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K-BESSEL FUNCTIONS IN TWO VARIABLES

HACEN DIB
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The Bessel-Muirhead hypergeometric system (or oF;-system) in two variables (and
three variables) is solved using symmetric series, with an explicit formula for co-
efficients, in order to express the K-Bessel function as a linear combination of the
J-solutions. Limits of this method and suggestions for generalizations to a higher
rank are discussed.

2000 Mathematics Subject Classification: 33C20, 33C50, 33C70, 33C80.

1. Introduction. The Bessel functions (of the first kind) defined on the space
of real symmetric matrices appeared in the work of James [5] as an ingredient
in the expression of some densities in multivariate statistics. At the same time,
more systematic treatment was done by Herz [4]. In [8], Muirhead proved that
they are solutions of a system of differential operators which will be desig-
nated here as Bessel-Muirhead operators following [6]. We can see [1, 3] for the
generalization of this set of functions to a Jordan algebra. In what follows, we
explicitly write down a fundamental set of solutions when the rank equals 2
or 3. Our approach is slightly different from [7] in the final form of the coef-
ficients. Then (and this is our main result), we express the K-Bessel function
defined in this context as a linear combination of the J-solutions in the rank-2
case, SO answering a question in [4].

DEFINITION 1.1. Bessel-Muirhead operators are defined by

2

0 0 a 1 0 0 )
Bl_Xia—)(‘iz+(v+1)a_xi+1+5jz|'¢ir)(j<Xia_xi_Xja_Xj>’ l<i<v, (1.1)

where 7 is the rank of the system. A symmetric function f is said to be a Bessel
function if it is a solution of B;f =0,i=1,2,...,7.

Denote by ty,ts,...,t, the elementary symmetric functions, that is,

ty = ' z ' Xiy Xip **  Xip (1.2)
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with tp =1 and £, = 0 if p <0 or p > r. The Bessel-Muirhead system is then
equivalent to the system Zyg =0, 1 <k <7, (see [1, 5]) where

K - _ 1
o ijz:lA”atiatj " <V+1+ 2 >8tk 3 (1.3)

ti+_j—k lf le = k,
Afj = -tijx ifij<k i+j=k, (1.4)
0 elsewhere.

Here, 6,1< is the Kronecker symbol and g(ti,t2,...,t) = f(x1,X2,...,Xy).

2. Case v = 2. In this case, we have Al = (g toz), and A2 = (7} g), and the
operators in the modified system (1.3) can be written as follows:

2
, (2.1)

tr,
o2

tWZ, = 91(91+292+V+g) +ty,

toZy = 92(92 +V) -

where 0, = t;(0/0t,) and 6, = t,(0/0t»). The operators 0; are used because
their action on powers is easily checked by the rule 6;t* = xt{*. Now, putting in

the system (2.1) a series of the form Sn,a,) (t1,t2) = X, m,=0C (M1,

1+A1 t;nz +A2

mz)t{" , we can write the following system of recurrence formulas:

(my +/\1)(m1 +2mMo + A1 +2A +V + %)c(ml,mz) +c(m;—1,mp) =0,

(M2 +2A2) (M2 + A2+ v)c(my,myp) (2.2)

*(ml +2+A1)(m1+1+7\1)c(m1+2,m271) =0.

Then, we first obtain the system of critical exponents (A;,A,) when (m;,m;) =
(0,0);

A1</\1+2/\2+V+g) =0,
2\2(2\2-‘1-\/) =0,

(2.3)

which admits, as solutions, the set
Ao =1(0,0500,-v); (=v-2,0); (v- 2, )}, 2.4)

Now, with the help of the second equation of (2.2), we can express c(m,m>)
in terms of c¢(m; + 2m»,0) and then in terms of ¢(0,0) thanks to the first
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equation of (2.2). We obtain

(=1)mi+2mz2¢(0,0)
(T+A1)y, (T4 22) , (L A2+ V), (1441 +202 +V +d/2)

c(my,mp) = .
mi+2my

(2.5)

THEOREM 2.1. For genericv (i.e.,v¢ Zandv=d/2 ¢ Z), the series S, a,) (t1,
tp) with c(my,my) asin (2.5) and (A1,Az) € Az, form a fundamental set of so-
lutions of system (2.1).

REMARK 2.2. The convergence of this series is obvious.

3. Case ¥ = 3. As in the previous case, we have

ti t t3 -1 0 O 0O -1 0
Al=|t, t3 0f, A’=|0 t t3|, A’=|-1 -t 0],
t3 0 O 0 t3 O 0 0 t3
(3.1)
the modified system (1.3) takes the form
32
t121:91(91+292+293+V+d)+t1+t1t3¥,
2
trZr = 0; 6)»+29»+v+g —ti (3.2)
242 = U2 2 3 2 Zat%: -
0- (0 32 82
tx /= —2t3—— -thit3 —,
343 3(03+V) 3atlat2 1 3at§

and we obtain the following system of recurrence formulas for the coefficients
. A mo+A; A
of a series of the form Y., my.ms=0C (M1, Mo, M)ty )2 28T,

LA+m)c(m)+c(m—er) + (M2 +2+A2) (M2 +1+A2)c(m—e; +2ex—e3) =0,
LA+m)c(m)— (m+2+A1)(mi+1+A;)c(m+2e;—ez) =0,
LA+m)c(m)—-2(my+1+A1)(ma+1+A2)c(m+e;+ex—e3)

— (M2 +2+2A2) (Mo +1+A2)c(m—ey +2ep—e3) =0,
3.3)

where m = (my,mz,m3), A = (A1,A2,A3), e; = (1,0,0), e2 = (0,1,0), e3 =
(0,0,1), and

Ii(s) =s1(s1+252+2s3+v+d),

12(5)=32<52+233+v+%), (3.4)

I3(s) = s3(s3+V).
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The critical exponents set A3, is obtained after solving I1 (A) = I(A) = I3(A) =
0. Then we have

-

(0,0,0); (0,0,-v),
(-v-4d,0,0); (v—-d,0,-v),

Aswv =1 (O,—v—%,O); (O,V—g,—v), (3.5)
(v (o-4)

Now, by the second equation of (3.3), we can express c(m) in terms of c(m +
2my,0,m3). The third equation of (3.3) allows us to express c (m; +2m,,0,m3)
by c(m; + 2m» + 3m3,0,0), and finally, by the first equation, we regress to
c(0,0,0). After all reductions, we obtain

(_1)m1+2m2+3mgc(0)
clm) = (14+A1) oy (14A2) oy (1443) 1y (14A34V) 0, (142242434 V +d/2)

mp+2ms3
(1+A1+2A2 +4A3+2v+d)
% (1+A1+2A2+2A3+Vv+d)

mi+2mp+4ms

mip+2mp+3ms

1
1+A1+2A2 +4A3+2v+d)

X
( mi+2mp+3ms

and all ingredients to write a theorem like Theorem 2.1.

4. K-Bessel function. As an application, we derive, in the case r = 2, the
expansion of the K-Bessel function in the previous basis (J-functions) of the
Bessel system. Recall the one-variable situation (small letters refer to special
functions of one variable); the k-Bessel function can be defined by

_( X\ v
kv(X)—JO exp( Y% y)y dy. 4.1)
If we put
. _ - _ (=1)" n
Jv(x) =0of1 <v+1,X> _nzoi"’("“)nx , (4.2)

we have the formula
ky(x) =T(=v)jy (=x) +T(v)x"j_y (=x). (4.3)

Recall also the Mellin transform of k, (x),

M(ky)(s) = J()Jrookv(x)xs’1 dx =T(s)[(s=V). (4.4)
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Now, we write the two-variable situation in a Jordan algebra context. Take an
n-dimensional Jordan algebra A of a rank 2, the generic case is A = Rx R*" 1,
endowed with the product

x-y=(En+{u,v),Ev+nu) (4.5)

if x = (&u), ¥y =n,v), and (u,v) = > -i<n_1UiVi. The unit is obviously e =
(1,0). Then we have a Cayley-Hamilton-like theorem x? —2&x + (€% — ||lul|?)e =
0, and we can put tr(x) = 2& and det(x) = &2 — ||u||2. We consider the following
scalar product on A:

(x,y)=tr(x-y) =2&En+2(u,v). (4.6)

We can show that each x has a spectral decomposition x = x181 + x2é», with
x1,X2 € R and {é;,é>} is a pair of primitive strongly orthogonal idempo-
tents. More precisely, é; = (1/2,u/2]|u|l) and é; = (1/2,—u/2||u|). Observe
that o = u/||ull € S* 2. Any element v can be decomposed as follows: y =
k- (yié; + y28») with k € SO(n — 1) acting on é;, for example, by k - é; =
(1/2,(1/2)k - o), where k - o is the standard action of SO(n—1) on R"1,
The scalar product takes the form

(x1+x2) (1 +272) +%(Xl —x2) (V1= 22)(Ox, k- O%). (4.7)

N | —

(x,y) =
Now, the K-Bessel function can be defined by
Ky (x) =J e~ T =) (dety) 12 4y, (4.8)
Q

where Q = {x € A/tr(x) > 0 and detx > 0} is the cone of positivity of A. After
a change of variables, we can show that

K, (x) = (detx) VK_,(x). (4.9)

So, following [1], where it is proved that K, is a solution of a differential system
similar to (1.1), we can write

Ky (x) = ayS,0 (—t1,t2) +bySio,-v) (— t1,12)
(4.10)
+CvScv—d2,0 (—ti,t2) +dvSv—daj2,—v) (—t1,t2)
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(here, d = n—2). According to (4.9), we have a,, = b_,, and ¢, = d_, .. For suitable
v, the following limit holds (see [2] for more information on I, the gamma
function of the cone Q):

limK, (x) = To(—=v) = (2n)<"—2>/2r(—v)r(—v— ”—_2> 4.11)
x—0 2
xeQ
SO
ay=b = (21T)("’2>/21"(—V)F(—v— "T_Z) 4.12)

according to the behaviour of the solutions S, a,). To determine ¢, (and then
dy), we take x # 0 on the boundary of Q. So if x = 2&é,;, then the integral
representation of K, takes the explicit form

Ky (2801) = C |

J o~ (U1 +1/ 72 +ED1+1)~E(1 ~¥2) (0 k-0x)
SO(n-1)Jy1>y2>0

(4.13)

) T (1 = v2)" P dkdyy o,

X (12
where C is a constant (see [2, Theorem VI.2.3, page 104] for the integration
formula in polar coordinates in Q). In the particular case of rank-2 Jordan
algebras, we have C = 22-"/2g(™"=D/2 T ((n—1)/2). Now, after integration over
SO(n—1), we obtain

K, (28é,) = CJ e~ W+ 22 E01+31) (4 4, )Y T2
y1>y2>0

e o7 B =02)°

X(v1=x»2)" “ofif n-1; 7] dy dy;.
2

(4.14)

Then, the evaluation of the (one variable) Mellin transform of K, (2&£é,) gives

M(Ky (2()81))(s) = j:Kv(zgel)gs-lda

= CI(s) e~ WYH1122) (31 3, ) VT2 (31 — )
y1>y2>0
s s+1
s E' 2 Y1i—D0» :
X +95) | — d dy».
+y2) 2| T ,<y1+y2> yidy:

(4.15)
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This last integral can be computed after making the change v, = re? and
v, =re ? with r,0 > 0; so

M(K,)(s) =2"’1’5CF(S)J J e2cosh0/7y-2v=s-1(ginp )" 2 (cosh 0)
0 Jo

s+1
T2
n-1

2

N |«

x5 f1 ;(tanh 0)? |dr do

=2n 12V CT ()L (s — ZV)JO (sinh0)" 2 (cosh 0)2 =), f;

s st
<2 2 :(tanh 0)2 |dO
n-1
2
Comtizives LT =2V (s —v+1-n/2)T(n=1)/2)
=2 ¢ T(s—v+1/2) 2/
s i1
% 2 2 1
S—V-‘rz
(4.16)
and finally
M(Ky (2(-)81)) (s) = (2n)‘“*2>/2r(—v)F(S)F(S*VZZ n=2)/2) " 417)
So, we can write
Ky (E61) = )" 22T (=v)ky i (n-2)/2 () (4.18)

according to (4.4). Finally, using (4.3) and the expression of S, a,) in terms of
Jv when x = 2&¢é;, we obtain

_g (n-2)/2p(_ n-2
cy=d_, = (21) I'( v)l"(v+ > ) (4.19)

5. Conclusion. The resolution of the recurrence systems was possible be-
cause each one contains at least one equation with two coefficients of the se-
ries. Unfortunately, in the higher rank, such a situation does not occur. But we
conjecture that a recurrence on the rank exists. We expect also that a similar
situation is possible for the systems satisfied by the multivariate hypergeo-
metric functions ; F; and »F;.

For the K-Bessel function in the case » = 3, there is four nonequivalent
classes of the Euclidean Jordan algebra. So, we think that we have to perform
case-by-case calculations, and the essential difficulty arises in the evaluation of
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the integral over the automorphism group of the Jordan algebra-like formulas
(4.13) and (4.14). This will be the subject of another paper.
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