## THE CONVERGENCE ESTIMATES FOR GALERKIN-WAVELET SOLUTION OF PERIODIC PSEUDODIFFERENTIAL INITIAL VALUE PROBLEMS

## NGUYEN MINH CHUONG and BUI KIEN CUONG

Received 13 March 2002

Using the discrete Fourier transform and Galerkin-Petrov scheme, we get some results on the solutions and the convergence estimates for periodic pseudodifferential initial value problems.

2000 Mathematics Subject Classification: 35Sxx, 41A65, 65Txx, 65Mxx.

**1. Introduction.** In recent years, wavelets have been developing intensively and have become a powerful tool to study mathematics and technology, for example, the theory of the singular integral, singular integro-differential equations, the areas such as sound analysis, image compression, and so on (see [9, 10] and references therein). In this paper, we use a scaling function and a multilevel approach to estimate the error of the problem

$$\frac{\partial u(x,t)}{\partial t} = a \cdot Au(x,t), \quad x \in \mathcal{J}^n, \ t > 0, \ a \in \mathbb{R},$$

$$u(x,0) = [u_0](x), \quad x \in \mathcal{J}^n,$$
(1.1)

where A is a pseudodifferential operator (see [1, 2, 3, 4, 6, 8, 9, 12]) with a symbol  $\sigma \in C^{\infty}(\mathbb{R}^n)$ ,  $\sigma$  is positively homogeneous of degree r > 0 such that

$$|D^{\alpha}\sigma(\xi)| \le C_{\alpha}(1+|\xi|)^{r-|\alpha|}$$
, for all multi-index  $\alpha \in \mathbb{N}^n$ , (1.2)

 $\mathcal{J}^n = \mathbb{R}^n/\mathbb{Z}^n$ , and  $[u_0](x) = \sum_{k \in \mathbb{Z}^n} u_0(x+k)$  is a periodic operator. We discuss only problem (1.1) with the following condition:

$$a\sigma(\xi) \le 0, \quad \forall \xi \in \mathbb{Z}^n.$$
 (1.3)

**2. Preliminaries and notations.** The continuous Fourier transform of the function  $f \in L_2(\mathbb{R}^n)$  is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i x \xi} f(x) dx, \quad \xi \in \mathbb{R}^n$$
 (2.1)

with the inverse Fourier formula

$$f(x) = \int_{\mathbb{R}^n} e^{2\pi i x \xi} \hat{f}(\xi) d\xi, \quad \xi \in \mathbb{R}^n$$
 (2.2)

(see [4, 8, 11]).

The discrete Fourier transform of the function  $f \in L_2(\mathcal{J}^n)$  is

$$\mathcal{F}(f)(\xi) = \tilde{f}(\xi) := \int_{[0,1]^n} e^{-2\pi i x \xi} f(x) dx, \quad \xi \in \mathbb{Z}^n, \tag{2.3}$$

and the inverse Fourier transform is

$$f(x) := \sum_{\xi \in \mathbb{Z}^n} \tilde{f}(\xi) e^{2\pi i x \xi}$$
 (2.4)

(see [6]).

Some simple properties of the discrete Fourier transform are

$$(f,g)_0 = \sum_{\xi \in \mathbb{Z}^n} \tilde{f}(\xi) \overline{\tilde{g}(\xi)}, \tag{2.5}$$

where  $(\cdot, \cdot)_0$  is the  $L_2(\mathcal{J}^n)$ -inner product,

$$||f||_{0}^{2} = \sum_{\xi \in \mathbb{Z}^{n}} |\tilde{f}(\xi)|^{2} = ||\tilde{f}||_{l_{2}}^{2}, \tag{2.6}$$

where  $\|\cdot\|_0$  is  $L_2(\mathcal{J}^n)$ -norm and  $\|\cdot\|_{l_2}$  is  $l_2$ -norm.

Let  $s \in \mathbb{R}$ . Denote

$$H^{s}(\mathcal{J}^{n}) = \{ u \in D'(\mathcal{J}^{n}) \mid \langle D \rangle^{s} u \in L_{2}(\mathcal{J}^{n}) \}, \tag{2.7}$$

where

$$\langle \xi \rangle = \begin{cases} 1 & \text{if } \xi = 0, \\ |\xi| & \text{if } \xi \neq 0, \end{cases}$$
 (2.8)

then  $H^s(\mathcal{J}^n)$  is the Sobolev space endowed with the norm

$$\|u\|_{s}^{2} = \sum_{\xi \in \mathbb{Z}^{n}} \langle \xi \rangle^{2s} |\tilde{u}(\xi)|^{2}$$
(2.9)

and the inner product

$$\langle u, v \rangle_{s} = \sum_{\xi \in \mathbb{Z}^{n}} \langle \xi \rangle^{2s} \tilde{u}(\xi) \overline{\tilde{v}(\xi)}.$$
 (2.10)

Here, we also define the discrete Sobolev space  $H_d^s(\mathbb{R}^n)$ ,  $s \in \mathbb{R}$ , of the functions  $f \in H^s(\mathbb{R}^n)$  such that the following norm is finite:

$$||f||_{s,d}^2 = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2s} |\hat{f}(\xi)|^2.$$
 (2.11)

Denote

$$\mathcal{L}_2 = \left\{ f \in L_2(\mathbb{R}^n) : \sum_{\xi \in \mathbb{Z}^n} |f(\cdot - \xi)| \in L_2([0, 1]^n) \right\}.$$
 (2.12)

It is clear that any function  $f \in L_2(\mathbb{R}^n)$ , which has compact support, or any function, for which  $\int_{k+[0,1]^n} |f(x)|^2 dx$  decays exponentially as |k| tends to infinity, belongs to  $\mathcal{L}_2$ . The periodic operator [u] is totally defined if  $u \in \mathcal{L}_2$ . Here, we assume that  $u_0 \in \mathcal{L}_2$ .

**REMARK 2.1.** (1) It follows from (2.1) and (2.3) that if  $u \in \mathcal{L}_2$ , then  $\mathcal{F}([u])(\xi) = \hat{u}(\xi), \xi \in \mathbb{Z}^n$ .

(2) It is clear that if  $t \le s$ ,  $s, t \in \mathbb{R}$ , then  $H^t(\mathcal{J}^n) \subset H^s(\mathcal{J}^n)$ .

Using the variable separate method and the discrete Fourier transform, the solution of problem (1.1) can be represented as

$$u(x,t) = E(t)[u_0](x) = \sum_{\xi \in \mathbb{Z}^n} \exp\left(a\sigma(\xi)t\right) \mathcal{F}([u_0])(\xi) e^{2\pi i x \xi}, \qquad (2.13)$$

where E(t) is a differentiable function and E(0) = 1.

We recall that a multiresolution approximation (MRA) of  $L_2(\mathbb{R}^n)$  is, as a definition, an increasing sequence  $V_j$ ,  $j \in \mathbb{Z}$ , of closed linear subspaces of  $L_2(\mathbb{R}^n)$  with the following properties:

$$\bigcap_{j\in\mathbb{Z}} V_j = \{0\}, \qquad \overline{\bigcup_{j\in\mathbb{Z}} V_j} = L_2(\mathbb{R}^n); \tag{2.14}$$

for all  $f \in L_2(\mathbb{R}^n)$  and all  $j \in \mathbb{Z}$ ,

$$f(x) \in V_i \iff f(2x) \in V_{i+1};$$
 (2.15)

for all  $f \in L_2(\mathbb{R}^n)$  and  $k \in \mathbb{Z}^n$ ,

$$f(x) \in V_0 \Longleftrightarrow f(x-k) \in V_0. \tag{2.16}$$

There exists a function, called the scaling function (SF)  $\phi(x) \in V_0$ , such that the sequence

$$\{\phi(x-k), k \in \mathbb{Z}^n\} \tag{2.17}$$

is a Riesz basic of  $V_0$  (see [5, 9]).

An SF  $\phi$  is called  $\mu$ -regular ( $\mu \in \mathbb{N}$ ) if, for each  $m \in \mathbb{N}$ , there exists  $c_m$  such that the following condition holds:

$$|D^{\alpha}\phi(x)| \le c_m (1+|x|)^{-m}, \quad \forall \alpha, \ |\alpha| \le \mu. \tag{2.18}$$

**REMARK 2.2.** (1) Denote  $\phi_{jk}(x) = 2^{nj/2}\phi(2^jx - k)$ ,  $k \in \mathbb{Z}^n$ . It follows from (2.14), (2.15), (2.16), and (2.17) that  $V_j = \overline{\text{span}}\{\phi_{jk}(x), k \in \mathbb{Z}^n\}, j \in \mathbb{Z}$ .

(2) For each  $\mu \in \mathbb{N}$ , there exists an SF  $\phi(x)$  with compact support, and  $\phi(x)$  is  $\mu$ -regular; so in what follows, we always assume that  $\phi$  has compact support and is  $\mu$ -regular (see [9]).

Using the periodic operator and an MRA of  $L_2(\mathbb{R}^n)$ , we can build an MRA of  $L_2(\mathcal{J}^n)$  with the SF  $[\phi]$  as follows.

Denote

$$\phi_k^j(x) = 2^{nj/2} \sum_{l \in \mathbb{Z}^n} \phi_{jk}(x+l) = 2^{nj/2} \sum_{l \in \mathbb{Z}^n} \phi(2^j(x+l) - k), \quad j \ge 0, \quad (2.19)$$

$$[V_j] = \overline{\operatorname{span}}\{\phi_k^j(x), \ k \in \mathbb{Z}^{nj}\}, \quad j \ge 0, \tag{2.20}$$

where  $\mathbb{Z}^{nj} = \mathbb{Z}^n/2^j\mathbb{Z}^n$ .

Then, the sequence  $[V_j]_{j\geq 0}$  satisfies

$$[V_0] \subset [V_1] \subset \cdots, \qquad \overline{\bigcup_{j \ge 0} [V_j]} = L_2(\mathcal{J}^n).$$
 (2.21)

It is clear that dim[ $V_j$ ] =  $2^{nj}$ , and if  $(\phi_{jk}, \phi_{jl}) = \delta_{kl}, k, l \in \mathbb{Z}^n$ , then  $(\phi_k^j, \phi_l^j) = \delta_{kl}, k, l \in \mathbb{Z}^{nj}$  (see [6]).

For each  $j \ge 0$ , let  $P_j : L_2(\mathcal{J}^n) \to [V_j]$  be the orthogonal projection from  $L_2(\mathcal{J}^n)$  on  $[V_j]$ , which has the following property.

**THEOREM 2.3** (see [6, page 600]). *Let*  $-\mu - 1 \le s \le \mu$ ,  $-\mu \le q \le \mu + 1$ , *and*  $s \le q$ , *then* 

$$||u - P_j u||_s \le c2^{j(s-q)} ||u||_q$$
 (2.22)

for all  $u \in H^q(\mathcal{J}^n)$ , where c is independent of j and u. Denoting  $h = 2^{-j}$  and  $V_h = [V_j]$ , we can write (2.22) as

$$||v - P_j v||_s \le c h^{q-s} ||v||_q.$$
 (2.23)

**3. The Galerkin-wavelet solution.** Fix a distribution with compact support  $\eta \in H^{-s'}(\Gamma)$ , where  $s' \geq 0$  satisfying  $AV_h \subset H^{s'}(\mathcal{J}^n)$  and where  $\Gamma \subset \mathbb{R}^n$  is some fixed compact domain such as a hypercube. For  $f \in H^{s'}(\mathcal{J}^n)$ , define

$$\eta_k^j(f) = 2^{-nj/2} \eta(f(2^{-j}(\cdot + k))). \tag{3.1}$$

The space

$$X^{j} := \operatorname{span} \left\{ \eta_{k}^{j}, \ k \in \mathbb{Z}^{nj} \right\} \tag{3.2}$$

is contained in  $(AV_h)'$ , which is the dual of  $AV_h$ . The corresponding Galerkin-Petrov-wavelet scheme is then given by

$$\eta_k^j \left( \frac{\partial u_h}{\partial t} \right) = a \eta_k^j (A u_h), \quad k \in \mathbb{Z}^{nj},$$
 (3.3)

$$u_h(x,0) = R_h[u_0](x),$$
 (3.4)

where  $R_h v$  is a linear approximation of v in  $V_h$  and  $u_h : [0, \infty) \to V_h$  is a differentiable operator.

Set

$$u_h(x,t) = \sum_{k \in \mathbb{Z}^{nj}} c_k(t) \phi_k^j(x), \tag{3.5}$$

$$R_h[u_0](x) := [u_0]_h(x) := \sum_{k \in \mathbb{Z}^{nj}} c_k(0) \phi_k^i(x).$$
 (3.6)

Then the scheme (3.3) and (3.4) provides an algebra equation system and the solution can be solved by Fourier series.

**LEMMA 3.1.** The following formulas hold true:

$$\mathcal{F}(\phi_k^j)(\xi) = h^{n/2}\hat{\phi}(h\xi)e^{-2\pi i h k \xi},$$

$$\mathcal{F}(A\phi_k^j)(\xi) = h^{n/2}\sigma(\xi)\hat{\phi}(h\xi)e^{-2\pi i h k \xi}.$$
(3.7)

**PROOF.** (a) It follows from (2.3) and (2.19) that

$$\begin{split} \mathcal{F}(\phi_{k}^{j})(\xi) &= h^{-n/2} \sum_{l \in \mathbb{Z}^{n}} \int_{[0,1]^{n}} e^{-2\pi i x \xi} \phi(2^{j}(x+l) - k) dx \\ &= h^{n/2} \sum_{l \in \mathbb{Z}^{n}} \int_{2^{j}(l+[0,1]^{n}) - k} e^{-2\pi i h x \xi} \phi(x) dx e^{-2\pi i k h \xi} \\ &= h^{n/2} \int_{\mathbb{R}^{n}} e^{-2\pi i h x \xi} \phi(x) dx e^{-2\pi i k h \xi} \\ &= h^{n/2} \hat{\phi}(h\xi) e^{-2\pi i h k \xi}. \end{split} \tag{3.8}$$

(b) We have

$$\mathcal{F}(Au)(\xi) = \sigma(\xi)\tilde{u}(\xi); \tag{3.9}$$

consequently,

$$\mathcal{F}(A\phi_k^j)(\xi) = \sigma(\xi)\mathcal{F}(\phi_k^j)(\xi) = h^{n/2}\sigma(\xi)\hat{\phi}(h\xi)e^{-2\pi i h k \xi}. \tag{3.10}$$

The proof of the lemma is complete.

**COROLLARY 3.2.** *The following formulas hold true:* 

$$\eta_k^j(\phi_l^j) = h^n \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{-2\pi i h(l-k)\xi}, 
\eta_k^j(A\phi_l^j) = h^n \sum_{\xi \in \mathbb{Z}^n} \sigma(\xi) \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{-2\pi i h(l-k)\xi}.$$
(3.11)

**PROOF.** (a) Using (2.4), Lemma 3.1, and (3.1), we have

$$\eta_{k}^{j}(\phi_{l}^{j}) = \eta_{k}^{j} \left( \sum_{\xi \in \mathbb{Z}^{n}} \mathcal{F}(\phi_{l}^{j})(\xi) e^{2\pi i x \xi} \right) \\
= \eta_{k}^{j} \left( \sum_{\xi \in \mathbb{Z}^{n}} h^{n/2} \hat{\phi}(h\xi) e^{-2\pi i h l \xi} e^{2\pi i x \xi} \right) \\
= h^{n} \sum_{\xi \in \mathbb{Z}^{n}} \hat{\phi}(h\xi) e^{-2\pi h l \xi} \eta(e^{2\pi h(x+k)\xi}) \\
= h^{n} \sum_{\xi \in \mathbb{Z}^{n}} \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{-2\pi i h(l-k)\xi}.$$
(3.12)

(b) Similarly, we can get the second assertion.

The following lemma is extracted from [6].

**LEMMA 3.3.** The following formula holds valid:

$$\sum_{m \in \mathbb{Z}^{nj}} e^{-2\pi i h m(k-\xi)} = \begin{cases} 2^{nj} & \text{if } \xi = k+2^{j}\theta, \ \theta \in \mathbb{Z}^{n}, \\ 0 & \text{otherwise.} \end{cases}$$
(3.13)

Set

$$\alpha(k) = \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{2\pi i h k \xi}, \tag{3.14}$$

$$\delta(k) = \sum_{\xi \in \mathbb{Z}^n} \sigma(h\xi) \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{2\pi i h k \xi}, \quad k \in \mathbb{Z}^{nj}.$$
 (3.15)

The series

$$\tilde{\alpha}(\zeta) = h^n \sum_{k \in \mathbb{Z}^{nj}} \alpha(k) e^{-2\pi i h k \zeta}, \tag{3.16}$$

$$\tilde{\delta}(\zeta) = h^n \sum_{k \in \mathbb{Z}^{n_j}} \delta(k) e^{-2\pi i h k \zeta}, \tag{3.17}$$

$$\tilde{c}(\zeta,t) = h^n \sum_{k \in \mathbb{Z}^{nj}} c_k(t) e^{-2\pi i h k \zeta}, \quad \zeta \in \mathbb{Z}^n$$
(3.18)

are called discrete Fourier series.

It follows from (3.3), (3.5), the positively homogeneous condition, and Corollary 3.2 that

$$\sum_{k\in\mathbb{Z}^{nj}}c_k'(t)\alpha(l-k)=ah^{-r}\sum_{k\in\mathbb{Z}^{nj}}c_k(t)\delta(l-k),\quad l\in\mathbb{Z}^{nj}. \tag{3.19}$$

Thus

$$\tilde{c}'_t(\zeta,t)\tilde{\alpha}(\zeta) = ah^{-r}\tilde{c}(\zeta,t)\tilde{\delta}(\zeta), \tag{3.20}$$

$$\tilde{c}(\zeta,t) = \exp\left(\frac{at}{h^r} \frac{\tilde{\delta}(\zeta)}{\tilde{\alpha}(\zeta)}\right) \tilde{c}(\zeta,0). \tag{3.21}$$

For each  $\tau = 0.1$ , set

$$g_{\phi,\tau}(\zeta) = \sum_{k \in \mathbb{Z}^n} \sigma(h\zeta + k)^{\tau} \hat{\phi}(h\zeta + k) \overline{\hat{\eta}(h\zeta + k)}. \tag{3.22}$$

**LEMMA 3.4.** If the series (3.22) converges absolutely, then

$$\tilde{\alpha}(\zeta) = g_{\phi,0}(\zeta), \qquad \tilde{\delta}(\zeta) = g_{\phi,1}(\zeta). \tag{3.23}$$

**PROOF.** (a) From (3.14) and (3.16), it follows that

$$\tilde{\alpha}(\zeta) = h^n \sum_{k \in \mathbb{Z}^{nj}} \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} e^{-2\pi i h k(\zeta - \xi)}. \tag{3.24}$$

By the hypothesis of the lemma, we can interchange the summation in the above double sum; then by using the variable change and Lemma 3.3, it is easy to see that

$$\begin{split} \tilde{\alpha}(\zeta) &= h^n \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} \sum_{k \in \mathbb{Z}^{nj}} e^{-2\pi i h k(\zeta - \xi)} \\ &= \sum_{\theta \in \mathbb{Z}^n} \hat{\phi}(h\zeta + \theta) \overline{\hat{\eta}(h\zeta + \theta)} = g_{\phi,0}(\zeta). \end{split} \tag{3.25}$$

(b) Similarly, the second assertion of the lemma will be checked. From (3.5), (3.6), and (3.21), it follows that

$$\tilde{u}_h(\xi, t) = \exp\left(\frac{at}{h^r} \frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right) \mathcal{F}([u_0]_h)(\xi). \tag{3.26}$$

Let  $F_h(t)$  be the operator defined by

$$\mathcal{F}(F_h(t)v(\cdot))(\xi) = \exp\left(\frac{at}{h^r}\frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right)\tilde{v}(\xi), \tag{3.27}$$

then the approximation  $u_h(x)$  can be represented by

$$u_h(x) = F_h(t)R_h[u_0](x).$$
 (3.28)

- **4. The error estimate of approximation solutions.** Now to estimate the error, we need some restrictions on the  $\sigma$ ,  $\phi$ , and  $\eta$  used above. The triplet  $(\sigma, \phi, \eta)$  is called *admissible* if the following properties hold:
  - (i) there exists  $p \in \mathbb{N}$ ,  $p \ge r$ , such that the series

$$\sum_{k \in \mathbb{Z}^n} \sigma(h\xi + k) \hat{\phi}(h\xi + k) \overline{\hat{\eta}(h\xi + k)}$$
(4.1)

converges absolutely and

$$\sum_{k\in\mathbb{Z}^n} \sigma(h\xi+k)\hat{\phi}(h\xi+k)\overline{\hat{\eta}(h\xi+k)} = \sigma(h\xi)\hat{\phi}(h\xi)\overline{\hat{\eta}(h\xi)} + o(|h\xi|^p)$$
(4.2)

as  $|h\xi| \to 0$ .

- (ii)  $\hat{\phi}(\xi)\overline{\hat{\eta}(\xi)} \ge 0$ , for all  $\xi \in \mathbb{R}^n$ ,  $\hat{\phi}(0)\overline{\hat{\eta}(0)} \ne 0$ ,
- (iii) the series

$$\sum_{k \in \mathbb{Z}^n} \hat{\phi}(h\xi + k) \overline{\hat{\eta}(h\xi + k)}$$
 (4.3)

converges and

$$\sum_{k \in \mathbb{Z}^n} \hat{\phi}(h\xi + k) \overline{\hat{\eta}(h\xi + k)} = \hat{\phi}(h\xi) \overline{\hat{\eta}(h\xi)} + 0(|h\xi|^p)$$
(4.4)

as  $|h\xi| \to 0$ .

**REMARK 4.1.** (1) If  $\eta = \phi$  and  $\sigma$  is a pseudodifferential operator with symbol  $\sigma(\xi) = |\xi|^r$ ,  $0 < r \le \mu$ , then the triplet  $(\sigma, \phi, \phi)$  is automatically admissible at least for  $p = \mu$ , where  $\mu \in \mathbb{N}$  is used in (2.18) (see [7] for detail).

(2) If  $\eta = \phi$  and  $\sigma$  is a pseudodifferential operator with symbol  $\sigma(\xi) = \langle \xi \rangle^2$ , then the triplet  $(\langle \xi \rangle^2, \phi, \phi)$  is admissible for  $p = \mu$  (see [6]).

Write

$$u - u_h = \{u - F_h(t)[u_0]\} + F_h(t)\{[u_0] - R_h[u_0]\}.$$
(4.5)

We have

$$\mathcal{F}(F_h(t)[u_0](\cdot))(\xi) = \exp\left(\frac{at}{h^r} \frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right) \mathcal{F}([u_0])(\xi) 
= \exp\left(\frac{at}{h^r} \frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right) \hat{u}_0(\xi), \quad \xi \in \mathbb{Z}^n,$$
(4.6)

thus

$$\mathcal{F}(u - F_h(t)[u_0])(\xi)$$

$$= \left\{ \exp\left(at\sigma(\xi)\right) - \exp\left(\frac{at}{h^r}\frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right) \right\} \hat{u}_0(\xi), \quad \xi \in \mathbb{Z}^n.$$
(4.7)

If the triplet  $(\sigma, \phi, \eta)$  is admissible, then it follows from (3.22) and Lemma 3.4 that

$$\frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)} = \sigma(h\xi) + 0(|h\xi|^p) \quad \text{as } |h\xi| \to 0.$$
(4.8)

**THEOREM 4.2.** Suppose that  $r + s' \le s \le p$ ,  $0 \le m \le s$ , and it is assumed that the triplet  $(\sigma, \phi, \eta)$  is admissible. Then, for  $u_0 \in \mathcal{L}_2 \cap H_d^{m+s}(\mathbb{R}^n)$ ,  $0 \le t \le T$ , with h small enough, we get

$$||u - F_h(t)[u_0]||_m \le ch^{s-r}||u_0||_{s+m,d},$$
 (4.9)

where c is independent of u, h, and  $u_0$ .

**PROOF.** It follows from (4.8) that

$$\left| at \sigma(\xi) - \frac{at}{h^r} \frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)} \right| \le ch^{p-r} |\xi|^p \quad \text{as } |h\xi| \le 1.$$
 (4.10)

The equality

$$e^{ta} - e^{tb} = t(a - b) \int_0^1 e^{sta + (1 - s)tb} ds,$$
 (4.11)

(4.10), and (1.3) imply that, for  $r \le s \le p$  and  $0 \le t \le T$ ,

$$\left| \exp\left(at\sigma(\xi)\right) - \exp\left(\frac{at}{h^r}\frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)}\right) \right| \le ch^{s-r}|\xi|^s \quad \text{as } |h\xi| \le 1.$$
 (4.12)

Hence, from (4.7) and (4.12), we obtain

$$\left| \mathcal{F}(u(\cdot,t) - F_h(t)[u_0](\cdot))(\xi) \right| \le ch^{s-r} |\xi|^s |\hat{u}_0(\xi)| \quad \text{as } |h\xi| \le 1.$$
 (4.13)

By (1.3) and the admissibility of the triplet  $(\sigma, \phi, \eta)$ , inequality (4.13) is also valid for all  $\xi \in \mathbb{Z}^n$ . Hence, for each  $0 \le m \le s$ ,  $r+s' \le s \le p$ , and  $0 \le t \le T$ , we get

$$||u - F_h(t)[u_0]||_m^2 = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2m} | \mathcal{F} \{ u(\cdot, t) - F_h(t)[u_0](\cdot) \} (\xi) |^2$$

$$\leq c h^{2(s-r)} \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2(m+s)} | \hat{u}_0(\xi) |^2$$

$$\leq c h^{2(s-r)} ||u_0||_{m+s,d}^2.$$
(4.14)

The theorem is thus proved.

From the admissibility of the triplet  $(\sigma, \phi, \eta)$  and (1.3), it follows that  $F_h(t)$ :  $H^m(\mathbb{R}^n) \to H^m(\mathbb{R}^n)$ ,  $0 \le m \le s$ , is a continuous linear operator. Consequently,

$$||F_h(t)([u_0] - R_h[u_0])||_m \le c||[u_0] - R_h[u_0]||_m. \tag{4.15}$$

Therefore, if we assume that

$$||(I - R_h)[u_0]||_m \le ch^s ||[u_0]||_{m+s},$$
 (4.16)

then

$$||F_h(t)([u_0] - R_h[u_0])||_m \le ch^s ||[u_0]||_{m+s}.$$
 (4.17)

**REMARK 4.3.** It follows from (2.23) that the assumption (4.17) is satisfied, when  $R_h = P_i$  for  $0 \le m$ ,  $m + s \le \mu + 1$ .

Thus from (4.5), (4.9), and (4.17), we obtain the following theorem.

**THEOREM 4.4.** If all the hypotheses of Theorem 4.2 and assumption (4.17) are satisfied, then

$$||u - u_h||_m \le ch^{s-r}||u_0||_{m+s,d} + ch^s||[u_0]||_{m+s},$$
 (4.18)

where c is independent of  $u_0$ , h.

**ACKNOWLEDGMENT.** The authors thank the referee and the managing editor for their helpful comments and suggestions.

## REFERENCES

- N. M. Chuong, Parabolic pseudodifferential operators of variable order, Dokl. Akad. Nauk SSSR 258 (1981), no. 6, 1308-1312.
- [2] \_\_\_\_\_, Parabolic systems of pseudo differential equations of variable order, Dokl. Akad. Nauk SSSR 264 (1982), no. 2, 299-302.
- [3] \_\_\_\_\_, Degenerate parabolic pseudo differential operator of variable order, Dokl. Akad. Nauk SSSR 268 (1983), no. 5, 1055-1058.
- [4] N. M. Chuong, N. M. Tri, and L. Q. Trung, *Theory of Partial Differential Equations*, Science and Technology Publishing House, Hanoi, 1995 (Vietnamese).
- [5] N. M. Chuong and T. N. Tri, *The integral wavelet transform in*  $L^p(\mathbb{R}^n)$ ,  $1 \le p \le \infty$ , Fract. Calc. Appl. Anal. **3** (2000), no. 2, 133–140.
- [6] W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation methods for pseudodifferential equations. I. Stability and convergence, Math. Z. 215 (1994), no. 4, 583-620.
- [7] S. M. Gomes and E. Cortina, Convergence estimates for the wavelet Galerkin method, SIAM J. Numer. Anal. 33 (1996), no. 1, 149–161.
- [8] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Berlin, 1983.
- [9] Y. Meyer, Ondelettes et opérateurs. I [Wavelets and Operators. I], Actualités Mathématiques, Hermann, Paris, 1990 (French).

- [10] \_\_\_\_\_\_, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, University Lecture Series, vol. 22, American Mathematical Society, Rhode Island, 2001.
- [11] E. M. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, New Jersey, 1975.
- [12] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, I, II, Plenum Press, New York, 1982.

Nguyen Minh Chuong: National Centre for Natural Science and Technology, Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam *E-mail address*: nmchuong@thevinh.ncst.ac.vn

Bui Kien Cuong: Department of Mathematics, Hanoi Pedagogical University, Number 2, Xuan Hoa, Me Linh, Vinh Phu, Vietnam E-mail address: bkhcuong@hn.vn