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THE CONVERGENCE ESTIMATES FOR GALERKIN-WAVELET
SOLUTION OF PERIODIC PSEUDODIFFERENTIAL
INITIAL VALUE PROBLEMS
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Using the discrete Fourier transform and Galerkin-Petrov scheme, we get some
results on the solutions and the convergence estimates for periodic pseudodiffer-
ential initial value problems.
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1. Introduction. Inrecent years, wavelets have been developing intensively
and have become a powerful tool to study mathematics and technology, for
example, the theory of the singular integral, singular integro-differential equa-
tions, the areas such as sound analysis, image compression, and so on (see
[9, 10] and references therein). In this paper, we use a scaling function and a
multilevel approach to estimate the error of the problem

% =a-Au(x,t), xe€$", t>0, acR, (1.1

u(X,O):[uo](x), XE}TL’

where A is a pseudodifferential operator (see [1, 2, 3, 4, 6, 8, 9, 12]) with a
symbol o € C*(R"), o is positively homogeneous of degree » > 0 such that

|D*0 (E)| < Ca(1+1€])""',  for all multi-index « € N", (1.2)

g =R"/7", and [ug](x) = D ezn Uo (X + k) is a periodic operator.
We discuss only problem (1.1) with the following condition:

aoc(§) <0, VEez™ (1.3)

2. Preliminaries and notations. The continuous Fourier transform of the
function f € L, (R™) is defined by

f(& = J e 2TIXE f(x)dx, EeR" (2.1)
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with the inverse Fourier formula
f = | emEiEdE, e Rt
[RVL

(see [4, 8, 11]).
The discrete Fourier transform of the function f € L, ($") is

FHE=FE = ey, ger,

[0,1]

and the inverse Fourier transform is

F(x) = Z f‘(g)QZTrixE

Een

(see [6]).
Some simple properties of the discrete Fourier transform are

f,9)o= > F(©F®,

Eeqm

where (-, -)g is the L, ($")-inner product,

LF13=> 1F@ 1 =117

Een

where || - [[o is L»($™)-norm and || - [|;, is [>-norm.
Let s € R. Denote

H*($") = {u e D" ($") [ (D)u € Lo($")},

where

(&) = 1 ifE=0,
~1El ifEg+o0,

then H*($") is the Sobolev space endowed with the norm

lul2= S &% |aE) |’

Eern

and the inner product

(w,v)s= > (EFuE0®.

Een

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Here, we also define the discrete Sobolev space H;;(R"), s € R, of the functions

f € H*(R") such that the following norm is finite:

IF12,= S ®*1FE)|°

Een

(2.11)
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Denote

iz_{fELg(Rn): Z |f(—§)| ELz([O,l]H)}. (2.12)

Eeqn

It is clear that any function f € L,(R™), which has compact support, or any
function, for which [, oy [f(x)|?dx decays exponentially as |k| tends to
infinity, belongs to ¥,. The periodic operator [u1] is totally defined if u € %».
Here, we assume that ug € ¥».

REMARK 2.1. (1)It follows from (2.1) and (2.3) thatif u € ¥», then F([u]) (&)
=u(), Eer™
(2) It is clear that if t < s, s,t € R, then H'($") C H*($").

Using the variable separate method and the discrete Fourier transform, the
solution of problem (1.1) can be represented as

u(x,t) =E()[uo](x) = > exp(ac(&)t)F([uo])(§)e?™*E, (2.13)
Een

where E(t) is a differentiable function and E(0) = 1.

We recall that a multiresolution approximation (MRA) of L, (R") is, as a def-
inition, an increasing sequence V;, j € Z, of closed linear subspaces of L, (R™)
with the following properties:

Vvi=10}, UV, =LR"); (2.14)
Jjez jez

forall f € L,(R"™) and all j € 7,

f(x) eV, = f(2x) € Vj1; (2.15)
for all f € L,(R") and k € 7™,

f(x)eVy = f(x—k)eV,. (2.16)

There exists a function, called the scaling function (SF) ¢(x) € Vj, such that
the sequence

{p(x—k), kez"} (2.17)

is a Riesz basic of Vj (see [5, 9]).
An SF ¢ is called p-regular (u € N) if, for each m € N, there exists ¢,, such
that the following condition holds:

ID¥p(x) | <cm(1+x])™™, Vo, || <p. (2.18)
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REMARK 2.2. (1) Denote ¢ jx(x) = 2"/2¢(2/x — k), k € Z". It follows from
(2.14), (2.15), (2.16), and (2.17) that V; = span{¢r(x), k € 7"}, j € Z.

(2) For each u € N, there exists an SF ¢ (x) with compact support, and ¢ (x)
is p-regular; so in what follows, we always assume that ¢» has compact support
and is u-regular (see [9]).

Using the periodic operator and an MRA of L, (R™), we can build an MRA of
L, ($™) with the SF [¢] as follows.
Denote

L) =22 palx+1) =22 S p(2I(x+1)-k), j=0, (2.19)

lezn lezn

[V,] =span{$](x), ke 2"}, j=0, (2.20)

where 7 = 71 /2J 7",
Then, the sequence [V];>( satisfies

Volc[Vilc -, |JIVi]=La(g™). (2.21)
>0

~.

Itis clear that dim[V;] = 2", and if (¢bx, ;1) = Sk1, k,L € Z7, then (i, i) =
Sk, k,l € 7 (see [6]).

For each j = 0, let Pj : L»($"™) — [V;] be the orthogonal projection from
L,($™) on [V;], which has the following property.

THEOREM 2.3 (see [6, page 600]). Let —-uy—1<s=<u, —-u<q<u+1, and
s <gq, then

lu—Pjull; < c2/5Dul, (2.22)

for allu € H1($™), where c is independent of j and u.
Denoting h = 2=7 and Vy, = [V;1, we can write (2.22) as

[lv-Pjv||; <ch®=|vll,. (2.23)
3. The Galerkin-wavelet solution. Fix a distribution with compact support

n e H' (), where s’ > 0 satisfying AV, c H (§") and where I' C R" is some
tixed compact domain such as a hypercube. For f € H*' ("), define

nL(f) =279 (F (277 (- +k))). (3.1)
The space

X/ :=span {n}, k € 77} (3.2)
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is contained in (AV},)’, which is the dual of AV},. The corresponding Galerkin-
Petrov-wavelet scheme is then given by

r,{((aa%) = anl(Auy), kez", (3.3)
un(x,0) = Rufuo] (x), (3.4)

where R,v is a linear approximation of v in Vj, and uy : [0,0) — V) is a
differentiable operator.

Set
wn(x,t) = > et (x), (3.5)
kezni
Ru[uol(x) :=[uol,(x) = > ck(0)pf(x). (3.6)
keznj

Then the scheme (3.3) and (3.4) provides an algebra equation system and the
solution can be solved by Fourier series.

LEMMA 3.1. The following formulas hold true:

F(P]) (E) = h"/2p(RE)e 2minke,

) R ) (3.7)
F(APL) () = K20 (E) b (hE)e 2miHE,
PROOF. (a) It follows from (2.3) and (2.19) that
F(Pl) () =h 2 e 2mE R (21 (x +1) —k)dx
lezn 710,117
_pni2 J' | o~ 2MhXE b (x) dce~2TIkNE
lezn @ 2 +I0,11M) -k (3.8)
_ hn/zj o~2mhXE b (x0) A~ 2TIkNE
RN
_ hn/Z(z)(hE)e—erithI
(b) We have
F(Au) (&) = o (5)u(8); (3.9)
consequently,
F(APL) (E) = 0 (E)F (L) (E) = K20 (§) p(hE)e 2miNkE, (3.10)

The proof of the lemma is complete. ]
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COROLLARY 3.2. The following formulas hold true:

nl(pl) =h* > HRE)ARE)e 2mihi-bE

Een

M(Ap]) =h" > o (§)P(hE)ARE)e 2mihI-kE,

Eeqn

PROOF. (a) Using (2.4), Lemma 3.1, and (3.1), we have

(o) = n;;( 5 g<¢{><§>e2m§)

Eem
_ ni( Z hn/zqg(hg)ezmmgezmxg)
Een

= hn z qg(hg)e—Znhlgn(eZWh(x+k)§)
Eern

=" Z (i)(hg)ﬁ(T‘E)e—ZTrih(l—k)E_

Een
(b) Similarly, we can get the second assertion.

The following lemma is extracted from [6].

LEMMA 3.3. The following formula holds valid:

S o 2mihmk-®) {2"1 ifE=k+270, 0 € Z",
e -

0 otherwise.

mezhi
Set
a(k) = > H(hE)A(RE)e TNKE,
Een
S(k)= > o (hE)PhE)AME)e*™ e, ez,
e
The series

&L =h" Y alk)e 2TIE,

kezni
5(;) = hn Z 6(k)e—2nihk§,
kezni
E(C, ) =h" > cx(b)e 2mhke T egn
kezni

are called discrete Fourier series.

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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It follows from (3.3), (3.5), the positively homogeneous condition, and
Corollary 3.2 that

> al-k)=ah™ > ct)sl-k), lezm. (3.19)
kezni kezni
Thus
E(C,H&(C) =ah™é(C,0)8(T), (3.20)
. ~ at 5\ .
c(C,t)fexp(hy &(C))C(C,O). (3.21)
For each T = 0,1, set
9o (0 = > o (hC+k)" PR +k)ART + k). (3.22)
kezn

LEMMA 3.4. If the series (3.22) converges absolutely, then

&(C) =gg0(@),  6(C) =gg. (D). (3.23)

PROOF. (a) From (3.14) and (3.16), it follows that
=h" > > H(hE)A(hE)e 2mihkE-5), (3.24)
kezni Ezn

By the hypothesis of the lemma, we can interchange the summation in the
above double sum; then by using the variable change and Lemma 3.3, it is easy
to see that

&) =h" Y HhEARE) Y e 2minkED

gezn kezni

. - (3.25)
= Y HC+OAMT+0) = ggo (L)
fezn
(b) Similarly, the second assertion of the lemma will be checked.
From (3.5), (3.6), and (3.21), it follows that
. _ at 6(§)
i (&,t) = exp (hy ~(§)) F([uoln) (&). (3.26)
Let Fj(t) be the operator defined by
_ at 5(%)\
F (P (v () @) = exp (1 & 5 )7 E), (3.27)
then the approximation u,(x) can be represented by
un(x) = Fr(t)Rp[uo](x). (3.28)
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4. The error estimate of approximation solutions. Now to estimate the
error, we need some restrictions on the o, ¢, and n used above. The triplet
(0, ¢,n) is called admissible if the following properties hold:

(i) there exists p € N, p > v, such that the series

> o(hE+k)P(hE+K)AME+K) (4.1)

kezn

converges absolutely and

> o(hE+k)P(hE+K)AME+k) = 0 (hE)P(RE)ARE) +o(IhEIP)  (4.2)
kezn
as |lhE| - 0, A
(i) $(E)A(E) =0, for all £ € R™, $p(0)A(0) # 0,
(iii) the series

kZanB(h&k)m 4.3)
converges and
k%ﬂé(h&mm:dE(hE)WW(\hEI”) (4.4)
as |h&| - 0.

REMARK 4.1. (1)If n = ¢ and o is a pseudodifferential operator with symbol
o (&) =1&|",0 <r < u, then the triplet (o, ¢, ¢) is automatically admissible at
least for p = u, where pu € N is used in (2.18) (see [7] for detail).

(2)If n = ¢ and o is a pseudodifferential operator with symbol o (&) = (&)2,
then the triplet ((£)2, ¢, ¢) is admissible for p = u (see [6]).

Write
u—up = {u—Fu(t)[uol} +Fu(t){{uo] —Rn[uol}. (4.5)
We have
T[] (1) (8) = exp (7 255 ) ([1a]) )
N (4.6)
e (A5 g
= exp (hY &(§)>uo(§), ser,
thus
F(u—Fn(t)[uo]) (&)

={exp(at0’(§))—exp( )}ao(g), Eern.

hr &(&)
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If the triplet (o, ¢, n) is admissible, then it follows from (3.22) and Lemma 3.4
that

5@ _ p . 4
x(5) = 7 (&) +O(REP) as |hE| — 0. (4.8)

THEOREM 4.2. Suppose thatv +s' <s <p,0<m < s, and it is assumed that

the triplet (o, ¢, n) is admissible. Then, forug € £, NHJ"(R"),0 <t < T, with
h small enough, we get

||u_Fh(t)[u0]||m SChSirHMOHSer,d’ (4.9)

where c is independent of u, h, and ug.

PROOF. It follows from (4.8) that

_a_t_g(g) p-r|E|P
ato (&) ) <chP7"IEIP as|h&| <1. (4.10)
The equality
1
eld _oth — t(a—b)J estar(=sitb g ¢ 4.11)
0

(4.10), and (1.3) imply that, forr <s<pand0<t < T,

at 5(%)

nr &(5)) ’ <ch’"|&° as|h& <1. (4.12)

exp (ato (&)) —exp(
Hence, from (4.7) and (4.12), we obtain
[F(u(-,t) = Fa(t)[uo] () (&) | <ch* "|EI° |10(§)| as [hE|<1. (4.13)

By (1.3) and the admissibility of the triplet (o, ¢,n), inequality (4.13) is also
valid for all & € 7. Hence, foreachO<m <s,v+s' <s<p,and0<t < T, we
get

llu—Fn(®[uolll = > (€)™ | Flul-,t) —Fn(®)[uo] ()} () |?

Eermn

< ch?67) 3T (E)2mH) i (8) | (4.14)
Een

< R fug 5.4

The theorem is thus proved. ]
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From the admissibility of the triplet (o, ¢,n) and (1.3), it follows that Fj(t) :
H™(R") - H™(R"), 0 < m < s, is a continuous linear operator. Consequently,

1 (8) ([wo] = Rfuo )l < cll[1uo] = Rn[uo]ll,- (4.15)
Therefore, if we assume that
1T =Rn) [uo]ln < ch*[[[uo]lln s, (4.16)
then
1Fn () ([uo] = Ruluwo )|, < ch*[[[wo] |l - (4.17)

REMARK 4.3. It follows from (2.23) that the assumption (4.17) is satisfied,
when R, = PjforO<m, m+s < pu+1.

Thus from (4.5), (4.9), and (4.17), we obtain the following theorem.

THEOREM 4.4. If all the hypotheses of Theorem 4.2 and assumption (4.17)
are satisfied, then

llu—unlly = ch* " [uollynss,a+ ch¥ || [uo] [, (4.18)

where c is independent of ug, h.
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