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NOTES ON ALGEBRAIC FUNCTIONS
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Consideration of the monodromy group of the hypergeometric equation z(1−
z)w′′ +[γ−(1+α+β)z]w′ −αβw = 0, in the case of α = 1/6, β = 5/6, γ = 7/6,
shows that the global hypergeometric function solution F(1/6;5/6;7/6;z) is non-
algebraic although it has only algebraic singularities. Therefore, the proposition
given in [2, 4] that a function is algebraic if it has only the algebraic singularities
on the extended z-plane is not true. Through introduction of the concept of sin-
gular element criterion for deciding when a function is algebraic on the basis of
properties of its singularities is given.

2000 Mathematics Subject Classification: 30F99, 34M99.

1. Introduction. The theory of algebraic functions is a classical branch of

mathematics [6, 7]. Algebraic functions play a very important role in the study

of the integrability theory of ordinary differential equations [14, 15]. By def-

inition, a function w =w(z) is algebraic if it satisfies a polynomial equation

P(z,w)= 0. In practice, one desires criteria for deciding whether or not a given

function is algebraic recourse to the definition. One famous characterization

is that an algebraic function has a compact Riemann surface, and conversely, a

Riemann surface S is compact if and only if there exists an irreducible polyno-

mial P in two variables such that P(projω,ω)= 0, for all ω∈ S, where projω
is the projection of ω to the Riemann sphere [3, 6, 7].

Another characterization of the algebraic function is that they have only al-

gebraic singular points. By [2, 4], a singular point z0 ofw(z) is said to be alge-

braic if the function can be represented in a neighborhood of z0 by a Puiseaux

series of the form

w(z)=
∞∑
n=N

an
(
z−z0

)n/k, (1.1)

where k (k > 0) and N are integers, and aN ≠ 0. When N < 0, this point is called

a critical pole.

In [4], one find the statement “A function is said to be of algebraic type in

a region if it has only algebraic singularities in this region. Obviously, on the

whole plane, an algebraic type function is an algebraic function.” In [2], there

is a similar statement “Conversely, we will prove that every function, which

has only poles and algebraic ramification singular points, must be an algebraic
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function.” This statement certainly would provide a simple criterion for rec-

ognizing algebraic function in terms of their singularities. Unfortunately, we

find no proof for the assertion in [2] or [4].

On the other hand, in [10], it is proved that “Assume that the boundary

of a region G consists of finitely many points z1,z2, . . . ,zm,∞, that a func-

tion f(z) is at most n-valued on G and can be continued analytically along

any continuous curve without limit, and that it can be represented by the ex-

pansion
∑∞
p=µ Ap(z−zj)p/v (µ is an integer, and v is a natural number) in a

neighborhood of zj and be represented by the expansion
∑∞
p=µ′A′pz−p/v in a

neighborhood of ∞, then f(z) is an algebraic function.” Similar statements

appear in [1, 11]. Although the condition “finiteness of the number of values

of the function” is emphasized as “necessary,” there is no explanation to show

why the condition is really necessary. Moreover, it is not easy to find a non-

algebraic function with only algebraic singular points. Therefore, it does not

help to ask whether the condition on “the finiteness of the number of values

of the function” is necessary, or whether it can be replaced by a condition on

the number and nature of singularities.

In Section 2, an explicit example of a nonalgebraic function with only al-

gebraic singularities is given. Thus, the condition “the function has only a fi-

nite number of values over each point of sphere” is indeed independent of

the condition “the function has only algebraic singularities,” and so the above

mentioned statements in [2, 4] are false.

This being the case, can we still recover a simple criterion like that in the

statement given in [2, 4] and based only on the properties of the singularities of

the function? In Section 3, using the concept of a singular element, we prove

that a global analytic function is algebraic if and only if it has only isolated

singularities, the number of its singular elements is finite, and every singular

element is algebraic.

2. The function F(1/6;5/6;7/6;z). In order to give the counterexample, we

consider the following hypergeometric differential equation

z(z−1)w′′ +[γ−(1+α+β)z]w′ −αβw = 0, (2.1)

in the particular case of

α= 1
6
, β= 5

6
, γ = 7

6
. (2.2)

Singular points of any solution of this equation can appear only at z = 0, z = 1,

or z =∞.

The following facts are known in the classical theory of hypergeometric

equation [4, 9]:
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(I) For any values of α, β, and γ, (2.1) always has a local holomorphic

solution F(α;β;γ;z), called a hypergeometric function, which can be

represented by a power series which converges in the disc, ‖z‖< 1.

The facts (II), (III), and (IV) are for the particular case (2.2).

(II) In a neighborhood of z = 0, it has a pair of local solutions

w11(z)= F
(

1
6

;
5
6

;
7
6

;z
)
,

w12(z)= z1−γF
(
α−γ+1;β−γ+1;2−γ;z

)
= 1
z1/6 ,

(2.3)

where w12(z) is in fact an algebraic solution. w11(z) and w12(z) form

a basic set of solutions in the disc ‖z‖< 1.

(III) In a neighborhood of z = 1, the equation has the following pair of so-

lutions

w21(z)= F
(

1
6

;
5
6

;
5
6

;1−z
)
= 1
z1/6 ,

w22(z)= (1−z)1/6F
(

1
3

;1;
7
6

;1−z
)
,

(2.4)

wherew22(z) has an algebraic singularity at z = 1. In the disc ‖z−1‖<
1, the functions w21(z) and w21(z) form a basic set of solutions.

(IV) In a neighborhood of z = ∞, the equation has the following pair of

solutions

w31(z)=
(

1
z

)1/6
F
(

1
6

;0;
1
3

;
1
z

)
= 1
z1/6 ,

w32(z)=
(

1
z

)5/6
F
(

2
3

;1;
5
3

;
1
z

)
,

(2.5)

where z =∞ is an algebraic singular point of both w31(z) and w32(z)
which form a basic set of solutions in the region ‖z‖> 1.

In a neighborhood of z = 1/2, the solutions, w11(z), w12(z), w21(z), and

w22(z) are all holomorphic. By direct calculation, we may check that the local

basic solution set (w11(z),w12(z)) can be represented as a linear combination

of (w21(z),w22(z)) via the matrix equation

(
w11(z)
w12(z)

)
= P

(
w21(z)
w22(z)

)
, (2.6)

where

P=



22/3√π Γ(7/6)
Γ(2/3)

−1

1 0


 . (2.7)
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Similarly, (w21(z),w22(z)) can be represented by (w31(z),w32(z)) via the

matrix equation

(
w21(z)
w22(z)

)
=Q

(
w31(z)
w32(z)

)
, (2.8)

where Q = (qij)2×2, and

q11 = 1, q12 = 0,

q21 = (−1)1/62−1/33−5/6
{
F
(

1
3

;1;
7
6

;−1
2

)[
3+31/6F

(
5
6

;
2
3

;
5
3

;
2
3

)]

− 9
14

31/6F
(

5
6

;
2
3

;
5
3

;
2
3

)
F
(

4
3

;2;
13
6

;−1
2

)}
,

q22 = 9
28
(−1)1/6F

(
4
3

;2;
13
6

;−1
2

)
− 1

2
(−1)1/6F

(
1
3

;1;
7
6

;−1
2

)
.

(2.9)

By continuing F(1/6;5/6;7/6;z) analytically, we obtain a global analytic

function (The definition of global analytical function can be seen in [12]) F(1/6;

5/6;7/6;z). It is easy to see the following proposition.

Proposition 2.1. Locally, every single-valued branch of the global analyti-

cal function F(1/6;5/6;7/6;z) can be represented as a linear combination of the

local basic set of solutions listed in (2.3), (2.4), or (2.5). Therefore, F(1/6;5/6;7/6;

z) can be treated as a global particular solution of (2.1).

Proposition 2.2. Every singular point of each single-valued branch of the

global analytical function F(1/6;5/6;7/6;z) is algebraic. Moreover, these sin-

gular points can occur only at z = 0, z = 1, or z =∞.

By the declaration in [2, 4], the global function F(1/6;5/6;7/6;z) should be

an algebraic function. We now prove that this is not the case.

We calculate the monodromy group of the given equation in case (2.2). By

the definition of monodromy group, we know that the Fuchsian type equation

(2.1) has two generators, M1 and M2, which are represented by two 2×2 con-

stant matrices such that from any starting point z0, which is located in the

intersection region of the discs ‖z‖< 1 and ‖z−1‖< 1, if we continue w11(z)
and w12(z) analytically along a circle path around z = 0 in the anticlockwise

direction, then, z returns to its initial value z0, these two solutions will have

new values represented through their original values and M1 as follows:

(
w̃11

(
z0
)

w̃12
(
z0
)
)
=M1

(
w11

(
z0
)

w12
(
z0
)
)
, (2.10)

and if we continue w11(z) and w12(z) along a circular path around z = 1 in

the anticlockwise direction, then, when z returns to its initial value z0, these

two solutions will have new values represented through their original values
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and M2 as follows:

(
ŵ11

(
z0
)

ŵ12
(
z0
)
)
=M2

(
w11

(
z0
)

w12
(
z0
)
)
. (2.11)

From (2.3), we may see that

M1 =
(

1 0

0 e−πi/3

)
. (2.12)

In order to calculate M2, we point out that, by (2.4), if we continuew21(z) and

w22(z) along a circular path around z = 1 in the counterclockwise direction,

when z returns to its initial value z0, these two solutions will have new values

represented through their original values as follows:

(
ŵ21

(
z0
)

ŵ22
(
z0
)
)
=M∗

2

(
w21

(
z0
)

w22
(
z0
)
)
, (2.13)

where

M∗
2 =

(
1 0

0 eπi/3

)
. (2.14)

By relation (2.6) between (w11(z),w12(z)) and (w21(z),w22(z)), we see that

M2 = PM∗
2 P

−1 =


(−1)1/3

−22/3[−1+(−1)1/3
]√
π Γ(7/6)

Γ(2/3)

0 1


 . (2.15)

It is easy to check that,

(
M1
)6 = (M2

)6 = (M1M2
)6 =

(
1 0

0 1

)
. (2.16)

This means that z = 0, z = 1, and z = ∞ are all algebraic singular points for

any given local solution of the equation.

However, if we let

M3 =M1M−1
2 =


−(−1)2/3

22/3[1+(−1)2/3
]√
π Γ(7/6)

Γ(2/3)

0 −(−1)2/3


 , (2.17)

we have

(
M3
)6 =


1

622/3[−1+(−1)1/3
]√
π Γ(7/6)

Γ(2/3)
0 1


 . (2.18)
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z = 0 z = 1

Figure 2.1. A directed path L.

Note that the monodromy matrix M3 represents the operation of continuing

a local solution along the directed and closed path L formed by two tangent

circles: one is around z = 1 with clockwise direction, and the other is around

z = 0 with counterclockwise direction (see Figure 2.1).

If one continues the system (w11(z),w12(z)) along L, then on returning to

z0 this system will have new values which are related to their original values

as follows

(
w̄11

(
z0
)

w̄12
(
z0
)
)
=M3

(
w11

(
z0
)

w12
(
z0
)
)
. (2.19)

If we set

δ= 622/3[−1+(−1)1/3
]√
π Γ(7/6)

Γ(2/3)
(≠ 0), (2.20)

then for any positive integer n,

(
M3
)6n =

(
1 nδ
0 1

)
. (2.21)

From (2.19) and (2.21) we see that, if we continue the local solution, w11(z),
along the above mentioned path L repeatedly 6n times, then the new value

w̌11(z0) of w11(z) at z0 is

w̌11
(
z0
)=w11

(
z0
)+nδw12

(
z0
)
. (2.22)

For instance, if we let z0 = 1/2, we have

w̌11

(
1
2

)
=w11

(
1
2

)
+nδw12

(
1
2

)

=
√
π Γ(7/6)

21/6Γ(2/3)
+21/6nδ.

(2.23)
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Since the positive integern is arbitrarily given, we see that F(1/6;5/6;7/6;z)
has infinitely many different values at z0. Therefore, we obtained the following

proposition.

Proposition 2.3. Since it assumes infinitely many values over z0 = 1/2 the

global hypergeometric function F(1/6;5/6;7/6;z) is not algebraic, although it

has only algebraic singularities.

Note: there are in fact other ways to verify that F (1/6;5/6;7/6;z) is not alge-

braic, for instance, by the classification of hypergeometric equations with a full

set of algebraic solutions based on Schwarz’s differential invariant (see [5, 8,

9, 13]). (Before the referee’s comment, we had not noticed this method though

we had browsed the related part of [9].) It has been verified that (1/6,5/6,7/6)
does not correspond to an entry of Schwarz’s list.

3. A decision criterion for algebraic function. Consider further the ex-

ample of F(1/6;5/6;7/6;z). From the traditional point of view, it seems that

this infinitely many valued function has only three isolated singularities. How-

ever, at each singular point it has infinitely many different Puiseux series cor-

responding to different branches, in other words, as a whole, the function

F(1/6;5/6;7/6;z) cannot be represented uniquely by a fixed Puiseux series in

a neighborhood of a given singular point. In general, different branches of a

multiplevalued function may show different singular properties at a given sin-

gular point, if this function has several singularities located at different points.

In this case, it is imprecise to speak of the property of a given singular point

without specifying the branch being considered. For example, it is not com-

pletely precise to say that the global function F(1/6;5/6;7/6;z) has only three

algebraic singularities.

If we introduce the further concept of singular element in addition to that

of analytic function element in the study of global analytical functions, as is

done in [11, 16], then we may describe the singularity with greater precision.

For z0 ∈ Ĉ (Ĉ = C⋃∞), we say that the ordered pair (f (z),z0) is a singular

element of a given global analytic function F(z) if f(z) consists of branches

of F(z) satisfying the following conditions:

(i) z0 is the common isolated singular point of every branch of f(z), in a

small punctured discD0 = {0< ‖z−z0‖< ε}, any two analytic function

elements of f(z) can be continued to each other along a path in D0;

(ii) no other analytic function element of F(z) can be obtained by continu-

ation of an analytic function element of f(z) along a path in D0.

If in a neighborhood of z0, f(z) can be represented by a Puiseux series, that

is,

f(z)=
∞∑

n=n0

an
(
z−z0

)n/k, k∈N, an0 ≠ 0, (3.1)
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then the singular element (f (z),z0) is said to be algebraic. In this way, we may

say more exactly that the global analytic function F(1/6;5/6;7/6;z) has only

three isolated singular points and infinitely many singular elements, and all

the singular elements are algebraic.

Now, we may prove a theorem that gives a criterion for deciding whether or

not a function is algebraic on the basis of its behavior at singularities.

Theorem 3.1. A global analytic function F(z), z ∈ Ĉ (Ĉ = C⋃∞) is algebraic

if and only if, all its singular points are isolated, the number of singular elements

is finite, and every singular element is algebraic.

Proof. It is obvious that when F(z), z ∈ Ĉ (Ĉ = C⋃∞) is algebraic, then ev-

ery singular point of it is isolated, the number of its singular elements is finite,

and every singular element is algebraic. Hence we prove only the converse part

of the theorem.

Assume that the global analytic function F(z), z ∈ Ĉ (Ĉ = C⋃∞) has the

following singular elements:

(
f1(z),z1

)
,
(
f2(z),z2

)
, . . . ,

(
fm(z),zm

)
, zj ∈ Ĉ, (3.2)

where

fj(z)=
∞∑

n=nj
aj,n

(
z−zj

)n/kj , aj,nj ≠ 0, j = 1,2, . . . ,m. (3.3)

It is not difficult to see that for any z ∈ Ĉ , the number of values of F(z)
cannot be greater than

∑m
j=1kj . Let n represent the maximum of the value

numbers of F(z).
Note that some of the singular points z1,z2, . . . ,zm may be superposed, so

the number of different isolated singularities may be less thanm. Without loss

of generality, we may assume that z1,z2, . . . ,zm are distinct points.

Let T be a connected tree on Ĉ , of which the singular points z1,z2, . . . ,zm
are just the vertices. It is easy to see that, on the single-connected region Ĉ \T ,

The multiple-valued function F(z) is formed with n different single-valued

holomorphic branches

F1(z),F2(z), . . . ,Fn(z), (3.4)

and on the boundary of the region Ĉ \T , z1,z2, . . . ,zm are algebraic singular

points of this function. Since F(z) is a global analytic function, these branches

can be obtained by each other through analytical continuation.

For any integer j = 1,2, . . . ,m and for any function g(z), which is analytic

on Ĉ \T and has its only singular points at z1,z2, . . . ,zm, we may continue this

function in the counterclockwise sense along a simple closed path containing

only the singular point zj in its interior. When the continuation returns to
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its initial point z the first time, g(z) may be transformed into g̃(z). Let Mj

(j = 1,2, . . . ,m) represent this transformation, that is,

g̃(z)=Mjg(z). (3.5)

Clearly, the operation Mi induces a permutation of the holomorphic system

(3.4). The m operations Mi, for i = 1,2, . . . ,m generate a permutation group,

called the monodromy group of the system.

Let

b0(z)= 1,

b1(z)=−F1(z)−F2(z)−···−Fn(z),
b2(z)=

∑
1≤i<j≤n

Fi(z)Fj(z),

...

br (z)= (−1)r
∑

1≤i1<i2<···<ir≤n
Fi1(z)Fi2(z)···Fir (z),

...

bn(z)= (−1)nF1(z)F2(z)···Fn(z).

(3.6)

These functions are in fact the elementary symmetric functions of F1(z),
F2(z), . . . ,Fn(z). Therefore, under any action of the operations M1,M2, . . . ,Mm,

these symmetric functions are invariant. Notice that, for functions F1(z),
F2(z), . . . ,Fn(z), points z1,z2, . . . ,zm are the only possible singularities, and

they are all algebraic. So z1,z2, . . . ,zm must be the only possible singularities

of the symmetric function system (3.6), and they can only be poles. Therefore,

these symmetric functions must be rational functions [12]. This means that the

n-branch functions, F1(z),F2(z), . . . ,Fn(z), satisfy the polynomial equation

yn+b0(z)yn−1+b2(z)yn−2+···+bn(z)= 0. (3.7)

This proves the theorem.
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