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K-BESSEL FUNCTIONS IN TWO VARIABLES
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The Bessel-Muirhead hypergeometric system (or 0F1-system) in two variables (and
three variables) is solved using symmetric series, with an explicit formula for co-
efficients, in order to express the K-Bessel function as a linear combination of the
J-solutions. Limits of this method and suggestions for generalizations to a higher
rank are discussed.
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1. Introduction. The Bessel functions (of the first kind) defined on the space

of real symmetric matrices appeared in the work of James [5] as an ingredient

in the expression of some densities in multivariate statistics. At the same time,

more systematic treatment was done by Herz [4]. In [8], Muirhead proved that

they are solutions of a system of differential operators which will be desig-

nated here as Bessel-Muirhead operators following [6]. We can see [1, 3] for the

generalization of this set of functions to a Jordan algebra. In what follows, we

explicitly write down a fundamental set of solutions when the rank equals 2

or 3. Our approach is slightly different from [7] in the final form of the coef-

ficients. Then (and this is our main result), we express the K-Bessel function

defined in this context as a linear combination of the J-solutions in the rank-2

case, so answering a question in [4].

Definition 1.1. Bessel-Muirhead operators are defined by

Bi = xi ∂
2

∂x2
i
+(ν+1)

∂
∂xi

+1+ d
2

∑
j≠i

1
xi−xj

(
xi

∂
∂xi

−xj ∂
∂xj

)
, 1≤ i≤ r , (1.1)

where r is the rank of the system. A symmetric function f is said to be a Bessel

function if it is a solution of Bif = 0, i= 1,2, . . . ,r .

Denote by t1, t2, . . . , tr the elementary symmetric functions, that is,

tp =
∑

1≤i1≤i2≤···≤ip≤r
xi1xi2 ···xip (1.2)

http://dx.doi.org/10.1155/S0161171203112057
http://dx.doi.org/10.1155/S0161171203112057
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


910 HACEN DIB

with t0 = 1 and tp = 0 if p < 0 or p > r . The Bessel-Muirhead system is then

equivalent to the system Zkg = 0, 1≤ k≤ r , (see [1, 5]) where

Zk =
r∑

i,j=1

Akij
∂2

∂ti∂tj
+
(
ν+1+ r −k

2
d
)
∂
∂tk

+δ1
k, (1.3)

Akij =



ti+j−k if i,j ≥ k,
−ti+j−k if i,j < k, i+j ≥ k,
0 elsewhere.

(1.4)

Here, δ1
k is the Kronecker symbol and g(t1, t2, . . . , tr )= f(x1,x2, . . . ,xr ).

2. Case r = 2. In this case, we have A1 = ( t1 t2t2 0

)
, and A2 = (−1 0

0 t2

)
, and the

operators in the modified system (1.3) can be written as follows:

t1Z1 = θ1

(
θ1+2θ2+ν+ d

2

)
+t1,

t2Z2 = θ2
(
θ2+ν

)−t2 ∂2

∂t2
1

,
(2.1)

where θ1 = t1(∂/∂t1) and θ2 = t2(∂/∂t2). The operators θi are used because

their action on powers is easily checked by the rule θitαi =αtαi . Now, putting in

the system (2.1) a series of the form S(λ1,λ2)(t1, t2) =
∑
m1,m2≥0c(m1,

m2)t
m1+λ1
1 tm2+λ2

2 , we can write the following system of recurrence formulas:

(
m1+λ1

)(
m1+2m2+λ1+2λ2+ν+ d

2

)
c
(
m1,m2

)+c(m1−1,m2
)= 0,

(
m2+λ2

)(
m2+λ2+ν

)
c
(
m1,m2

)
−(m1+2+λ1

)(
m1+1+λ1

)
c
(
m1+2,m2−1

)= 0.

(2.2)

Then, we first obtain the system of critical exponents (λ1,λ2)when (m1,m2)=
(0,0);

λ1

(
λ1+2λ2+ν+ d

2

)
= 0,

λ2
(
λ2+ν

)= 0,
(2.3)

which admits, as solutions, the set

Λ2,ν =
{
(0,0);(0,−ν);

(
−ν− d

2
,0
)

;
(
ν− d

2
,−ν

)}
. (2.4)

Now, with the help of the second equation of (2.2), we can express c(m1,m2)
in terms of c(m1 + 2m2,0) and then in terms of c(0,0) thanks to the first
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equation of (2.2). We obtain

c
(
m1,m2

)= (−1)m1+2m2c(0,0)(
1+λ1

)
m1

(
1+λ2

)
m2

(
1+λ2+ν

)
m2

(
1+λ1+2λ2+ν+d/2

)
m1+2m2

.

(2.5)

Theorem 2.1. For generic ν (i.e., ν∉ Z and ν±d/2 ∉ Z), the series S(λ1,λ2)(t1,
t2) with c(m1,m2) as in (2.5) and (λ1,λ2)∈Λ2,ν form a fundamental set of so-

lutions of system (2.1).

Remark 2.2. The convergence of this series is obvious.

3. Case r = 3. As in the previous case, we have

A1=



t1 t2 t3
t2 t3 0

t3 0 0


 , A2 =



−1 0 0

0 t2 t3
0 t3 0


 , A3 =




0 −1 0

−1 −t1 0

0 0 t3


 ,

(3.1)

the modified system (1.3) takes the form

t1Z1 = θ1
(
θ1+2θ2+2θ3+ν+d

)+t1+t1t3 ∂2

∂t2
2

,

t2Z2 = θ2

(
θ2+2θ3+ν+ d

2

)
−t2 ∂

2

∂t2
1

,

t3Z3 = θ3
(
θ3+ν

)−2t3
∂2

∂t1∂t2
−t1t3 ∂

2

∂t2
2

,

(3.2)

and we obtain the following system of recurrence formulas for the coefficients

of a series of the form
∑
m1,m2,m3≥0c(m1,m2,m3)t

m1+λ1
1 tm2+λ2

2 tm3+λ3
3 :

I1(λ+m)c(m)+c
(
m−e1

)+(m2+2+λ2
)(
m2+1+λ2

)
c
(
m−e1+2e2−e3

)=0,

I2(λ+m)c(m)−
(
m1+2+λ1

)(
m1+1+λ1

)
c
(
m+2e1−e2

)= 0,

I3(λ+m)c(m)−2
(
m1+1+λ1

)(
m2+1+λ2

)
c
(
m+e1+e2−e3

)
−(m2+2+λ2

)(
m2+1+λ2

)
c
(
m−e1+2e2−e3

)= 0,
(3.3)

where m = (m1,m2,m3), λ = (λ1,λ2,λ3), e1 = (1,0,0), e2 = (0,1,0), e3 =
(0,0,1), and

I1(s)= s1
(
s1+2s2+2s3+ν+d

)
,

I2(s)= s2

(
s2+2s3+ν+ d

2

)
,

I3(s)= s3
(
s3+ν

)
.

(3.4)
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The critical exponents set Λ3,ν is obtained after solving I1(λ)= I2(λ)= I3(λ)=
0. Then we have

Λ3,ν =




(0,0,0); (0,0,−ν),
(−ν−d,0,0); (ν−d,0,−ν),(

0,−ν− d
2
,0
)

;
(

0,ν− d
2
,−ν

)
,(

ν,−ν− d
2
,0
)

;
(
−ν,ν− d

2
,−ν

)
.

(3.5)

Now, by the second equation of (3.3), we can express c(m) in terms of c(m1+
2m2,0,m3). The third equation of (3.3) allows us to express c(m1+2m2,0,m3)
by c(m1 + 2m2 + 3m3,0,0), and finally, by the first equation, we regress to

c(0,0,0). After all reductions, we obtain

c(m)= (−1)m1+2m2+3m3c(0)(
1+λ1

)
m1

(
1+λ2

)
m2

(
1+λ3

)
m3

(
1+λ3+ν

)
m3

(
1+λ2+2λ3+ν+d/2

)
m2+2m3

×
(
1+λ1+2λ2+4λ3+2ν+d)m1+2m2+4m3(
1+λ1+2λ2+2λ3+ν+d

)
m1+2m2+3m3

× 1(
1+λ1+2λ2+4λ3+2ν+d)m1+2m2+3m3

(3.6)

and all ingredients to write a theorem like Theorem 2.1.

4. K-Bessel function. As an application, we derive, in the case r = 2, the

expansion of the K-Bessel function in the previous basis (J-functions) of the

Bessel system. Recall the one-variable situation (small letters refer to special

functions of one variable); the k-Bessel function can be defined by

kν(x)=
∫ +∞

0
exp

(
−y− x

y

)
y−ν−1dy. (4.1)

If we put

jν(x)= 0f1

( −
ν+1

;x
)
=
∑
n≥0

(−1)n

n!(ν+1)n
xn, (4.2)

we have the formula

kν(x)= Γ(−ν)jν(−x)+Γ(ν)x−νj−ν(−x). (4.3)

Recall also the Mellin transform of kν(x),

M
(
kν
)
(s)=

∫ +∞
0
kν(x)xs−1dx = Γ(s)Γ(s−ν). (4.4)
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Now, we write the two-variable situation in a Jordan algebra context. Take an

n-dimensional Jordan algebra A of a rank 2, the generic case is A= R×Rn−1,

endowed with the product

x ·y = (ξη+〈u,v〉,ξv+ηu) (4.5)

if x = (ξ,u), y = (η,v), and 〈u,v〉 =∑1≤i≤n−1uivi. The unit is obviously e =
(1,0). Then we have a Cayley-Hamilton-like theorem x2−2ξx+(ξ2−‖u‖2)e=
0, and we can put tr(x)= 2ξ and det(x)= ξ2−‖u‖2. We consider the following

scalar product on A:

(x,y)= tr(x ·y)= 2ξη+2〈u,v〉. (4.6)

We can show that each x has a spectral decomposition x = x1ê1+x2ê2, with

x1,x2 ∈ R and {ê1, ê2} is a pair of primitive strongly orthogonal idempo-

tents. More precisely, ê1 = (1/2,u/2‖u‖) and ê2 = (1/2,−u/2‖u‖). Observe

that σx = u/‖u‖ ∈ Sn−2. Any element y can be decomposed as follows: y =
k · (y1ê1 +y2ê2) with k ∈ SO(n− 1) acting on ê1, for example, by k · ê1 =
(1/2,(1/2)k ·σx), where k ·σx is the standard action of SO(n−1) on Rn−1.

The scalar product takes the form

(x,y)= 1
2

(
x1+x2

)(
y1+y2

)+ 1
2

(
x1−x2

)(
y1−y2

)〈
σx,k·σx

〉
. (4.7)

Now, the K-Bessel function can be defined by

Kν(x)=
∫
Ω
e−tr(y−1)−(x,y)(dety)ν−n/2dy, (4.8)

whereΩ= {x ∈A/tr(x) > 0 and detx > 0} is the cone of positivity of A. After

a change of variables, we can show that

Kν(x)= (detx)−νK−ν(x). (4.9)

So, following [1], where it is proved that Kν is a solution of a differential system

similar to (1.1), we can write

Kν(x)= aνS(0,0)
(−t1, t2)+bνS(0,−ν)(−t1, t2)

+cνS(−ν−d/2,0)
(−t1, t2)+dνS(ν−d/2,−ν)(−t1, t2) (4.10)
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(here,d=n−2). According to (4.9), we haveaν = b−ν and cν = d−ν . For suitable

ν , the following limit holds (see [2] for more information on ΓΩ, the gamma

function of the cone Ω):

lim
x→0
x∈Ω

Kν(x)= ΓΩ(−ν)= (2π)(n−2)/2Γ(−ν)Γ
(
−ν− n−2

2

)
, (4.11)

so

aν = b−ν = (2π)(n−2)/2Γ(−ν)Γ
(
−ν− n−2

2

)
(4.12)

according to the behaviour of the solutions S(λ1,λ2). To determine cν (and then

dν ), we take x ≠ 0 on the boundary of Ω. So if x = 2ξê1, then the integral

representation of Kν takes the explicit form

Kν
(
2ξê1

)= C
∫

SO(n−1)

∫
y1>y2>0

e−(1/y1+1/y2+ξ(y1+y1))−ξ(y1−y2)〈σx,k·σx〉

×(y1y2
)ν−n/2(y1−y2

)n−2dkdy1dy2,
(4.13)

where C is a constant (see [2, Theorem VI.2.3, page 104] for the integration

formula in polar coordinates in Ω). In the particular case of rank-2 Jordan

algebras, we have C = 22−n/2π(n−1)/2/Γ((n−1)/2). Now, after integration over

SO(n−1), we obtain

Kν
(
2ξê1

)= C
∫
y1>y2>0

e−(1/y1+1/y2+ξ(y1+y1))
(
y1y2

)ν−n/2

×(y1−y2
)n−2

0f1


 −
n−1

2

;
ξ2
(
y1−y2

)2

4


dy1dy2.

(4.14)

Then, the evaluation of the (one variable) Mellin transform of Kν(2ξê1) gives

M
(
Kν
(
2(·)ê1

))
(s)=

∫∞
0
Kν
(
2ξe1

)
ξs−1dξ

= CΓ(s)
∫
y1>y2>0

e−(1/y1+1/y2)
(
y1y2

)ν−n/2(y1−y2
)n−2

×(y1+y2
)−s

2f1



s
2
,
s+1

2
n−1

2

;

(
y1−y2

y1+y2

)2


dy1dy2.

(4.15)
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This last integral can be computed after making the change y1 = reθ and

y2 = re−θ with r ,θ > 0; so

M
(
Kν
)
(s)= 2n−1−sCΓ(s)

∫∞
0

∫∞
0
e2coshθ/r r 2ν−s−1(sinhθ)n−2(coshθ)−s

×2f1



s
2
,
s+1

2
n−1

2

;(tanhθ)2


dr dθ

= 2n−1+2(ν−s)CΓ(s)Γ(s−2ν)
∫∞

0
(sinhθ)n−2(coshθ)2(ν−s)2f1

×



s
2
,
s+1

2
n−1

2

;(tanhθ)2


dθ

= 2n−1+2(ν−s)C
Γ(s)Γ(s−2ν)Γ(s−ν+1−n/2)Γ((n−1)/2)

Γ(s−ν+1/2) 2f1

×



s
2
,
s+1

2

s−ν+ 1
2

;1




(4.16)

and finally

M
(
Kν
(
2(·)ê1

))
(s)= (2π)(n−2)/2Γ(−ν) Γ(s)Γ

(
s−ν−(n−2)/2

)
2s

. (4.17)

So, we can write

Kν
(
ξê1

)= (2π)(n−2)/2Γ(−ν)kν+(n−2)/2(ξ) (4.18)

according to (4.4). Finally, using (4.3) and the expression of S(λ1,λ2) in terms of

jν when x = 2ξê1, we obtain

cν = d−ν = (2π)(n−2)/2Γ(−ν)Γ
(
ν+ n−2

2

)
. (4.19)

5. Conclusion. The resolution of the recurrence systems was possible be-

cause each one contains at least one equation with two coefficients of the se-

ries. Unfortunately, in the higher rank, such a situation does not occur. But we

conjecture that a recurrence on the rank exists. We expect also that a similar

situation is possible for the systems satisfied by the multivariate hypergeo-

metric functions 1F1 and 2F1.

For the K-Bessel function in the case r = 3, there is four nonequivalent

classes of the Euclidean Jordan algebra. So, we think that we have to perform

case-by-case calculations, and the essential difficulty arises in the evaluation of
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the integral over the automorphism group of the Jordan algebra-like formulas

(4.13) and (4.14). This will be the subject of another paper.
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