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1. Introduction. In one-dimensional dynamics, the maps that are studied

are usually noninvertible. The initial reason for studying these maps was that

they had complicated behavior that was reminiscent of diffeomorphisms of

two-dimensional spaces and differential equations in three dimensions. It is

surprising that one-dimensional maps seem to model some physical systems

since physical systems are symmetric in time and most one-dimensional mod-

els are noninvertible and so cannot be run backwards. In this paper, we begin

the study of modelling invertible data using unimodal maps.

Unimodal maps have been used as models of physical systems (see, e.g., [6]).

In the unimodal case, there is a linear ordering of periodic orbits that is most

easily described in terms of the orbits cycle type. Thus, an orbit with cycle type

(13425) occurs between a fixed point with cycle type (1) and the period three

orbit of cycle type (123). If we take the standard map fµ = µx(1−x), then, as

the parameter µ is increased, we see first a stable fixed point, then a stable orbit

corresponding to the five-cycle, and later a stable orbit corresponding to the

three-cycle. Now, imagine these three orbits as corresponding to physical data.

If we reverse time the orbits will correspond to the cycles (1), (15243), and

(132). However, the ordering of these three cycles is not the same as before.

Now, (132) lies between (1) and (15243). (It also should be noted that (15243)
is not a unimodal cycle.) In a sense that will be made clear, taking the inverses

of the cycles (1) and (123) does not affect their position in the ordering, but

(15243) and (13425) are in different positions. Since physical data should not

look more complicated if we reverse time, it would seem that we should only

observe orbits whose cycles give isomorphic dynamics when we take inverses.

In this paper, we first formalize the notion of these time-symmetric cycles.

Then, we completely classify these cycles in the unimodal case. Then, we give

an example of a one-parameter family of maps of the interval that exhibits this

classification.
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2. Basic ideas. Continuous maps of the interval induce a partial order on

the set of cyclic permutations (cycles).

Suppose that a map of the interval has a periodic orbit P = {p1, . . . ,pn},
labelled so that p1 < ···<pn. Then, P has the cycle type π if π is a cycle with

the property that f(pi)= pj if and only if π(i)= j. A cycle π forces a cycle µ,

written π ≥ µ, if every continuous map of the interval that has a periodic point

of the cycle type π also has a periodic point with the cycle type µ. Baldwin [2]

showed that the forcing relation was a partial order on the set of cycles.

Given β, a cyclic permutation of {1, . . . ,m}, let Lβ : [1,m] → [1,m] denote

the map defined by Lβ = β on {1, . . . ,m} and Lβ is linear on each [i,i+ 1].
The nondegenerate intervals with respect to “Lβ is strictly monotone on I” are

called laps of Lβ. The cycle β is n-modal if Lβ has n+1 laps. The cycles (1)
and (12) are exceptions and will be considered as being unimodal. Since we

will be using maps from the unit interval to itself, we will rescale Lβ to form

Iβ : [0,1]→ [0,1] by defining Iβ = µ−1Lβµ where µ(x)= (m−1)x+1.

These piecewise linear maps are minimal in the sense of the following the-

orem. (See [5, page 171, Theorem 5].)

Theorem 2.1. The map Iα has a periodic orbit with cycle type β if and only

if α forces β.

The structure of the set of cycles ordered by the forcing relation is com-

plicated. The local structure is known: immediately above any cycle lie all

doubles of that cycle (see [4]). A cycle α of period n is a double if n is even

and for k = 1, . . . ,n/2, α(2k−1) and α(2k) are consecutive integers. (In this

case, α is a “double” of the permutation of {1, . . . ,n/2} defined by i � j if

{α(2i−1),α(2i)} = {2j−1,2j}.)
We will say that two cycles γ and δ are dynamically equivalent if there exists

a homeomorphism h of the interval such that Iγ = h−1 ◦Iδ◦h.

Letσn denote the cycle of lengthn defined byσn(i)=n−i+1 for i= 1, . . . ,n.

If there is no ambiguity in the value of n, we will write σ instead of σn.

Theorem 2.2. Let α denote a cycle of length n. The only two cycles that are

dynamically equivalent to α are α and σασ .

Proof. Taking h(x)= x in the first case and h(x)= 1−x in the second, it

is clear that both α and σασ are equivalent to α.

Suppose that Iα = h−1 ◦ Iδ ◦h. First, we will assume that h is orientation

preserving. Then, since Iα has a periodic point of the cycle type α, so must Iδ.

Theorem 2.1 then tells us that δ must force α. A similar argument shows that

α forces δ and since the forcing relation is a partial order we have α= δ.

If h is orientation reversing, then Iσδσ = (h◦g)−1◦Iδ◦(h◦g) where g(x)=
1−x. Now, h◦g is orientation preserving and the above argument shows that

δ= σασ .
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Clearly, from a physical viewpoint, α and σασ correspond to interchanging

right and left, and we would expect them to be dynamically equivalent.

We will say that a cycle α is time-symmetric if α−1 is dynamically equivalent

to α. Since the only cycles that have the property of being self-inverse are (1)
and (12), the definition can be restated as α is time-symmetric if α−1 = σασ .

In what follows, attention will be restricted to unimodal cycles. These are

divided into two classes: those with the first lap increasing, and those with

the first lap decreasing (the exceptional cycles (1) and (12) will be considered

as belonging to both classes). We will denote the first class as unimax cycles

and the second class unimin cycles. It is well known that each class is linearly

ordered by the forcing relation (see, e.g., [1]).

3. Unimodal time-symmetric cycles. It is clear that if a time-symmetric

cycle is unimodal, then so is its inverse. We begin this section by describing

which unimodal cycles have unimodal inverses. It turns out that these are

exactly the time-symmetric ones.

Lemma 3.1. If θ is a unimax cycle of length n > 2 with unimodal inverse,

then there exists a k, 1≤ k≤n, such that

θ(i)=


i+k if i≤n−k,
n+1−i if i > n−k. (3.1)

If θ is a unimin cycle of length n with unimodal inverse, then there exists a

k, 1≤ k≤n, such that

θ(i)=


n+1−i if i≤ k,
i−k if i > k.

(3.2)

Proof. We will prove the first statement. The proof of the second statement

is similar.

If θ is a unimax cycle we know that θ(n)= 1. Let θ(1)=m and let k denote

the inverse of n, that is, θ(k)=n. Since θ is unimax, we know that θ is increas-

ing on {1, . . . ,k} and decreasing on {k,. . . ,n}. The result will be proved if we can

show that there does not exist an l satisfying k < l < n and m<θ(l) < n. Sup-

pose for a contradiction that such an l exists. Then, we have 1<m<θ(1) < n.

So θ−1(1) = n, θ−1(m) = 1, θ−1(θ(l)) = l, and θ−1(n) = k. Since l > k, θ−1 is

not unimodal.

Lemma 3.2. If n is odd, the only unimax cycle with unimodal inverse is

(123···n). If n > 2 is even, there are two unimax cycles with unimodal in-

verses: (123···n) and (135···(n−1)246···n).
Proof. It is straightforward to check that cycles of the form (123···n)

and (135···(n−1)246···n) are unimax and have unimodal inverses. From
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the previous lemma, we know that if θ is a unimax cycle then

θ(i)=


i+k if i≤n−k,
n+1−i if i > n−k. (3.3)

We must show that k is either 1 or 2. Let m denote the positive integer such

that 1+mk≤n< 1+(m+1)k. Then, if we look at the orbit of 1 under repeated

iteration by θ, it begins with {1,1+k,1+2k,. . . ,1+mk}. If 1+mk = n, then,

since θ(n)= 1 and θ is a cycle of length n, we must have k= 1. If 1+mk≠n,

then θ(1+mk)=n−mk. Clearly, θm(n−mk)=n. Thus, since θ is a cycle of

length n, we must have n= 2m and k= 2.

Similarly, we can prove the following lemma for unimin cycles.

Lemma 3.3. If n is odd, the only unimin cycle with unimodal inverse is

(1n(n−1)(n−2)(n−3)···2). Ifn> 2 is even, there are two unimin cycles with

unimodal inverses: (1(n−1)(n−2)(n−3)···1) and (1n(n−2)(n−4)···2(n−
1)(n−3)···3).

To simplify the notation let [n] denote (123···n) and [n]−1 denote (1n(n−
1)···2). The cycle (135···(n−1)246···n) is a double of [n/2] and will be

denoted [2∗n/2]. Finally, [2∗n/2]−1 denotes (1n(n− 2)(n− 4)···2(n−
1)(n−3)···3).

Since we know that any time-symmetric unimodal cycle will have a unimodal

inverse, it is clear that time-symmetric cycles must have the form given in

Lemmas 3.2 and 3.3. However, it is straightforward to check that σ[n]σ =
[n]−1 and that σ[2∗k]σ = [2∗k]−1. So, every cycle given in Lemmas 3.2 and

3.3 is time-symmetric. Thus, we have the following theorem.

Theorem 3.4. For every positive integer n, the cycles [n], [n]−1, [2∗n],
and [2∗n]−1 are unimodal and time-symmetric. Conversely, every unimodal,

time-symmetric cycle is of one of these four types.

4. Forcing and symmetric forcing. The forcing relation for cycles has been

studied by many authors. For a good general reference, see [1]. Let α< β if the

cycle β forces α.

Theorem 4.1. Unimodal time-symmetric cycles are ordered by the forcing

relation in the following ways: [1] < [2] < [2∗2] < [3] < [2∗3] < ··· < [k] <
[2∗k] < [k+1] < [2∗ (k+1)] < ··· and [1]−1 < [2]−1 < [2∗2]−1 < [3]−1 <
[2∗3]−1 < ···< [k]−1 < [2∗k]−1 < [k+1]−1 < [2∗(k+1)]−1 < ··· .

The method of proving arguments involving the forcing relation gives more

information than just whether one cycle forces another. It also tells us how

the two periodic orbits must be interlaced, that is, it gives us a permutation

consisting of two cycles. The following example illustrates this.
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Example 4.2. The cycle (123) forces the cycle (1). Looking at the map I(123),

it can be seen that the fixed point must occur between the second and third

points of the periodic orbit corresponding to (123). Thus, instead of writing

(123) forces (1), we could include the additional information and write (123)
forces (124)(3). Similarly, the fact that (123) forces (12) can be rewritten as

(123) forces (135)(24). The cycle (132) forces (1) and (12) can be rewritten

as (132) forces (143)(2) and (153)(24), respectively.

If α forces β, then there exists a periodic orbit of type β in Iα. The orbits

of the points corresponding to α and β give a permutation consisting of two

cycles. Since there may be more than one periodic orbit of cycle type β in Iα,

there may be more than one permutation that can be obtained in this way. We

let P[α,β] denote the set containing all these permutations consisting of two

cycles.

Initially, we say that a time-symmetric cycle α symmetrically forces a time-

symmetric cycle β if α forces β and σθσ = θ−1 for some θ ∈ P[α,β]. (Later,

this definition will be slightly weakened to include more cases.)

In the example above, it is straightforward to check that σ4(124)(3)σ4 =
(143)(2) which is not equal to the inverse (142)(3). So (123) does not sym-

metrically force (1). However, σ5(135)(24)σ5 = (153)(24)= [(135)(24)]−1. So

(123) does symmetrically force (12).
This is easily seen graphically. Graphically, time symmetry is symmetry

about the diagonal that goes from top left to bottom right. Below is a sketch of

the graph of the cycle (123) (see Figure 4.1). It is impossible to draw a graph of

a continuous function that connects the three dots and also has a symmetric

fixed point.
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Figure 4.1

However, a graph can be drawn through these points that has a symmetric

point of period two as indicated by the two new dots in Figure 4.2.
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Figure 4.2

Now, (123) does force (1324) and P[(123),(1324)]= (137)(2546) which is

not symmetric. However, as indicated by the boxes in Figure 4.2, it is possible to

have a map of the interval with a periodic point of cycle type (1324) contained

inside a periodic point of cycle type (123) in a symmetric way. We modify our

definition of symmetric forcing to allow for this situation. The idea is that α
should symmetrically force β if they are both time symmetric, if α forces β,

and if it is possible that both α and β can be entwined in a time-symmetric

way.

Suppose that we have a cycle β of length m and a cycle α of length n.

Suppose that there is a permutation θ of lengthn+m such that {1,2, . . . ,n+m}
consists of two orbits under Lθ , one of type α and one of type β, where Lθ
is the “connect the dot” map defined in Section 2 for cycles extended in the

obvious way to permutations. If this can be done such that the endpoints 1

and n+m and all the critical points of Lθ belong to the periodic orbit of cycle

type α, then we say that β is contained within α. Let Q[α,β] denote the set of

permutations θ that consist of two cycles, one of type α and the other of type

β, with β contained within α.

The following lemma follows directly from [1, Theorem 2.7.7].

Lemma 4.3. Let α and β denote two cycles with α ≠ β. Then, α forces β if

and only if β is contained within α. If P[α,β]≠Q[α,β], then β is a double.

We say that a time-symmetric cycleα symmetrically forces a time-symmetric

cycle β if β is contained within α and there exists a θ ∈ Q[α,β] such that

σθσ = θ−1.

Returning to the example above, we have

Q
[
(123),(1324)

]= {(137)(2546),(147)(2536)
}
. (4.1)

Since σ(147)(2536)σ = [(147)(2536)]−1, we obtain that (123) symmetrically

forces (1324).
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It should be observed that the symmetric forcing is not a transitive relation:

(123) symmetrically forces (12) and (12) symmetrically forces (1), but (123)
does not symmetrically force (1). However, we have the following theorem.

Theorem 4.4. Suppose that α and β are unimodal time-symmetric cycles

such that α< β. Suppose that α and β are consecutive in the sense that there is

no time-symmetric γ such that α< γ < β. Then, β symmetrically forces α.

Proof. There are two cases to consider depending on whether α = [n] or

α= [2∗n] for some integer n.

If α= [n], then the permutation

(147···3n−2)
(
258···(3n−4)369···(3n−3)

)
(4.2)

shows that [n] symmetrically forces [2(n−1)].
If α= [2∗n], then the permutation

(
147···(3n−2)369···3n)(258···3n−1

)
(4.3)

shows that [2∗n] symmetrically forces [n].

In the next section, we consider symmetric forcing for nonconsecutive time-

symmetric cycles.

5. A one-parameter family of maps. In this section, we introduce a one-

parameter family of maps. As the parameter is varied, the “observable” be-

haviour goes through the sequence of periods given in Theorem 4.1. Intuitively,

a periodic point is observable if its orbit is relatively unchanged under a small

perturbation. More formally, an orbit of a ∈ I given by {fn(a) | n ≥ 0} is ob-

servable if, given any ε > 0, there exists a δ > 0 such that if |x−a| < δ then

|fn(x)−fn(a)|< ε for any nonnegative integer n. Thus, points close to a will

ε-shadow the orbit of a for all time.

First, we study the one-parameter family gr (x) : I → I for 0< r < 1 defined

by

gr (x)=


x+r if 0≤ x ≤ 1−r ,
1−x if 1−r < x ≤ 1.

(5.1)

These maps are time-symmetric in the sense that they have an inverse and

g−1
r (x) = (1−x)◦gr ◦(1−x), but they are not continuous. Later, these maps

will be modified on a small interval to make them continuous. The reason

for studying gr is that the dynamics are simple and will give an important

component of the dynamics of the modified maps.

The following lemma is easily seen to be true.

Lemma 5.1. Suppose that r = 1/n for some integer n > 1. Then, {0,1/n,
2/n,. . . ,1} is a periodic point of type [n+ 1]. For 0 ≤ i ≤ n− 2, the interval
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(i/n,(i+1)/n) is linearly mapped onto the interval ((i+1)/n,(i+2)/n) in an

orientation-preserving manner. The interval ((n−1)/n,1) is linearly mapped

onto (0,1/n) in an orientation-reversing manner.

Thus, if r = 1/n for some integer n > 1, every point in the unit interval is

periodic. There is an orbit of type [n+1] and one of type [n], and every other

point belongs to an orbit of type [2∗n].
It is straightforward to check the following.

Lemma 5.2. Suppose that 1/(n+1) < r < 1/n for some integer n> 1. Then,

for 0≤ i≤n, the interval [ir ,1−nr+ir] is linearly mapped in an orientation-

preserving way onto [(i+1)r ,1−nr +(i+1)r] and the interval [nr ,1] is lin-

early mapped onto [0,1−nr] in an orientation-reversing way. For 1 ≤ i ≤
n−1, the interval (1−nr + (i+1)r ,ir) is linearly mapped in an orientation-

preserving way onto (1−nr+(i+2)r ,(i+1)r) and (1−r ,nr) is mapped onto

(1−nr,r) in an orientation-reversing way.

Thus, if 1/(n+1) < r < 1/n, every point in the interval is periodic. There is

one periodic orbit of type [n], one of type [n+1], and every other point belongs

to orbits of type [2∗n] and [2∗(n+1)]. The widths of the intervals mentioned

in the above lemma are 1−nr for the closed intervals containing points in the

orbits of type [2∗ (n+ 1)] and midpoint of type [n+ 1], and (n+ 1)r − 1

for the open intervals containing the points in the orbits of type [2∗n] with

midpoints of type [n]. Thus, as r changes from 1/n to 1/(n+1), the closed

intervals expand and the open intervals contract. When r = 1/(n+1), the open

intervals disappear and the endpoints of what were the closed intervals give

a new periodic point of type [n+ 2]. As r is further decreased, the points

in the orbit expand into closed intervals with midpoints of type [n+2] and

surrounding points of type [2∗(n+2)]. It is clear that all points in the interior

of these intervals belong to observable orbits.

As noted above, the maps gr are not continuous. Since the study of one-

dimensional combinatorial dynamics relies heavily on the intermediate value

property, we will be slightly modifying the maps to make them continuous.

This modification will of necessity mean that they will no longer be invertible.

However, there are intervals corresponding to the intervals in the example

above and, if we restrict to these intervals, then the maps are invertible. More-

over, the dynamics of the periodic points that are outside these intervals is not

observable.

Define fµ,r (x) for 0< r < 1 and 0< µ < r by

fµ,r (x)=




x+r if 0≤ x ≤ 1−r ,(
r −1−µ

µ

)
x+ (1−r)(1−r +µ)+µ

µ
if 1−r < x < 1−r +µ,

1−x if 1−r +µ ≤ x ≤ 1.
(5.2)
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The following two lemmas are easily seen to be true.

Lemma 5.3. If µ < (1−r)/2 and if a∈ (1−r ,1−r+µ) is periodic under fµ,r ,

then the orbit of a is not observable.

Lemma 5.4. Let 1/(n+1)≤ r ≤ 1/n. If µ < 1/2(n+1), then there exist peri-

odic orbits that never enter the open interval (1−r ,1−r +µ).
We can define a one-parameter family of continuous maps of the interval

hr by hr (x) = fµ,r (x) where µ is taken to be the minimum of (1−r)/3 and

r/3(r +1). This choice of µ satisfies the conditions in the previous two lemmas

and then the proof of the following theorem is straightforward.

Theorem 5.5. Let hr be the one-parameter family of continuous maps of

the interval defined above. Let n denote a positive integer.

When r = 1/n, there exist observable periodic orbits of types [n] and [2∗n],
and these are the only observable periodic orbits.

When (2µ+1)/(n+1) < r < 1/n, there exist observable periodic orbits of

types [n], [2∗n], [n+1], and [2∗(n+1)], and these are the only observable

periodic orbits.

When 1/(n+1) < r ≤ (2µ+1)/(n+1), there exist observable periodic orbits

of types [n+1] and [2∗ (n+1)], and these are the only observable periodic

orbits.

Thus, as r goes from 1 to 0, a periodic point of type [N+1] is formed when

r = 1/n. Initially, this orbit is not observable, but, as r decreases below 1/n, it

becomes observable and is surrounded by points of type [2∗(n+1)]. These

orbits persist until r reaches (2µ+1)/(n+2).

6. Comment. In this paper, we restricted attention to the unimodal case

because of the ease of giving a complete classification. In many physical sys-

tems as a parameter is changed, a sequence of period doublings has been

observed. As shown above, in the time-symmetric unimodal case, this cannot

occur. However, if we drop the unimodal requirement, it is possible to find

a time-symmetric double of any time-symmetric cycle. However, as we move

through a doubling sequence, the modality of the underlying map increases

(see [3]).
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