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Dual integral equations with trigonometric kernel are reinvestigated here for a
solution. The behaviour of one of the integrals at the end points of the interval
complementary to the one in which it is defined plays the key role in determin-
ing the solution of the dual integral equations. The solution of the dual integral
equations is then applied to find an exact solution of the water wave scattering
problems.

2000 Mathematics Subject Classification: 45F10.

1. Introduction. Boundary value problems with mixed boundary conditions

arising in different branches of mathematical physics can be reduced to dual

integral equations. A mixed boundary condition is the one in which one con-

dition is prescribed at one part of the boundary while some other condition is

prescribed at the remaining part of the boundary. The solution of the dual in-

tegral equations essentially depends on the behaviour of one of the integrals at

the end points of the interval complementary to the one in which it is defined

[1, 4]. This behaviour is dictated by the physics of the problem.

In the present paper, we consider the following dual integral equations:
∫∞

0
Aj(k)L(k,y)dk=−Rj exp(−Ky), y ∈Gj,

∫∞
0
kAj(k)L(k,y)dk= iK

(
1−Rj

)
exp(−Ky), y ∈ Bj,

(1.1)

where

L(k,y)= kcosky−K sinky,

Gj = (0,∞)−Bj, (1.2)

A(k) is an unknown function, and R is an unknown constant. This integral

equation arises in the well-known problem of scattering water waves by a ver-

tical barrier under the assumption of linearised theory [5, 6, 7, 8]. The vertical

barrier may be (i) partially immersed in deep water, (ii) completely submerged

and extending infinitely downwards in deep water, (iii) a vertical wall with a

gap, or (iv) a submerged plate. The solution of (1.1) has been obtained here by

noting the behaviour of the second equation of (1.1) at the end points of the

interval Gj , which can be determined from physical consideration. Equation
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(1.1) was then reduced to a singular integral equation whose kernel involves

Cauchy and logarithmic type singularity. The solution of this singular integral

equation is known (cf. [3, 4, 6, 8]). The solution of (1.1) was then obtained

by utilizing the solution of aforesaid singular integral equation. Knowing the

solution of (1.1), the solution of the corresponding scattering problems was

obtained in a closed form. In Section 2, we consider the genesis of dual inte-

gral equation (1.1), and in Section 3, we find the solution of (1.1) and hence the

solution of the corresponding scattering problems.

2. Genesis of the dual integral equations. The two-dimensional problem of

the scattering of surface waves by a vertical barrier present in deep water under

the assumption of linearised theory consists in solving mixed two-dimensional

boundary value problem given as follows: φj satisfies

∇2φj = 0 in −∞<x <∞, y ≥ 0, (2.1)

the free surface condition

Kφj+φjy = 0 on y = 0, K = σ
2

g
, a constant, (2.2)

the condition on the barrier,

∂φj
∂x

= 0 on x = 0 y ∈ Bj, j = 1,2,3,4. (2.3)

Here, Bj represents the vertical barrier. (i) For j = 1, the barrier is partially

immersed to a depth a1 below the mean free surface y = 0 so that B1 = (0,a1).
(ii) For j = 2, the vertical barrier is completely submerged and extends infinitely

downwards, so B2 = (a2,∞). (iii) For j = 3, the vertical barrier is in the form

of a wall with a gap, so B3 = (0,a3)+ (a4,∞). (iv) For j = 4, the barrier is in

the form of a plate submerged in deep water, so B4 = (a5,a6). The bottom

condition is given by

∇φj �→ 0 as y �→∞. (2.4)

At the sharp edges of the barrier, we must have

r 1/2∇φj bounded as r �→ 0, (2.5)

where r denotes the distance from sharp edges aj of the barrier, j = 1, . . . ,6

φj ∼


Rj exp

(−Ky−iKx)+exp(−Ky+iKx) as x �→−∞,
Tj exp(−Ky+iKx) as x �→∞, (2.6)
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where Tj , Rj are unknown complex constant. The functionφj , j = 1,2,3,4, rep-

resents the velocity potential for two-dimensional irrotational motion corre-

sponding to various scattering problems. The function exp(−Ky+iKx) (drop-

ping the time dependent factor exp(−iσt) where σ is the circular frequency

K = σ 2/g, g being acceleration due to gravity) represents the wave propagat-

ing from the negative x-direction incident upon the barrier Bj . The complex

constants Rj and Tj are the reflection and transmission coefficients, respec-

tively.

By Havelock expansion of water wave potential, a suitable representation of

φj satisfying (2.1), (2.2), (2.4), and (2.6) is

φj =




Rj exp(−Ky−iKx)+exp(−Ky+iKx)

+
∫∞

0
Bj(k)L(k,y)exp(kx)dk, x < 0,

Tj exp(−Ky+iKx)+
∫∞

0
Aj(k)L(k,y)exp(−kx)dk, x > 0,

(2.7)

where (cf. [8])

Tj+Rj = 1, Aj(k)=−Bj(k). (2.8)

By condition (2.3), using (2.7) we have

∫∞
0
kAj(k)L(k,y)dk= iK

(
1−Rj

)
exp(−ky), y ∈ Bj. (2.9)

Also, φj is continuous across the gap Gj below/above/between the barrier so

that

φj(+0,y)=φj(−0,y), y ∈Gj. (2.10)

Using (2.7), we have

∫∞
0
Aj(k)L(k,y)dk= Rj exp(−ky), y ∈Gj. (2.11)

Here, G1 = (a1,∞), G2 = (0,a2), G3 = (a3,a4), and G4 = (0,a5)+(a6,∞). Equa-

tions (2.9) and (2.11) give the required integral equations. In the following

section, we determine the solution of (1.1).

3. The solution of (1.1). Let

iK
(
1−Rj

)
exp(−Ky)−

∫∞
0
kAj(k)L(k,y)dk=




0, y ∈ Bj,
hj(y), y ∈Gj,

(3.1)
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where hj(y) is the unknown function. In view of (2.9), (2.3), and (2.4),

h1(y)∼


O
(∣∣y−a1

∣∣−1/2
)

as y �→ a1,

�→ 0 as y �→∞,
(3.2)

h2(y)∼


O
(∣∣y−a2

∣∣−1/2
)

as y �→ a2,

bounded as y �→ 0,
(3.3)

h3(y)∼
{
O
(∣∣y−ai∣∣−1/2

)
as y �→ ai, i= 3,4, (3.4)

h4(y)∼




O
(∣∣y−ai∣∣−1/2

)
as y �→ ai, i= 5,6,

�→ 0 as y �→∞,
bounded as y �→ 0.

(3.5)

By Havelocks’ expansion theorem [8], we have from (3.1)

i
(
1−Rj

)= 2
∫
Gj
hj(t)exp(−Kt)dt, (3.6)

kAj(k)= 2
π

1
K2+k2

∫
Gj
hj(t)L(k,t)dt. (3.7)

Substituting Aj(k) from (3.7) into (2.11), we have

2
π

∫
Gj
hj(t)

∫∞
0

L(k,t)L(k,y)
k
(
K2+k2

) dkdt = Rj exp(−Ky), y ∈Gj. (3.8)

Simplifying (3.8) and applying (d/dy+K), we have

∫
Gj
hj(t)

[
K ln

∣∣∣∣y−ty+t
∣∣∣∣+ 1

y+t +
1

y−t
]
dt = 0, y ∈Gj. (3.9)

This is a singular integral equation in hj(t), whose kernel involves a combi-

nation of Cauchy type and logarithmic singularity. An appropriate solution of

(3.9) can be obtained by considering the behaviour of hj(t) at the end points

of Gj , which is given in (3.2), (3.3), (3.4), and (3.5) for various configurations of

the barrier. Hence (3.6) and (3.7) show that the behaviour of hj(t) at the end

points of Gj plays the key role in determining the solution of (1.1).

Now, considering (3.2), (3.3), (3.4), and (3.5), we find hj(t) for j = 1,2,3,4
and hence Aj(k) and Rj for j = 1,2,3,4.
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(1) Knowing (3.2), h1(t) is given by (cf. [8])

h1(t)= C1
d
dy

{
exp(−ky)

∫ y
a

t exp(Kt)(
t2−a2

)1/2dt
}
, y ∈G1, (3.10)

where C1 is a constant. Substituting h1(t) in (3.6) and (3.7), we have

A1(k)= −a1C1

K2+k2
J1(ka), R1 = 1+ia1C1K1(Ka). (3.11)

To find C1, A1(k) and R1 are substituted in the first equation of (1.1) to get

C1 = 1
a1�1

, �1 =πI1
(
Ka1

)−iK1
(
Ka1

)
. (3.12)

So that

A1(k)=− J1
(
ka1

)
�1
(
K2+k2

) , R = πI1
(
ka1

)
�1

. (3.13)

(2) For j = 2,

h2(y)= C2
d
dy

{
exp(−ky)

∫ y
b

exp(Kv)(
b2−v2

)1/2dv
}

(cf. [6]), (3.14)

where C2 is a constant. Substituting in (3.6) and (3.7)

A2(k)= −C2

K2+k2
J0
(
ka2

)
, R2 = 1+iπC2I0

(
Ka2

)
. (3.15)

The constant C2 is determined by substituting A2(k), R2 in first equation of

(1.1). On simplification, this gives

C2 =− 1
K0
(
Ka2

)+iπI0(Ka2
) . (3.16)

(3) For j = 3 (cf. [3]),

h3(y)= d
dy

exp(−Ky)
∫ y
a4

C3 exp(Ku)λ(u)du, (3.17)

where

λ(u)= u
R(u)

{
δ− 2

π
F1
(
a3,a4,u

)}
, (3.18)
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C3 is a constant,

F1
(
a3,a4,u

)=
∫ a3

0

R(v)
v2−u2

dv,

R(u)= ∣∣a2
3−u2

∣∣1/2∣∣a2
4−u2

∣∣1/2,

δ= K
−1 exp(Ka)+(2/π)α2

(−K,F1
)

α2(−K) ,

αi(K)=αi(K,1), αi
(
K,F1

)=
∫
ti

uF1
(
a3,a4,u

)
R(u)

du,

ti =




(−a3,a3
)
, i= 1,(

a3,a4
)
, i= 2,(

a4,∞
)
, i= 3,

(3.19)

and hence (3.6) and (3.7) give

A3(k)= 2
π

C3

k
(
K2+k2

)
{
−sinka+k

∫ a4

a3

λ(u)coskudu
}
,

R3 = C3I,

I = δ{α1(K)−α3(K)
}− 2

π
{
α1
(
K,F1

)−α3
(
K,F1

)}
.

(3.20)

To find C3, substitute A3(k) and R3 in the first equation of (1.1) to get

C3 = i
J+iI , (3.21)

where

J =K−1 exp(ka)+δα2(K)−α2
(
K,F1

)
. (3.22)

(4) For j = 4 (cf. [2]),

h4(y)=




d
dy

{
exp(−Ky)

∫ y
a5

exp(Ku)P(u)du
}
, y < a5,

d
dy

{
−exp(−Ky)

∫ y
a6

exp(Ku)P(u)du
}
, y < a6,

(3.23)

where

P(u)= C4

R0(u)
(
d2

0−u2), (3.24)

C4 and d2
0 are constants,

R0(u)=
∣∣u2−a2

5

∣∣1/2∣∣u2−a2
6

∣∣1/2, (3.25)
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and (3.6) and (3.7) give

A4(k)= J(k)
K2+k2

C4, J(k)=
∫ b
a

(
d2

0−u2
)

R0(u)
sinkudu, (3.26)

R4 = 1−iC4
(
α0−β0

)
. (3.27)

To determine C4 and d2
0, we substitute A4(k) in the first equation of (1.1) to

get the relations

−R4 = C4γ0, (3.28)

−R4 = C4

{
γ0−

∫ a6

a5

(
d2

0−x2
)

R0(x)
exp(Kx)dx

}
, (3.29)

which yield

∫ a6

a5

(
d2

0−x2
)

R0(x)
exp(Kx)dx = 0. (3.30)

This determines d2
0. Equating (3.26) and (3.28), we have

C4 = i
�4

, �4 =α0−β0−iγ0, (3.31)

where

α0 =
∫ a5

a−5

(
d2

0−x2
)

R0(x)
exp(Kx)dx,

β0 =
∫∞
a6

(
d2

0−x2
)

R0(x)
exp(Kx)dx,

γ0 =
∫ a6

a5

(
d2

0−x2
)

R0(x)
exp(Kx)dx.

(3.32)

Thus, knowing Aj(k) and Rj , the corresponding φj(x,y) for j = 1,2,3,4 are

known from (2.7).
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