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FATOU MAPS IN Pn DYNAMICS

JOHN W. ROBERTSON

Received 7 August 2002

We study the dynamics of a holomorphic self-map f of complex projective space
of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by
Ueda (1997) and independently by the author (2000). A Fatou map is intuitively
like an analytic subvariety on which the dynamics of f are a normal family (such as
a local stable manifold of a hyperbolic periodic point). We show that global stable
manifolds of hyperbolic fixed points are given by Fatou maps. We further show
that they are necessarily Kobayashi hyperbolic and are always ramified by f (and
therefore any hyperbolic periodic point attracts a point of the critical set of f ). We
also show that Fatou components are hyperbolically embedded in Pn and that a
Fatou component which is attracted to a taut subset of itself is necessarily taut.

2000 Mathematics Subject Classification: 37F50, 37F10, 32H50.

1. Introduction. All complex spaces used in this note are assumed to be

reduced and to have a countable basis of open sets.

Given a holomorphic self-map f : Pn → Pn of degree d > 1 we present the

following definition.

Definition 1.1. A Fatou map g : Z → Pn for f from a complex space Z is a

holomorphic map such that the collection of iterates {f ◦n ◦g}n≥0 is a normal

family of maps from Z to Pn. For an arbitrary complex space Z , let FatouZ(f )
denote the set of all Fatou maps from Z for the self-map f : Pn→ Pn.

Fatou maps were originally defined in [8] and independently in [6]. Note that

the definition of a Fatou map depends both upon the map f : Pn→ Pn used and

upon the complex space Z . A Fatou map generalizes the notion of the Fatou

set of f . If an open subset U ⊂ Pn lies in the Fatou set of f , then the inclusion

i :U → Pn is clearly a Fatou map, and conversely.

One might wonder whether there is any advantage of considering Fatou

maps rather than considering varieties already lying in Pn, on which the it-

erates of f are a normal family. The advantage lies in the fact that for f ,Z
fixed, the set of Fatou maps from Z to Pn has been shown to be compact.

Using this, we will be able to prove that Fatou components are hyperbolically

embedded and that a Fatou component which is attracted to a taut subset of

itself is in fact taut. It will follow, using a theorem of Fornaess and Sibony, that

all recurrent Fatou components in P2, which are not Siegel domains, are taut.
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(Brendan Wieckert has an unpublished proof that basins of attracting periodic

points in Pn are taut.)

We will show that if g : Z → Pn is an injective Fatou map, then Z must be

Kobayashi hyperbolic.

Given a hyperbolic fixed point p, we will use the term “global stable variety”

to refer to all points whose forward iterates converge to p. We use the term

global stable variety instead of global stable manifold because, in our setting,

this set could hypothetically have singularities. In fact, this set could plausibly

even fail to be a subvariety of Pn, due to bad behaviour at the boundary. How-

ever, we will show that the global stable variety of a hyperbolic fixed point is

always the image of a holomorphic map from some complex space and that

this map is in fact a Fatou map. We further show that this global stable variety

is necessarily ramified by f , and thus must intersect the critical set of f . It

follows that every hyperbolic periodic point attracts a point of the critical set.

2. Fatou maps. We recall that given a holomorphic self-map f : Pn→ Pn of

degree d ≥ 2, there is a lift of f to a polynomial map F : Cn+1 → Cn+1 whose

coordinate functions are homogeneous of degree d such that F−1(0) = 0 and

such that the diagram

Cn+1 \{0} F

ρ

Cn+1 \{0}
ρ

Pn
f

Pn

(2.1)

commutes. Such a lift always exists and is unique up to constant multiple. The

Green’s function G : Cn+1 →R∪{−∞} of f is then defined as

G(z)= lim
n→∞

log
∥∥F◦n(z)

∥∥

dn
. (2.2)

Then, G : Cn+1 →R∪{−∞} is continuous and the only point mapped to −∞ by

G is the origin. It is easy to verify that G(λz)=G(z)+ log |λ| for λ∈ C∗.

A basic property of the Green’s function is that G(F(z))= d·G(z). The zero

set of the Green’s function is therefore completely invariant under F . We let

Z= {z ∈ Cn+1 |G(z)= 0} be the zero set of the Green’s function. Then the set

Z is a compact subset of Cn+1 \{0}, invariant under multiplication by elements

of the unit circle in C and Z intersects every complex line through the origin

in Cn+1 in a circle.

The following theorem was originally proven by Ueda in [8] and indepen-

dently by the author in [6]. It generalizes the work of Hubbard and Papadopol

[4], Fornaess and Sibony [2], and Ueda [7] from statements about Fatou com-

ponents to statements about Fatou maps.



FATOU MAPS IN Pn DYNAMICS 1235

Theorem 2.1. For a holomorphic map g : Z → Pn, the following properties

are equivalent:

(1) g is a Fatou map for f ;

(2) the sequence {f ◦k ◦g}k≥0 contains a convergent subsequence;

(3) if U is any open subset of Z and ĝU : U → Cn+1 \{0} is a holomorphic

map such that ρ◦ ĝU = g|U , then G◦ ĝU is pluriharmonic on U . (Where a

function will be said to be pluriharmonic on a complex space if and only

if it is locally the real part of a holomorphic function);

(4) there is a complex cover p : Ẑ → Z and a holomorphic map ĝ : Ẑ →
Cn+1 \{0} such that ĝ lands in the zero set of G and ρ◦ ĝ = g◦p.

It is also worth noting that being a Fatou map is a local property, since being

a normal family of maps is a local property.

The following was also proven originally in [8] and independently in [6].

Theorem 2.2. The set of maps FatouZ(f ) is compact for any complex space

Z .

Ueda showed in [7] that Fatou components in Pn are necessarily Kobayashi

hyperbolic. Here we prove that the same will be true more generally (the idea

is still to lift the zero set of the Green’s function).

Lemma 2.3. If g : Z → Pn is an injective Fatou map, then Z is Kobayashi

hyperbolic.

Proof. Let ĝ : Ẑ → Cn+1 \{0} be a lift of g : Z → Pn which lands in the zero

set of the Green’s function as given by Theorem 2.1. Choose an open ball B in

Cn+1 which is large enough that the zero set of the Green’s function lies inside

B. Given z1 and z2 arbitrary distinct points of Z , then g(z1) and g(z2) are

distinct points of Pn and thus �1 = ρ−1(g(z1)) and �2 = ρ−1(g(z2)) are distinct

complex lines in Cn+1 \{0}. Let C1 = �1∩Z and C2 = �2∩Z be the intersections

of the lines �1 and �2, respectively, with the zero set of the Green’s function.

Then C1 and C2 are disjoint circles which lie in B.

Now choose any y1,y2 ∈ Ẑ such that p(y1) = z1 and p(y2) = z2. Then,

ĝ(y1) ∈ C1 and ĝ(y2) ∈ C2 (since ρ(ĝ(y1)) = g(z1), ρ(ĝ(y2)) = g(z2), and ĝ
lands in Z). Thus, for any such y1 and y2, we see dẐ(y1,y2) ≥ dB(C1,C2) > 0

(where dẐ and dB represent the Kobayashi pseudometric on the spaces Ẑ and

B, resp.).

Since dZ(z1,z2) = infy1,y2 dZ̃(y1,y2) ≥ dB(C1,C2) > 0 (see Kobayashi [5,

page 61]) and since z1 and z2 are arbitrary distinct points, it follows that Z
is Kobayashi hyperbolic.

3. The stable variety of a hyperbolic fixed point. If p is a hyperbolic fixed

point of f , then we will show that the global stable variety ofp (meaning the set

of all points in Pn which eventually converge to p) is given by a complex space

X with a holomorphic inclusion map i :X → Pn (the set i(X) could potentially
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fail to be an analytic subset of Pn because of bad behavior at the boundary;

similarly, the topology of X could potentially be finer than the subspace topol-

ogy on i(X) for the same reason).

If p is a hyperbolic fixed point of f , then, by replacing f with an iterate if

necessary, we can assume that there is some open neighborhood U0 of p such

that the local stable manifold X0 at p is a closed complex submanifold of U0

and f(X0)
X0. (We assume here the basic folklore of local stable and unstable

manifolds. Particularly that the local stable manifold of a holomorphic map

about a hyperbolic fixed point is a complex analytic manifold.)

Lemma 3.1. The inclusion i :X0 → Pn is a Fatou map.

Proof. This is immediate since the iterates of f converge uniformly to p
on X0.

We will now make some definitions in order to prove that there is a natural

Fatou map which corresponds to the global stable manifold of p.

For each positive integer j, we let Xj = f ◦−j(X0) and Uj = f ◦−j(U0). Then,

since Xj is the preimage of the analytic subset X0 of U0 under the holomorphic

map f ◦j : Uj → U0, then Xj is a closed analytic subset of Uj . Since f(X0) 

X0 and since f is proper, then applying f−1 we see that X0 ⊂ f−1(f (X0)) 

f−1(X0) and thus, inductively, X0 
 f−1(X0) 
 f ◦−2(X0) 
 ··· or rather X0 

X1 
X2 
 ··· . Now each Xi is an open subset of Xj (in the subspace topology

of Xj ) for all i≤ j.
We now let

X =
∞⋃

i=0

Xi. (3.1)

Because each Xi is an open subset of Xj for j ≥ i, then the inclusion Xi ⊂Xj is

a biholomorphism onto its image. We note that X has the natural structure of a

complex space by considering the collection {Xi} as an atlas of open sets. Since

given 0≤ i≤ j, the inclusion Xi ⊂Xj is a biholomorphism onto its image. The

topology defined by the atlas {Xi} is not necessarily the topology X inherits

as a subset of Pn. By the definition of the topology induced by an atlas of

open sets, an arbitrary subset N of X is open in X if and only if N∩Xi is an

open subset of Xi for each i (where each set Xi has the subspace topology it

inherits from either Ui or Pn, these being equivalent since Ui is open in Pn). We

note that since Xi is an open subset of Xj whenever j ≥ i, then the subspace

topology each Xi inherits from X is the same as the topology we have already

defined on it. Thus, the topology we have defined on X is at least as fine as the

subspace topology X inherits from Pn since if U is open in Pn, then U∩Xi is

also open in Xi for each i ≥ 1; hence U ∩X is open in X. Thus, the inclusion

i :X → Pn with the topology we have given X is continuous.
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Theorem 3.2. The inclusion i : X → Pn is a Fatou map (and hence X is

Kobayashi hyperbolic).

Proof. We first need to show that it is a holomorphic map. To see this, we

note that each point x of X lies in one of the open sets Xi, and the inclusion

map is holomorphic on Xi. Hence, the inclusion map is locally holomorphic

and therefore holomorphic.

We next need to show that the collection of maps {f ◦i} is a normal family

of maps on X. To see this, let K be any compact subset of X. There is some

n ≥ 0 such that K ⊂ Xn. Then f ◦n(Xn) ⊂ X0 by the definition of Xn and so

f ◦(n+i)(Xn) ⊂ f ◦i(X0) from which it follows that the iterates of f converge

uniformly to p on K.

Because i is a local biholomorphism, it is clear that f induces a self-map

of X (whose induced map we will still refer to as f ). Let Sp be the irreducible

component of the global stable variety X containing p. Then f maps Sp into

itself. We can think of p as still being a point of Sp in which case f : Sp → Sp
has p as an attracting fixed point.

We will prove the following theorem.

Theorem 3.3. Given a hyperbolic fixed point p, the stable variety Sp of p
is ramified by f . Thus, Sp intersects the critical set of f and hence p attracts a

point of the critical set of f .

Proof. Assume that Sp is not ramified by f . Then f : Sp → Sp must be a

local biholomorphism. Clearly, f : Sp → Sp is a proper map, so f : Sp → Sp
is actually a covering map. Let s : S̃p → Sp be the (complex) universal cover

of Sp and choose a point q ∈ S̃p such that s(q) = p. Now f ◦ s : S̃p → Sp is

a composition of covering projections and is therefore a covering projection

(since complex spaces are locally contractible [1]). Since S̃p is simply connected,

then f ◦s : S̃p → Sp is a (complex) universal cover, just as s is. Thus there is an

automorphism f̃ : S̃p → S̃p such that the diagram

S̃p
f̃

s

S̃p

s

Sp
f

Sp

(3.2)

commutes. This automorphism can be chosen so that f̃ (q)= q. This automor-

phism is also holomorphic since it is locally defined by mapping consecutively

by s and f and then lifting by a local section of s. It follows that Dq(f̃ ) must

be conjugate toDp(f |Sp ). However, the eigenvalues at a fixed point of an auto-

morphism of a hyperbolic complex space must all have norm one (Kobayashi

[5, page 268] applied to the automorphism and its inverse), contrary to the fact

that the eigenvalues of f |Sp all have norm smaller than one.
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4. Applications to the geometry of the Fatou set. We now study the geom-

etry of the Fatou set. We will show that all Fatou components are hyperbolically

embedded in Pn, and we will derive a criterion for a fixed Fatou component to

be taut. Combining our criterion with a theorem of Fornaess and Sibony, we

will be able to show that any recurrent Fatou component of P2 which is not a

Siegel domain is taut.

Corollary 4.1. Every component of the Fatou set is hyperbolically embed-

ded in Pn.

Proof. The proof is immediate since if U is a Fatou component, then the

set of maps Hol(D,U), where D is the unit disk, lies inside FatouD(f) which

is compact in Hol(D,Pn). Thus, Hol(D,U) is compact in Hol(D,Pn), so U is

tautly embedded which is equivalent to being hyperbolically embedded (see

Kobayashi [5, pages 244, 246]).

Theorem 4.2. If U is any fixed Fatou component which is attracted to a set

S contained in U (meaning that if x0 ∈ U , then any convergent subsequence

{f ◦ni(x0)} converges to a point of S) and if S is taut, then U is taut.

Proof. Let L be the set of all maps g :U → Pn such that some subsequence

f ◦ni converges to g. Thus L is the set of forward limit maps of f ◦ni on U . It

follows that L is a closed and hence compact subset of FatouU(f). If K is any

compact subset of U , then L(K) = {g(z) | g ∈ L, z ∈ K} is a compact subset

of Pn and from the hypothesis, we see that L(K)⊂ S.

IfU is not taut, there is a sequence of mapshi of the unit diskD intoU , which

is not compactly divergent and does not have a subsequence which converges

to a map into U . Since it is not compactly divergent, then, by definition, there

are compact subsets K ⊂ U and L ⊂ D such that hi(L)∩K ≠∅ for arbitrarily

large values i. We replace our sequence of maps hi with a subsequence if

necessary so that hi(L)∩K ≠∅ for all i. Now the image of each map hi lies

in U and hence hi ∈ FatouD(f) for each i. Since FatouD(f) is compact, we can

replace the sequence of maps hi with a subsequence if necessary so that the

sequence of maps hi converges to a map h ∈ FatouD(f). As hi(L)∩K ≠ ∅
for each i, then we see that h(L)∩K ≠∅ as convergence is uniform on L (for

otherwise h(L) and K would be disjoint compact sets, hence they would be

separated by some finite distance ε, and for all sufficiently large i, then hi(L)
would have to be at least a distance ε/2 away from h(L) and thus be disjoint

from K). Now we also know that h(D) 
⊂ U by hypothesis on the sequence hi.
Thus, h(D) must meet ∂U . Specifically h−1(∂U) is not empty. Our plan is to

now push down the maps hi and h to maps into S, and from this obtain a

contradiction.

Choose any member g of L and assume that fmi is a subsequence which

converges to g. Since each hi lands in U , then we see that, for each i, the

sequence {f ◦mj ◦hi} converges to g◦hi ∈ FatouD(f). By our hypothesis on U ,
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we see that g ◦hi lands in S ⊂ U for each i. Similarly, on the open subset

W = h−1(U) of D, the limit of {f ◦mj ◦h} is g ◦h ∈ FatouW(f). We now need

to show that some subsequence of {g◦hi} converges to a map which is g◦h
on W .

As f ◦mj ◦h ∈ FatouD(f) for each j, there is a convergent subsequence to

some map h′ ∈ FatouD(f) and, of course, this must agree with g ◦h on W .

Since ∂U is closed and forward invariant under f , we see that h′(y)∈ ∂U for

each point y ∈ h−1(∂U).
Now, we only need to note that since g is uniformly continuous on each

compact set, then g ◦hi converges to g ◦h on any open subset V of W such

that h(V)⊂U . Since g◦hi is in FatouD(f) for each i, then the sequence g◦hi
has a convergent subsequence. We replace g ◦hi with this subsequence. This

subsequence must then converges to g◦h on W , and hence to h′ on D (due to

unique continuation of analytic maps). Moreover, h′(L) must meet L(K) since

h(L)∩K ≠∅, so g ◦h(L)∩g(K) ≠∅ since it contains g(h(L)∩K) (note that

h(L)∩K lies inside U , so g is defined on it). As we noted before, the set L(K)
must be compact in S, so h′(L) intersects a compact subset of S. Thus, the

sequence g ◦hi is neither compactly divergent nor does it have a convergent

subsequence to a map into S and hence S is not taut. Thus, if U is not taut,

then S is not taut. Hence, the theorem is proved.

This theorem has specific applications in the P2 case in the case of recurrent

Fatou components. We recall the definition of a recurrent Fatou component.

Definition 4.3. A Fatou component U is recurrent if there is a point p0 ∈
U and a subsequence {f ◦ni}i≥0 such that {f ◦ni(p0)}i≥0 is relatively compact

in U .

Fornaess and Sibony [3] classified the recurrent Fatou components of a holo-

morphic self-map f : P2 → P2 as follows.

Theorem 4.4 (Fornaess and Sibony). Suppose that f is a holomorphic self-

map of P2 of degreed≥ 2. Suppose thatU is a fixed, recurrent Fatou component.

Then, one of the following holds:

(1) U is an attracting basin of some fixed point in U ;

(2) there exists a one-dimensional closed complex submanifold R of U and

{f ◦n} converges uniformly to R on any compact subset K of U . The Rie-

mann surface R is biholomorphic to a disk, a punctured disk, or an an-

nulus and the restriction of f to R is conjugate to an irrational rotation;

(3) U is a Siegel Domain.

Applying Theorem 4.2, we immediately have the following corollary.

Corollary 4.5. Every recurrent Fatou component inP2 which is not a Siegel

Domain is taut.
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Proof. This follows from the above theorem since a point, a disk, and an

annulus are all taut sets.
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