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1. Introduction. An asymptotic expansion for a ratio of products of gamma

functions has recently been found [2], which, with

s1 = b1−a1−a2, (1.1)

may be written as
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as n→∞. Here, we make use of the Pochhammer symbol

(x)n = x(x+1)···(x+n−1)= Γ(x+n)/Γ(x). (1.3)

The special case when b1 = 1 of formula (1.2) had been stated earlier by

Dingle [3], and there were proofs by Paris [8] and Olver [6, 7].

The proof of (1.2) is based on the formula for the analytic continuation near

unit argument of the Gaussian hypergeometric function. For the more general

hypergeometric functions
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the analytic continuation near z = 1 is known too, and this raises the question

as to whether a sufficiently simple asymptotic expansion can be derived in a

similar way for a ratio of products of more gamma function factors. This is

indeed the case, and it is the purpose of this work to present such an expansion.
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2. Derivation of the asymptotic expansion. The analytic continuation of

the hypergeometric function near unit argument may be written as (see [1])
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where

sp = b1+···+bp−a1−a2−···−ap+1 (2.2)

and the coefficients gm are known. While the gm(0) are not needed for the

present purpose, the gm(sp) are [1]
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(2.3)

where the coefficients A(p)k are to be shown below.

The left-hand side L of (2.1) is
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The asymptotic behaviour, as n→∞, of the coefficients of this power series is

governed [4, 5, 10] by the terms R on the right-hand side which, at z = 1, are

singular
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Expanded by means of the binomial theorem in its hypergeometric-series form,

this is
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Interchanging the order of summation (and making use of the reflection for-

mula of the gamma function), we may get
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Comparison of the coefficients of the two power series for R and L, which

should agree asymptotically as n→∞, then leads to
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Inserting gm from (2.3) and keeping the first M +1 terms of the asymptotic

series, we get the following theorem.

Theorem 2.1. With sp = b1+···+bp −a1−a2−···−ap+1, we have the

asymptotic expansion
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as n→∞.

The simple formula (1.2), corresponding to p = 1, can be recovered from

this theorem if we define A(1)0 = 1, A(1)k = 0 for k > 0, so that the sum over k is

then equal to 1 and disappears. The coefficients for larger p can be found in

[1], but a few of them are displayed again here for convenience
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For p = 3,4, . . . , several other representations are possible [1] such as
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or
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For p = 2, (2.9) may be simply written as
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where s2 = b1+b2−a1−a2−a3.

3. Additional comments. The derivation of the theorem is based on the

continuation formula (2.1) which holds, as it stands, only if sp is not equal to an

integer. Nevertheless, the theorem is valid without such a restriction. This can

be verified if the derivation is repeated starting from any of the continuation

formulas for the exceptional cases [1]. Instead of or in addition to the binomial

theorem, the expansion

(1−z)m ln(1−z)=
∞∑

n=1

cnzn (3.1)

is then needed for integer m≥ 0, where

cn =− 1
n
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(3.2)

for n>m, while the coefficients are not needed here for n≤m.

The theorem has been proved here for any sufficiently large positive integer

n only. On the basis of the discussion in [2], it can be suspected that the the-

orem may be theoretically valid (although less useful) in the larger domain of

the complex n-half-plane Re(sp+a1+a2−1+n)≥ 0.

Expansions for ratios of even more general products of gamma functions

are treated in a recent monograph by Paris and Kaminski [9].
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