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Consider an experiment yielding an observable random quantity X whose distri-
bution Fθ depends on a parameter θ with θ being distributed according to some
distribution G0. We study the Bayesian estimation problem of θ under squared er-
ror loss function based on X, as well as some additional data available from other
similar experiments according to an empirical Bayes structure. In a recent paper,
Samaniego and Neath (1996) investigated the questions of whether, and when, this
information can be exploited so as to provide a better estimate of θ in the current
experiment. They constructed a Bayes empirical Bayes estimator that is superior
to the original Bayes estimator, based only on the current observation X for sam-
pling situations involving exponential families-conjugate prior pair. In this paper,
we present an improved Bayes empirical Bayes estimator having a smaller Bayes
risk than that of Samaniego and Neath’s estimator. We further observe that our
estimator is superior to the original Bayes estimator in more general situations
than those of the exponential families-conjugate prior combination.

2000 Mathematics Subject Classification: 62C12.

1. Introduction. Suppose that an experiment yields an observable random

variable X whose distribution is indexed by a parameter θ. Assume that θ
is distributed according to some known (prior) distribution G0. Consider the

Bayesian estimation problem of θ based on X under squared error loss func-

tion. The researchers have investigated how to be a better Bayesian whenever

some additional data are available from other similar experiments. This sim-

ilarity of other experiments is described using an empirical Bayes structure

(Robbins [8, 9]). More specifically, it is assumed that θi’s are independent of

θi ∼G, i= 1, . . . ,k (1.1)

and that, given θi, Xi is distributed according to Fθi , that is,

Xi ∼ Fθi , i= 1, . . . ,k (1.2)

(here and in what follows “∼” means independent identically distributed (i.i.d.)).

It is further assumed that the pairs {(Xi,θi)} are mutually independent and are
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independent of (θ,X) as well. The above model is also known as the compound

sampling model.

The Bayesian approach to inferences about θ depends on the assumed prior

distribution G0. This prior can depend on unknown parameters which in turn

may follow some second-stage prior. This sequence of parameters and priors

constitutes a hierarchical model. The hierarchy must stop at some point, with

all remaining prior parameters assumed to be known. The Bayes estimators

that are obtained with respect to such hyperpriors are known as hierarchical

Bayes estimators. Alternatively, the basic empirical Bayes approach uses the

observed data (X1, . . . ,Xk) from other similar experiments to estimate those

final-stage parameters (or to estimate the Bayes rule itself) and proceeds as in

a standard Bayesian analysis. The resulting estimators are generally known as

parametric (nonparametric) empirical Bayes estimators. There is a huge litera-

ture on empirical Bayes and hierarchical Bayes methods. An interested reader

is referred to the monographs of Maritz and Lwin [7] and Carlin and Louis [2]

for further details. On the other hand, the so-called Bayes empirical Bayes ap-

proach (Deely and Lindley [4]) operates under the assumption that the prior

G0 (or the hyperprior) is completely known and seeks to combine subjective

information about the unknown parameter (via G0) with the available data

(X1, . . . ,Xk,X) in the process of making inferences about the parameter of in-

terest θ. For various developments on Bayes empirical Bayes methods, see the

works of Rolph [10], Berry and Christensen [1], Deely and Lindley [4], Gilliland

et al. [6], Walter and Hamedani [13, 14], Samaniego and Neath [12], and the

references therein.

Like the Bayes empirical Bayes approach, hierarchical Bayes modeling is also

a powerful tool for combining information from separate, but possibly related,

experiments. The basic idea is to treat the unknown parameters from the indi-

vidual experiments as realizations from a second-level distribution. The com-

bined data can then be thought of as arising from a two-stage process: first, the

parameters θ1, . . . ,θk are drawn from the second-level distribution, say Gη(θ),
and then the data X1, . . . ,Xk are drawn from the resulting first-level distribu-

tions Fθ1 , . . . ,Fθk . Under this formulation, the first-level model explains the vari-

ation within experiments, and the second-level model explains the variation

across experiments. For example, hierarchical Bayes methods form an ideal

setting for combining information from several published studies of the same

research area, a scientific discipline commonly referred to as meta-analysis

(Cooper and Hedges [3]), though, in this context, primary interest is in the

hyperparameters η rather than the parameters from individual studies, θ.

The appeal of the Bayes empirical Bayes or of the hierarchical Bayes mod-

eling is that information from all the experiments can be used for inferences

about the intermediate parameters θ1, . . . ,θk as well as θ. The probabilistic

formulation is tailor-made for a fully Bayesian analysis. By putting prior prob-

ability distributions on the third-level hyperparameters η and any nuisance
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parameters, all inferences can be carried out with posterior probability state-

ments. But, as noted by some authors, the danger lies in these approaches,

however the misspecification of the prior and hyperprior distributions are.

Most seriously, there is the possibility of false association. Perhaps the asso-

ciation of θ should not be combined with θ1, . . . ,θk. See Efron [5] for more

information on these kinds of criticisms and for an empirical Bayes-likelihood

approach of data combining.

In a recent paper, Samaniego and Neath (hereafter S&N, [12]) presented an

efficient method for exploiting the past data (X1, . . . ,Xk) along with the cur-

rent observation X in the Bayesian estimation problem of θ, resulting in a

Bayes empirical Bayes (BEB) estimator of θ. From a Bayesian perspective, they

investigated under what circumstances their BEB estimator would offer im-

provement over the original Bayes estimator. They demonstrated that in the

traditional empirical Bayes framework and in situations involving exponential

families, conjugate priors, and squared error loss, their BEB estimator of θ
(which is based on data X1, . . . ,Xk and X) is superior to the original Bayes esti-

mator of θ, which is based only on X, showing a better Bayesian performance

by combining some relevant empirical findings with the subjective informa-

tion in the prior distribution G0. The performance of BEB estimator of S&N

depends on the choice of the prior G0, and it is not known how good is their

estimator from a frequentist perspective. Generally speaking, however, besides

having good Bayesian properties, estimators derived using Bayesian methods

such as BEB estimators can have excellent frequentist properties (such as a

smaller frequentist risk) and produce improvements over estimators gener-

ated by frequentist- or likelihood-based approaches. See Carlin and Louis [2]

for more elaborate discussion on this point.

In this paper, we present another potentially useful BEB estimator developed

under the same setup of S&N. The proposed estimator of θ is shown to have

better performance than that of S&N in the sense of having a smaller Bayes

risk. We further observe that our estimator is superior to the original Bayes

estimator for more general situations than those of the exponential families-

conjugate prior combination, showing a wider applicability of the proposed

estimator. It is not known whether our strategy is the optimal way of combining

data from past similar experiments. Indeed, it is reasonable to expect that

there may be other better methods of exploiting the data (X1, . . . ,Xk) from

past experiments with the current experiment. The next section contains the

main results of this article. Section 3 contains a numerical example comparing

the proposed estimator with that of S&N estimator.

2. Bayes empirical Bayes estimator. For convenience of notation, we as-

sume throughout this section that the current experiment is the (k+ 1)st-

experiment, and thus the problem is Bayesian estimation of θk+1 based on

data (X1, . . . ,Xk) from k past experiments as well as the current data vector
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Xk+1 = (Xk+1,1, . . . ,Xk+1,nk+1), where Xi = (Xi,1, . . . ,Xi,ni), i= 1, . . . ,k, given θi,

Xi,1, . . . ,Xi,ni ∼ Fθi , i= 1, . . . ,k+1, (2.1)

and that

θi ∼G0, i= 1, . . . ,k+1. (2.2)

It is further assumed that the pairs {(Xi,θi)}k+1
i=1 are mutually independent. Let

G be a prior distribution on θk+1 such that the Bayes estimator dG(Xk+1) under

squared error loss is given by

dG
(
Xk+1

)=αθ̂k+1+(1−α)EG(θ), (2.3)

where α∈ [0,1) and θ̂k+1 denotes the uniformly minimum variance unbiased

estimator (UMVUE) of θk+1. Based on data (X1, . . . ,Xk) from past experiments,

let Gk denote the prior distribution with prior mean cθ̂∗+(1−c)EG(θ); that is,

letGk be the prior distribution on θk+1 such that the Bayes estimatordGk(Xk+1)
of θk+1 under squared error loss is

dGk
(
Xk+1

)=αθ̂k+1+(1−α)
[
cθ̂∗+(1−c)EG(θ)

]
, (2.4)

where

θ̂∗ =
 k∑
i=1

ni

−1 k∑
i=1

niθ̂i (2.5)

and for i= 1, . . . ,k, θ̂i denotes the UMVUE of θi based on the observation vector

Xi. Then S&N showed that dGk has smaller Bayes risk than that of dG given by

(2.3) with respect to G0 when estimating θk+1. That is,

r
(
G0,dGk

)
< r

(
G0,dG

)
(2.6)

for any value of the constant c satisfying

0< c <
2A2

A2+V(θ̂∗) , (2.7)

where A = |EG0(θ)−EG(θ)| and r(G0,d) = E(d−θk+1)2, with E denoting ex-

pectation with respect to all the random variables governed by (2.1) and (2.2).

This notation of “E” is used in what follows without further mention.
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For k= 2, (2.4) reduces to

dG2

(
X3
)=αθ̂3+(1−α)

c
 2∑
i=1

ni

−1
2∑
i=1

niθ̂i+(1−c)EG(θ)
 (2.8)

as an estimator of θ3.

We consider a class of estimators of θ3 of the form

δG2,w
(
X3
)=αθ̂3+(1−α)

[
w2θ̂2+w1θ̂1+

(
1−w1−w2

)
EG(θ)

]
, (2.9)

where α ∈ [0,1), 0 ≤ wi < 1, i = 1,2 such that 0 ≤ w1 +w2 < 1 and w =
(w1,w2). Note that when w1 = cn1/

∑2
i=1ni and w2 = cn2/

∑2
i=1ni, then δG2,w

reduces to dG2(X3), given by (2.8). Furthermore, when w1 =w2 = 0, then (2.9)

reduces to dG(X3), given by (2.3) with k = 2. Thus, dG2(X3) and dG(X3) are

special cases of δG2,w(X3). We now find values w= (w1,w2) that minimize the

Bayes risk of δG2,w(X3) with respect to G0, and compare the respective Bayes

risks of (2.3), (2.8), and (2.9).

Theorem 2.1. Let r(G0,δG2,w) denote the Bayes risk of δG2,w(X3), given by

(2.9) with respect to G0, that is, r(G0,δG2,w) = E[δG2,w(X3)− θ3]2. Then, the

values of w = (w1,w2) that minimize r(G0,δG2,w) are w∗ = (w∗
1 ,w

∗
2 ) such

that

w∗
1 =

(
µ−µ0

)2[
V
(
θ̂1
)+(µ−µ0

)2+EG0

(
θ2
)−µ2

0

][
1+(a1+a2

)(
µ−µ0

)2] ,
w∗

2 =
(
µ−µ0

)2[
V
(
θ̂2
)+(µ−µ0

)2+EG0

(
θ2
)−µ2

0

][
1+(a1+a2

)(
µ−µ0

)2] ,
(2.10)

where µ = EG(θ), µ0 = EG0(θ), and

a1 =
[
V
(
θ̂1
)+(µ−µ0

)2+EG0

(
θ2)−µ2

0

]−1,

a2 =
[
V
(
θ̂2
)+(µ−µ0

)2+EG0

(
θ2)−µ2

0

]−1.
(2.11)

With w=w∗ in (2.9), it is now clear that the following inequality holds:

r
(
G0,δG2,w∗

)≤min
{
r
(
G0,dG2

)
,r
(
G0,dG

)}
, (2.12)

where r(G0,dG2) and r(G0,dG) denote Bayes risks of dG2 and dG, given by (2.8)

and (2.3), respectively, with respect to G0; that is, r(G0,dG2)= E[dG2(X3)−θ3]2

and r(G0,dG)= E[dG(X3)−θ3]2. Inequality (2.12) follows easily from the facts

that dG2 and dG are special cases of δG2,w, and δG2,w∗ attains the minimum
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Bayes risk among all estimators of θ3 of the form (2.9). Further, if c in (2.8)

satisfies (2.7) with k= 2, then we have from (2.3) and (2.12) that

r
(
G0,δG2,w∗

)≤ r(G0,dG2

)≤ r(G0,dG
)
. (2.13)

Proof. The derivation of w∗ = (w∗
1 ,w

∗
2 ) is rather lengthy but straightfor-

ward. Therefore, we give only the main steps of the computation here. Let

w0 = 1−(w1+w2). Then, 0≤w0 < 1, w0+w1+w2 = 1, and the BEB estimator

δG2,w(X3), given by (2.9), takes the form

δG2,w
(
X3
)=αθ̂3+(1−α)

[
w2θ̂2+w1θ̂1+w0µ

]
, (2.14)

where µ = EG(θ). Subject to the condition w0+w1+w2 = 1, we now minimize

r
(
G0,δG2,w

)= E[δG2,w
(
X3
)−θ3]2

= E[αθ̂3+(1−α)
(
w2θ̂2+w1θ̂1+w0µ

)−θ3
]2

= E[α(θ̂3−θ3
)+(1−α)(w2θ̂2+w1θ̂1+w0µ

)−(1−α)θ3
]2

=α2E
(
θ̂3−θ3

)2+(1−α)2E[w2θ̂2+w1θ̂1+w0µ−θ3
]2+CPT1,

(2.15)

(CPT stands for cross product terms) where

CPT1 = 2α(1−α)E(θ̂3−θ3
)[
w2θ̂2+w1θ̂1+w0µ−θ3

]
= 2α(1−α)EEX3/θ3

(
θ̂3−θ3

)[
w2θ̂2+w1θ̂1+w0µ−θ3

]
= 0.

(2.16)

Note that the second term on the right-hand side of (2.15) is equal to the prod-

uct of (1−α)2, and

E
[
w2
(
θ̂2−θ2

)+w1θ̂1+w0µ−θ3+w2θ2
]2

=w2
2E
(
θ̂2−θ2

)2+E[w1θ̂1+w0µ−θ3+w2θ2
]2+CPT2,

(2.17)

where CPT2 = 2w2E(θ̂2−θ2)[w1θ̂1+w0µ−θ3+w2θ2] = 0. The second term

on the right-hand side of (2.17) is equal to

E
[
w1θ̂1+w0µ−θ3+w2θ2

]2

= E[w1
(
θ̂1−θ1

)+w0µ−θ3+w2θ2+w1θ1
]2

=w2
1E
(
θ̂1−θ1

)2+E[w0µ+w1θ1+w2θ2−θ3
]2+CPT3,

(2.18)
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where CPT3 = 2w1E(θ̂1−θ1)[w0µ+w1θ1+w2θ2−θ3] = 0. Now, combining

(2.15) to (2.18), we have

r
(
G0,δG2,w

)=α2E
(
θ̂3−θ3

)2+(1−α)2
{
w2

2E
(
θ̂2−θ2

)2+w2
1E
(
θ̂1−θ1

)2

+E[w0µ+w1θ1+w2θ2−θ3
]2
}
.

(2.19)

We now minimize (2.19) subject to the restriction w0+w1+w2 = 1. Let

r(w)= r(G0,δG2,w
)+λ(1−w0−w1−w2

)
, (2.20)

where λ denotes the Lagrangian multiplier and r(G0,δG2,w) is given by (2.19).

By differentiating r(w) with respect to w0, w1, and w2 separately and setting

equal to zero, the following three equations are obtained:

µ
(
w0µ+w2µ0+w1µ0−µ0

)= λ1, (2.21)

w1E
(
θ̂1−θ1

)2+w0µ0µ+w2µ2
0+w1EG0

(
θ2)−µ2

0 = λ1, (2.22)

w2E
(
θ̂2−θ2

)2+w0µ0µ+w1µ2
0+w2EG0

(
θ2)−µ2

0 = λ1, (2.23)

where λ1 = λ/2(1−α)2. Now, from (2.21), (2.22), and (2.23) we obtain that

w1 = λ1
(
µ0−µ

)
µµ2

0−µ
[
E
(
θ̂1−θ1

)2+EG0

(
θ2
)] , (2.24)

w2 = λ1
(
µ0−µ

)
µµ2

0−µ
[
E
(
θ̂2−θ2

)2+EG0

(
θ2
)] . (2.25)

Substituting w1 of (2.24) and w2 of (2.25) into (2.21) and solving for w0 gives

w0 = µµ0+λ1
[
1+(a1+a2

)(
µ2

0−µµ0
)]

µ2
, (2.26)

where a1 and a2 are as defined in the theorem. Now, from w0+w1+w2 = 1

with w1, w2, and w0 given by (2.24), (2.25), and (2.26), respectively, we obtain

the following solution for λ1:

λ1 = µ2−µµ0

1+(a1+a2
)(
µ0−µ

)2 . (2.27)

The proof is now completed by substituting λ1 of (2.27) in (2.24) and (2.25)

and then using the facts that E(θ̂1−θ1)2 = V(θ̂1)+(µ−µ0)2 and E(θ̂2−θ2)2 =
V(θ̂2)+(µ−µ0)2.



104 R. J. KARUNAMUNI AND N. G. N. PRASAD

For general k, we consider estimators of θk+1 of the form

δGk,w
(
Xk+1

)=αθ̂k+1+(1−α)
 k∑
i=1

wiθ̂i+
(

1−
k∑
i=1

wi

)
EG(θ)

, (2.28)

where θ̂i is the UMVUE of θi based on Xi, i = 1, . . . ,k, α ∈ [0,1) and 0 ≤
wi < 1, i = 1, . . . ,k such that 0 ≤ ∑k

i=1wi < 1. Again, optimum values of w =
(w1, . . . ,wk) may be obtained by minimizing the Bayes risk r(G0,δGk,w) =
E[δGk,w(Xk+1)−θk+1]2 with respect to w= (w1, . . . ,wk) subject to 0≤∑k

i=1wi <
1. The solution is given in the next theorem. We state the theorem without proof

since the proof is similar to that of Theorem 2.1.

Theorem 2.2. Let r(G0,δGk,w) denote the Bayes risk of δGk,w(Xk+1) given

by (2.28) with respect to G0, that is, r(G0,δGk,w) = E[δGk,w(X3)−θk+1]2. Then,

the values of w = (w1,w2, . . . ,wk) that minimize r(G0,δGk,w) are obtained as

the solution to the system of equations given by

AW = µ, (2.29)

where

A=



µ2 µµ0 · · ··· µµ0

µµ0 E
(
θ̂1−θ1

)2+E0
(
θ2

1

)
µ2

0 · ··· µ2
0

µµ0 µ2
0 E

(
θ̂2−θ2

)2+E0
(
θ2

2

)
µ2

0 ··· µ2
0

···
...

...
...

... ···
...

···
···

µµ0 µ2
0 µ2

0 · ··· E(θ̂2−θ2
)2+E0

(
θ2

2

)


,

W =



w0

w1

...

wk


, µ =



λ1+µµ0

λ1+µ2
0

...

λ1+µ2
0


,

(2.30)

λ1 = λ/2(1−α)2 andw0 = 1−∑k
i=1wi, where A is a (k+1)×(k+1)matrix and

W and µ are (k+1)×1 matrices.
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Table 3.1. Efficiency of δG2,w∗(X3) relative to dG2(X3).

n1 n2 n3
Efficiency (%)

µ =−0.5 µ = 0 µ = 1.0 µ = 2.0 µ = 3.0

28 35 73 100.99 101.56 101.80 102.56 110.30

40 35 73 100.99 105.18 113.95 119.54 123.36

60 35 73 100.93 104.83 112.18 115.58 116.94

28 50 73 100.92 104.79 111.94 115.04 116.03

15 35 100 100.88 104.44 110.08 110.86 109.20

28 35 100 100.99 109.52 100.23 100.23 109.52

3. A numerical example. In this section, we apply our proposed method

on a real data set in order to see how much improvement is gained by us-

ing the proposed BEB estimator over that of S&N estimator. We employed the

data provided by Efron [5, Table 1]. The preceding data is based on forty-one

randomized trials of a new surgical treatment for stomach ulcers conducted

between 1980 and 1989, Sacks et al. [11]. The kth experiment data are recorded

as

(
ak,bk,ck,dk

)
(k= 1, . . . ,41), (3.1)

where ak and bk are the number of occurrences and nonoccurrences for the

Treatment (the new surgery), and ck and dk are the occurrences and nonoc-

currences for Control (an older surgery). The true log-odds ratio in the kth

experimental population is given by

θk = log
{

Pk(Occurrence|Treatment)
Pk(Nonoccurrence|Treatment)

÷ Pk(Occurrence|Control)
Pk(Nonoccurrence|Control)

}
.

(3.2)

An estimate of θk is given by

θ̃ = log
(
ak
bk
÷ ck
dk

)
, (3.3)

k = 1, . . . ,41. These values, along with approximate standard deviations �SDk
(k= 1, . . . ,41) of the preceding estimates, are also given in [5, Table 1].

Applying this data to our computation, we acted as if estimates θ̃ =
log(ak/bk ÷ ck/dk) are generated from a normal distribution with mean θk
and standard deviation σk = �SDk, k = 1, . . . ,41. The values of σ1, σ2, and σ3

are given by σ1 = 0.86, σ2 = 0.66, and σ3 = 0.68 from [5, Table 1]. We further

assumed that the prior G0 given by (2.2) is also normal with the mean µ0 and

standard deviation τ0. Again, from Efron’s paper [5], we obtain µ0 =−1.22 and

τ0 = 1.19 (see [5, equation (3.8)]). A computational expression of r(G0,δG2,w∗)
can be easily obtained from (2.19) with w1 and w2 replaced by w∗

1 and w∗
2 ,
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respectively. In all our computations, we assumed that the α used in expres-

sions (2.4) and (2.9) is equal toα= 0.6. Finally, we chose five values of µ = E(G),
namely, µ =−0.5, 0, 1.0, 2.0, and 3.0, for our computation of r(G0,δG2,w∗) and

r(G0,dG2), where r(G0,dG2) denotes the Bayes risk with respect to G0 of S&N

estimator dGk given by (2.4) with k= 2. The sample sizes of experiments 1, 2,

and 3 in [5, Table 1] are given by n1 = 28, n2 = 35, and n3 = 73, respectively.

For the above specifications, we computed the efficiency of δG2,w∗(X3) rela-

tive to dG2(X3), that is, the ratio r(G0,dG2)/r(G0,δG2,w∗). As percentages, the

resulting values are 100.99, 101.56, 101.80, 102.56, and 110.30 (see the first

row of Table 3.1), which shows a better performance of δG2,w∗(X3) relative to

dG2(X3). Various other choices of (n1,n2,n3) were also considered, and the

relative efficiency of the two estimators were computed. Our results are given

in Table 3.1. Also, various other values of µ were investigated, and the results

were similar to those in Table 3.1. From Table 3.1, it is clear that when the

difference µ − µ0 is large, the efficiency of δG2,w∗(X3) relative to dG2(X3) is

higher as we would expect. In al cases examined, we observe that δG2,w∗(X3)
is relatively more efficient than dG2(X3).
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