit of the generalized negative binomial distribution (see Jain and Singh

[8]). We extend this result to the generalized negative binomial distribution of

order k, type I, and we name the limit distribution accordingly.

Proposition 2.7. Let Xn,µ,q (n> 0 and µ ≥−1, both integers, and 0< q < 1)

be a RV distributed as GNBk,I(n;µ;p), and assume that nq→ rαβ (α> 0, β > 0,

and r = 1,2, . . .) and µq→αdβ (d= 1,2, . . .), as n→∞, µ→∞, and q→ 0. Then,

for x = 0,1, . . . ,

P
(
Xn,µ,q = x

)
�→

∑
Σjjxj=x

r(αβ)Σjxj

Πjxj !
(
r +dΣjxj

)Σjxj−1e−(kαβ)(r+dΣjxj). (2.11)

Proof. For x = 0,1, . . . , we have

P
(
Xn,µ,q = x

)
=

∑
Σjjxj=x

1

nΣjxj−1

(
n+(1+µ)Σjxj−1

)
!(

n+µΣjxj
)
!

pk(n+µΣjxj)+x−Σjxj
(nq)Σjxj

Πjxj !

�→
∑

Σjjxj=x

r(αβ)Σjxj

Πjxj !
(
r +dΣjxj

)Σjxj−1e−(kαβ)(r+dΣjxj),

(2.12)

which establishes the proposition.

For k= 1, this distribution reduces to the (shifted) Borel-Tanner distribution

of Haight and Breuer [4] with parameters r = r/d and α=αdβ. We, therefore,

introduce the following definition.

Definition 2.8. A RV X is said to have the Borel-Tanner distribution of

order k, type I, with parameters α, β, d, and r (α > 0, β > 0, d = 1,2, . . . , and
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r = 1,2, . . .) to be denoted by BTk,I(α;β;d;r) if, for x = 0,1, . . . ,

P(X = x)=
∑

Σjjxj=x

r(αβ)Σjxj

Πjxj !
(
r +dΣjxj

)Σjxj−1e−(kαβ)(r+dΣjxj). (2.13)

We observe that this distribution is essentially the generalized Poisson dis-

tribution of order k, type I, of Tripsiannis et al. [26], with θ =αβr and λ=αβd.

We proceed now to derive a generalized Polya distribution of order k, type

I, using a first-passage approach in a generalized sampling scheme, which

follows along the same lines as those in the proof of Theorem 2.1.

Theorem 2.9. An urn contains c0+c1(= c) balls of which c1 bear the letter

F and c0 bear the letter S. A ball is drawn at random from the urn, its letter

is recorded, and it is replaced into the urn, together with s balls bearing the

same letter. Consider the random variables Xj (1 ≤ j ≤ k), Lk, and X as in

Theorem 2.1. Then, for x = 0,1, . . . ,

P(X = x)

=
∑

Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)
c
(k(n+µΣjxj)+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1

c(k(n+µΣjxj)+x,s)
,

(2.14)

where a(b,d) = a(a+d)···(a+(b−1)d), for b > 0, and a(0,d) = 1.

For k= 1, this distribution reduces to the generalized Polya distribution of

Sen and Mishra [23] and for µ = 0, it reduces to the inverse Polya distribution

of order k, type I, of Panaretos and Xekalaki [15]. We, therefore, introduce the

following definition.

Definition 2.10. A RV X is said to have the generalized Polya distribution

of order k, type I, with parameters n,µ,s,c, and c1 (s, µ ≥ −1, both integers,

and n, c, and c1, positive integers) to be denoted by GPk,I(n;µ;s;c,c1) if, for

x = 0,1, . . . , P(X = x) is given by (2.14).

The next proposition provides another derivation of the generalized Polya

distribution of order k, type I, by compounding the generalized negative bino-

mial distribution of the same order and type.

Proposition 2.11. Let X and P be two RVs such that (X | P = p) is dis-

tributed as GNBk,I(n;µ;p), and P is distributed as B(α,β) (the Beta distribution

with positive real parameters α and β). Then, for x = 0,1, . . . ,

P(X = x)=
∑

Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)

× B
(
α+k(n+µΣjxj)+Σj(j−1)xj,β+Σjxj

)
B(α,β)

.

(2.15)
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Proof. For x = 0,1, . . . , we get

P(X = x)= 1
B(α,β)

∑
Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)

×
∫ 1

0
pα+k(n+µΣjxj)+Σj(j−1)xj−1(1−p)β+Σjxj−1dp

=
∑

Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)

× B
(
α+k(n+µΣjxj)+Σj(j−1)xj,β+Σjxj

)
B(α,β)

,

(2.16)

which establishes the proposition.

We note that relation (2.15) reduces to (2.14) ifα= c0/s and β= c1/s (s ≠ 0),
which indicates that (2.15) may be considered as another form of GPk,I(·).

For k= 1, the above proposition provides a new derivation of the generalized

Polya distribution of Sen and Mishra [23].

3. Special cases of GPk,I(n;µ;s;c,c1). In this section, we consider the fol-

lowing special cases of the generalized Polya distribution of order k, type I,
eleven of which are new.

Class 3.1. In GPk,I(n;µ;s;c,c1), let µ =−1. Then, for x = 0,1, . . . ,kn,

P(X = x)=
∑

Σjjxj=x

(
n

x1, . . . ,xk,n−Σjxj

)
c
(k(n−Σjxj)+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1

c(k(n−Σjxj)+x,s)
, (3.1)

which reduces to the usual Polya distribution (see, e.g., Patil et al. [16, page

51]), for k= 1. We say that the RV X has the Polya distribution of order k, type

I, with parameters n,s,c, and c1, and we denote it by Pk,I(n;s;c,c1).
Case 1. In Pk,I(n;s;c,c1), let s =−1. Then, for x = 0,1, . . . ,kn,

P(X = x)=
∑

Σjjxj=x

(
n

x1, . . . ,xk,n−Σjxj

)
c
(k(n−Σjxj)+Σj(j−1)xj)
0 c

(Σjxj)
1

c(k(n−Σjxj)+x)
, (3.2)

where α(r) = α(α−1)···(α− r +1) and α(0) = 1, which reduces to the hy-

pergeometric distribution (see, e.g., Patil et al. [16, page 47]) for k= 1. We say

that the RV X has the hypergeometric distribution of order k, type I, with

parameters n,c, and c1, and we denote it by Hk,I(n;c,c1).
Case 2. In Pk,I(n;s;c,c1), let s = 1. Then, for x = 0,1, . . . ,kn,

P(X = x)=
∑

Σjjxj=x

(
n

x1, . . . ,xk,n−Σjxj

)
c
[k(n−Σjxj)+Σj(j−1)xj]
0 c

[Σjxj]
1

c[k(n−Σjxj)+x]
, (3.3)
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whereα[r] =α(α+1)···(α+r−1) andα[0] = 1, which reduces to the negative

hypergeometric distribution (see, e.g., Patil et al. [16, page 49]), for k = 1. We

say that the RV X has the negative hypergeometric distribution of order k, type

I, with parameters n, c, and c1, and we denote it by NHk,I(n;c,c1).
Case 3. In Pk,I(n;s;c,c1), let s = c0 = c1. Then, for x = 0,1, . . . ,kn,

P(X=x)=
∑

Σjjxj=x

(
n

x1, . . . ,xk,n−Σjxj

){(
k
(
n−Σjxj

)+x+1

Σjxj+1

)(
Σjxj+1

)}−1

,

(3.4)

which reduces to the uniform distribution (see, e.g., Patil et al. [16, page 82]),

for k= 1. We say that the RV X has the uniform distribution of order k, type I.
Case 4. In Pk,I(n;s;c,c1), let s = 0, and interchange p and q. Then, for x =

0,1, . . . ,kn,

P(X = x)=
∑

Σjjxj=x

(
n

x1, . . . ,xk,n−Σjxj

)
qk(n−Σjxj)+x

(
p
q

)Σjxj
, (3.5)

which reduces to the usual binomial distribution with parametersn and p (see,

e.g., Patil et al. [16, page 14]), for k= 1. We say that the RV X has the binomial

distribution of order k, type I, with parameters n and p and we denote it by

B∗k,I(n;p).

Class 3.2. In GPk,I(n;µ;s;c,c1), let µi = 0. Then, for x = 0,1, . . . ,

P(X = x)=
∑

Σjjxj=x

(
n+Σjxj−1

x1, . . . ,xk,n−1

)
c
(kn+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1

c(kn+x,s)
, (3.6)

which is the inverse Polya distribution of order k, type I, of Panaretos and

Xekalaki [15] with parameters c−c1, c1,n, and s. We denote it by IPk,I(n;s;c,c1).
Case 1. In IPk,I(n;s;c,c1), let s =−1. Then, for x = 0,1, . . . ,

P(X = x)=
∑

Σjjxj=x

(
n+Σjxj−1

x1, . . . ,xk,n−1

)
c
(kn+Σj(j−1)xj)
0 c

(Σjxj)
1

c(kn+x)
, (3.7)

which reduces to the inverse hypergeometric distribution (see, e.g., Patil et al.

[16, page 49]), for k= 1. We say that the RV X has the inverse hypergeometric

distribution of order k, type I, with parameters n, c, and c1, and we denote it

by IHk,I(n;c,c1).
Case 2. The IPk,I(n;s;c,c1), for s = 1, reduces to the generalized Waring

distribution of order k of Panaretos and Xekalaki [15], with parameters c−c1,

c1, and n.

Case 3. The IPk,I(n;s;c,c1), for s = 0, reduces to the negative binomial dis-

tribution of order k, type I, of Philippou et al. [21] with p = (c−c1)/c.
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Class 3.3. The GPk,I(n;µ;s;c,c1), for s = 0, reduses to the generalized neg-

ative binomial distribution of order k, type I, with p = (c−c1)/c.

Case 1. In GNBk,I(n;µ;p), let µ = 1 and q/p = P so that q = P/Q and p =
1/Q, where Q = 1+P , and replace n by nk and xj by xj −n. Then, for x =
k(k+1)n/2, k(k+1)n/2+1, . . . ,

P(X = x)

=
∑

xj≥n, Σjjxj=x

nk
Σjxj

(
2Σjxj−nk−1

x1−n,. . . ,xk−n,Σjxj−1

)
PΣjxj−nk

Qx+kΣjxj−[nk(k+1)]/2 ,
(3.8)

which reduces to the Haight distribution (see Haight [3]), for k = 1. We say

that the RV X has the Haight distribution of order k, type I, with parameters

n and P .

Case 2. In GNBk,I(n;µ;p), let q/p = P so that q = P/Q and p = 1/Q, where

Q = 1+P , and replace n by kµ and xj by xj −1. Then, for xi = k(k+1)/2,

k(k+1)/2+1, . . . ,

P(X = x)

=
∑
xj≥1

Σjjxj=x

kµ
(1+µ)Σjxj−k

(
(1+µ)Σjxj−k

x1−1, . . . ,xk−1,µΣjxj

)
PΣjxj−k

Qx+k[µΣjxj−(k+1)/2] ,

(3.9)

which reduces to the Takács distribution (see Takács [24]), for k = 1. We say

that the RV X has the Takács distribution of order k, type I, with parameters

µ and P .

Case 3. In GNBk,I(n;µ;p), let µ = d−1, and replace n by nkd and xj by

xj−n. Then, for x = k(k+1)n/2,k(k+1)n/2+1, . . . ,

P(X = x)=
∑

xj≥n, Σjjxj=x

nk
Σjxj

(
dΣjxj

x1−n,. . . ,xk−n,(d−1)Σjxj+nk

)

×pk[n(k+1)/2+(d−1)Σjxj]+Σj(j−1)xjqΣjxj−nk,

(3.10)

which reduces to the binomial-delta distribution (see Johnson et al. [10, page

143]), for k = 1. We say that the RV X has the binomial delta distribution of

order k, type I, with parameters n, d, and p.

Case 4. In GNBk,I(n;µ;p), let q/p = P so that q = P/Q and p = 1/Q, where

Q = 1+P , and replace n by nkµ and xj by xj−n. Then, for x = k(k+1)n/2,

k(k+1)n/2+1, . . . ,

P(X = x)=
∑
xj≥n

Σjjxj=x

nk
Σjxj

(
(1+µ)Σjxj−nk−1

x1−n,. . . ,xk−n,µΣjxj−1

)
PΣjxj−nk

Qx+k[µΣjxj−n(k+1)/2] ,

(3.11)
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which reduces to the negative binomial-delta distribution (see Johnson et al.

[10, page 144]), for k= 1. We say that the RV X has the negative binomial-delta

distribution of order k, type I, with parameters n, µ, and P .

Case 5. In GNBk,I(n;µ;p), let q/p = P so that q = P/Q and p = 1/Q, where

Q= 1+P . Then, for x = 0,1, . . . ,

P(X=x)=
∑

Σjjxj=x

n
n+(1+µ)Σjxj

(
n+(1+µ)Σjxj

x1, . . . ,xk,n+µΣjxj

)
Q−k(n+µΣjxj)−xPΣjxj ,

(3.12)

which reduces to the negative binomial-negative binomial distribution (see

Johnson et al. [10, page 145]), for k= 1. We say that the RV X has the negative

binomial-negative binomial distribution of order k, type I, with parameters n,

µ, and P .

4. Limiting cases of GPk,I(n;µ;s;c,c1)—applications. In this section, we es-

tablish five propositions, which relate asymptotically GNBk,I(·) to the Poisson

distribution (Pk,I(λ)) of order k, type I, of Philippou et al. [21] and GPk,I(·)
to GNBk,I(·), BTk,I(α;β;d;r), Pk,I(λ) and to the negative binomial distribution

(NBk,I(n;p)) of order k, type I, of Philippou et al. [21]. An application to ob-

served data is also presented.

Proposition 4.1. Let Xn,q (n is a positive integer, 0 < q < 1) and X be two

RVs distributed as GNBk,I(n;µ;p) and Pk,I(λ), respectively, and assume that

nq→ λ (λ > 0) as n→∞ and q→ 0. Then, for x = 0,1, . . . ,

P
(
Xn,q = x

)
�→ P(X = x). (4.1)

Proof. For x = 0,1, . . . , we have

P
(
Xn,q = x

)
=

∑
Σjjxj=x

(
n+(1+µ)Σjxj−1

)
!

nΣjxj−1(n+µΣjxj)!
(

1− nq
n

)nk
pkµΣjxj+Σj(j−1)xj (nq)

Σjxj

Πjxj !

�→
∑

Σjjxj=x
e−kλ

λΣjxj

Πjxj !
, as n �→∞, q �→ 0,

(4.2)

which establishes the proposition.

Proposition 4.2. Let Xc0,c1 (c0 and c1, positive integers) and X be two RVs

distributed as GPk,I(n;µ;s;c,c1) and GNBk,I(n;µ;p), respectively, and assume

that c0/(c0+c1)→ p (0<p < 1) as c0 →∞ and c1 →∞. Then,

P
(
Xc0,c1 = x

)
�→ P(X = x), x = 0,1, . . . . (4.3)
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Proof. We observe that

c
(k(n+µΣjxj)+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1(

c0+c1
)(k(n+µΣjxj)+x,s)

�→ pk(n+µΣjxj)+x
(

1−p
p

)Σjxj
, as c0 �→∞, c1 �→∞,

(4.4)

from which the proof follows.

Proposition 4.3. Let Xn,µ,c,c1 (µ ≥ −1 is an integer and n, c, and c1 are

positive integers) and X be two RVs distributed as in (2.14) and in the Borel-

Tanner distribution of order k, type I, respectively, and assume that c1/c → 0,

nc1/c → raβ (a > 0, β > 0, and r = 1,2, . . .), and µc1/c → adβ (d = 1,2, . . .) as

c→∞, c1 →∞, n→∞, and µ→∞. Then,

P
(
Xn,µ,c,c1 = x

)
�→ P(X = x), x = 0,1, . . . . (4.5)

Proof. We observe that

n
(
n+(1+µ)Σjxj−1

)
!(

n+µΣjxj
)
!

c
(k(n+µΣjxj)+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1

c(k(n+µΣjxj)+x,s)

�→ r(aβ)Σjxj (r +dΣjxj)Σjxj−1e−(kαβ)(r+dΣjxj)

as c �→∞, c1 �→∞, n �→∞, µ �→∞,

(4.6)

from which the proof follows.

Proposition 4.4. Let Xn,c,c1 (n, c, and c1, positive integer) and X be two

RVs distributed as GPk,I(n;µ;s;c,c1) and Pk,I(λ), respectively, and assume that

c1/c→ 0, n/c→ 0, and nc1/c→ λ (λ > 0) as c→∞, c1 →∞, and n→∞. Then,

P
(
Xn,c,c1 = x

)
�→ P(X = x), x = 0,1, . . . . (4.7)

Proof. We observe that

n
(
n+(1+µ)Σjxj−1

)
!(

n+µΣjxj
)
!

c
(k(n+µΣjxj)+Σj(j−1)xj ,s)
0 c

(Σjxj ,s)
1

c(k(n+µΣjxj)+x,s)

�→ e−kλλΣjxj as c �→∞, c1 �→∞, n �→∞,
(4.8)

which establishes the proposition.

Proposition 4.5. Let Xn (n is a positive integer) and X be two RVs dis-

tributed as in (2.14) and NBk,II(β,c/(c + k)), respectively, and assume that

n−1α= cn→ c (0< c <∞) as n→∞. Then,

P
(
Xn = x

)
�→ P(X = x), x = 0,1, . . . . (4.9)
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Table 4.1. Distribution of the counts of bacteria in leucocytes.

No. of bacteria

per leucocyte

Observed

frequency
Expected frequencies

Poisson GP GP2,I McKendrick

0 269 245.62 259.21 264.74 268

1 4 49.12 28.94 15.55 7

2 26 4.91 7.57 16.46 23

3 0 0.33 2.56 1.88 0.6

4 1 0.02 1.72 1.08 1.1

Total 300 300 300 299.71 299.7

χ2-value 133.52 69.25 15.47 1.97

d.f. 1 1 1 1 1

Proof. We observe that

n
(
n+(1+µ)Σjxj−1

)
!(

n+µΣjxj
)
!

B
(
α+k(n+µΣjxj)+Σj(j−1)xj,β+Σjxj

)
B(a,β)

�→
(
Σjxj+β−1

)
!

(β−1)!

(
c

c+k
)β( 1

c+k
)Σjxj

, as n �→∞,
(4.10)

from which the proof follows.

For k = 1, Propositions 4.1, 4.2, 4.3, 4.4, and 4.5 reduce to new results on

univariate generalized distributions of order k.

Finally, to illustrate the fit of the generalized distributions of order k, type

I, to observed data, we consider the following application of the generalized

Poisson (or Borel-Tanner) distribution of order k, type I.
McKendrick [12] considered the distribution of the sum of two correlated

Poisson variables, which he applied to the counts of bacteria in leucocytes.

Table 4.1 shows the expected frequencies of the counts of bacteria in leu-

cocytes estimated by the generalized Poisson distribution of order 2, type I
(GP2,I(·)), using the following moment estimators of the parameters θ and λ:

θ̂ = x
3A
, λ̂= A−1

2A
, A=

√
2
[
s2−(5/3)x]

3x
+1, (4.11)

with x = 0,2 and s2 = 0,374582. An ordinary Poisson (P(·)) and a generalized

Poisson distribution (GP(·)) (see, e.g., Jain [5]) have been fitted for comparison.

We observe that the generalized Poisson distribution of order 2, type I, gives

a good fit to the data.
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