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MODULUS OF SMOOTHNESS AND THEOREMS CONCERNING
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We consider the generalized shift operator defined by (Shy, f)(g) = [ f (tut~1g)dt
on a compact group G, and by using this operator, we define “spherical” modulus
of smoothness. So, we prove Stechkin and Jackson-type theorems.
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1. Introduction. In this paper, we prove some theorems on absolutely con-
vergent Fourier series in the metric space L, (G), where G is a compact group.
The algebra of absolutely convergent Fourier series is a subject matter about
which a good deal, although far from everything, is known (see [5, page 328]).
Like many branches of harmonic analysis on T and R, the theory of absolutely
convergent Fourier series is a fruitful source of questions about the corre-
sponding entity for compact groups. By using some absolute convergence the-
orems of the classical Fourier series, (see[1, 11]), a generalized form of Stechkin
[6] and Szasz theorem [1, 11] of the Fourier series on compact groups is ob-
tained. Thus, we solve open problems formulated in [5, page 366] (see also [3,
Chapter I, page 9]).

2. Preliminaries and notation. Now, we explain some of the notation and
terminologies used throughout the paper.

Let G be a compact group with a dual space G, dg denote the Haar measure
on G normalized by the condition [,dg = 1, and [ f(g)dg denote the Haar
integral of a function f on G. Let Uy, & € G denotes the irreducible unitary
representation of G in the finite dimensional Hilbert space V. We reserve the
symbol d for the dimension of U,. Thus, d is a positive integer. Also, we de-
note by x, and tf‘j (i,j=1,2,...,ds), X E G the character and matrix elements
(coordinate functions) of Uy, respectively.

Let L, (G) be the space of all functions f equipped with the norm

11, =], |f<g>|"dg}”p. 2.1)

We write | - ||, instead of || - ||z, (c), and L. = C is the corresponding space of
continuous functions, and || f|| = max{|f(g)|: g € G}. As it is known (see [4]
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or [10, page 99]), the space L,(G) can be decomposed into the sum

Lo(G) = > ©Hy, (2.2)
aet
where
Hoy={f€C(G): f(g)=tr(Ux(g)C), C =Hom (Vy,Vqa)}. (2.3)

This theorem is one of the most important results of the harmonic analysis on
compact groups. The orthogonal projection Yy : L>(G) — Hy is given by

(Yof) (@) = da Lf(h)xa(gh’l)dh, (2.4)

where (Y4 f)(g) does not depend on the choice of a basis in L,. Carrying out
this construction for every space Hy, X € G, we obtain an orthonormal basis
in L, consisting of the functions \/@tf‘j, xeG, 1< i,j < dy. Any function
f € L2(G) can be expanded into a Fourier series with respect to this basis

da
fl@) =2 > aitdg), (2.5)

xeG i,j=1

where the Fourier coefficients a;’} are defined by the following relations:

ajj = da L f(@)t&(g)dg, (2.6)

such that t}(g) = tf‘j(g’l), where g~! is the inverse of g. Note that (2.5) is a

convergent series in the mean and that the Parseval’s equality

2

du
2 1 «
Llf(g)\ dg=73 -3 |af (2.7)

aeG i,j=1

holds. The aforementioned result of harmonic analysis on a compact group
can be found, for example, in [4, 5, 7, 10].

We denote by Sh,, the generalized translation operator on compact group G
defined by

(Sh f)(9) = Lf(tut*g)dt,
(Auf)(g) :f(g)_(Shuf)(g) = (E_Shu)fy

(2.8)
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where u,g € G and E is the identity operator. We set

k
ARf =0y (A5 F) = (E-Shy)*f = X (-1 ICishl £, (2.9)
i=0

in which Sh? f = f and Sh, (Sh!, ! f) =Sh, f,i=1,2,...,k and k € N.

We note that « is a complicated index. Since G is a countable set, there are
only countably many « € G for which (xf‘j + 0 for some i and j; enumerate them
as {Xo, X1,...,&n,...}. SO, Ay < doy < Aoy < -+ <du,<---. Because of that,
the symbol “x < n” is interpreted as {xg, &1,...,0n_1} C G, and & = n denotes
the set G\ (x < n). Let dq, as usual, be the dimension of Uy. For typographical
convenience, we write d, for the dimension of the representation U%*", n =
1,2,.... (See [5, page 458].)

We denote by E;, (f), the approximation of the function f € L, (G) by “Spher-
ical” polynomials of degree not greater than n:

En(f)p:inf<|||f—Tan:Tne > @Ha]». (2.10)

a<n,ae@

The sequence of best approximations {E, (f )n}::o is a constructive charac-
teristic of the function f. In the capacity of structural characteristic of the
function f on a compact group G, we define its Spherical modulus of smooth-
ness of order k by

wk(f;T)p:sup{||(E—Shu)kf||p:ueWT}, (2.11)
where W- is a neighborhood of e in G. In other words,
W ={u:pu,e) <t, uecG}, (2.12)

where p is a pseudometric on G and T is any positive real number. It is easy
to show the following properties of wi (f,T):
(@) im0 wi(f,T)p =0;
(b) wi(f,7)p is a continuous monotonically increasing function with re-
spect to T;
@ wi(fi+fo,T)p < Wi (f1,T)p + Wi (f2,T)p;
(d) Wi (f,T)p < 2w (f,T)p, 1=1,2,....

3. Main results. We need the following simple but useful lemma.
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LEMMA 3.1. The following equality holds for allu,g € G:

Xo (1)
dy

(Shutd)(g) = 2 (g). (3.1)

PROOF. Using the orthogonality relations and other formulas for matrix
elements ;5 (g) (see [7, page 189]), we have

du da
JG L (tut ' g)dt = > > &, (u)t (g)J & (1), (D)dt
p=1qg=1
(3.2)
— 1 D( 24 o4 — 1 (o4
= >ty ti(g) = T Xa (W (g).
X p=1 104
This proves the lemma. O
The following formula is the particular event of the above lemma:
J xa(tut‘lg)dt _ Xo((u)ch(g) (3.3)
G dy
It can be called a Weyl formula.
We note that the expansion (2.5) is connected with the expansion
flg) = Z Yo(f)(g), Yo €Hy, (3.4)
xeG
which is defined by (2.4), that is, by the equality
Ya(f)(9) = Z agty(g). (3.5)

i,j=1

Thus, the coefficients a . are defined by (2.6). Using Lemma 3.1 and the defi-
nition of Yy, we obtain

Ya(Shy f) Z uj (tut~'g)dt

i,j=1

— Z D(XO((u)to(( ) (36)
i,j=1

_ Xo (1)
dy

Yo (f)(g).

The following are simple facts with frequent usage: if f € L, then
(1) 1IShy fllp < ILf ;s
) If =Shy fll, ~0asu —e;
3) (Ya(Shy f))(9) = (Xa(U)/Xa()) (Yo f)(g) for all x € G.
We note that xy(e) =d



MODULUS OF SMOOTHNESS AND THEOREMS ... 1255

THEOREM 3.2. If f € L, and f is not constant, then

dn L _
En(f)2 < dn—kak<f’n)2’ n=12,.... (3.7)

PROOF. Let f € L, and S, (f,g) denote the nth partial sum of the Fourier
series (2.5), that is,

n dap
Sn(f29) = 2. Z afti(g) =Y D at;] (@) (3.8)
X<n i, j=1 p=01i,j=1

Using Parseval’s equality for the compact group G, we have

Er 2= If =PI = ¥ o 21 Jay | (3.9
az=n G
Using (3), it is not hard to see that
vaat @ = (12 @), wcé @

Consequently, (AKf)(g) = > jee(1 —x,x(u)/d(x)kau t;j- By another application
of Parseval’s equality, we obtain

||A fHZ Z Z th(u)‘ z Z 1— Xa(u)‘
X =1 az=n G i
1 o 2Rexq«(u) Xo (1) 2\ NE
=a§n—aijz::l (1— o +| =z | ’aij

(3.11)

Now, using Bernolly’s inequality (1 +x)¥ = 1+ kx for x = —1, we obtain

& 2kR k 2 2
Jatrl= 5 g, 3 (1- 20 g a2
x=n 0( (04
Consequently,
latrfe LS asfo s LS 2Rt iz 3
u 2 = d(x B 1y = d(x o d«x ij| .
therefore,
. de
B () = || akf]+2k Y Ly Re’;i“(”)]a;*j ’ (3.14)
azn G g «
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Let ®y, be a nonnegative integrable function vanishing outside W, and satisfy-
ing the condition [, ®w, (g)dg = 1. For example, we can take ®y, = Ew, /u(W7),
where p(W-) is the Haar measure of W+ and &y, is the characteristic function
of Wr. Multiplying both sides of (3.14) by &y, ,,, and integrating with respect
to u on G, and using the equality [, Ix«l?dg =1 (see [7, page 195]), we obtain

LE,%(f)Zq)WW (w)du < JG HAIL(lfHZCI)WU" du

+2k > d2 Z ‘au

1k @0y, 0du

oa>n N lJ 1 (31 5)
2k « 1 & 2
ssupllotsfn 25 LS
" a=n dl" i,j=1
Therefore, it is not hard to see that
1 2k
Eq(f)2 swi(f,a) Ez(f)z (3.16)
2
Finally, we obtain
dy, 1
which proves the theorem. |

This theorem is given without proof in [8] for the case where k = 1.
We note that the matrix elements of unitary representations t (g) satisfy
the relations

L 0 ifi=+k,
Zt () = D (@)t (9) = . (3.18)
iz if i = k.
In particular, we have
dx
S| t(g)] <1 (3.19)
j=1

for all x € G and i, Jj=1,2,...,d. Furthermore, it is obvious that |af{* t”‘ (g)l =<
laft \ therefore, according to the sufficient condition for absolutely convergent
Fourler series on the group G, the series > ¢ 2.f';_; laj;| is convergent. Let
AG) = {f 1 2gec 2¥ ij= 1Iav .| < +o0}. Using Theorem 3. 2 and repeating the
proof of analogous theorems (see [1, Chapter IX] or [6, Chapter II]) with some
changes, we obtain the following theorems.
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THEOREM 3.3. If f(g) € L2(G), then

[

f 1/1’1)2

M

<400 = f(g) € AG). (3.20)

This theorem is analogous to the Szasz theorem of the classical Fourier
series in the case where k=1and G=T.

THEOREM 3.4. If f(g) € L2(G), then

Z (f)z <+00 = f(g) € A(G). (3.21)

This theorem is also analogous to a theorem in trigonometric case proved
by Stechkin [9].

4. Applications to compact group SU(2). The group SU(2) consists of uni-
modular unitary matrices of the second order, that is, matrices of the form

u=(_"‘B g) 2+ 1812 = 1. 4.1)

Therefore, each element u of SU(2) is uniquely determined by a pair of com-
plex numbers « and 8 such that |x|? + |B]%2 = 1. We have (see [5]) the relation
“(o, B) — (¢p,0,p),” where & # 0, |x|% + |B]|? = 1, and the parameters ¢, 0,
and  are called Euler angles defined by

P+y o 4

0
lx| = cosE, Argo = o Argp = — 4.2)

Let ¢, 0, and  satisfy the conditions
0<d¢<2m, 0<0<m, =21 < P < 2. 4.3)

Also, we know that the dimension of the representation T! of SU(2) is equal
to 21+1, where I =0,1/2,1,... and the matrix elements of T' for group SU(2)
are defined by

th . (u) = e m¥rmeIpl (cos9)imm, (4.4)
Expressing t!,,, (1) in terms of P}, (cos @), we arrive at the following conclu-
sion:

Any function f(¢,0,y),0< ¢ <2m, 0< 60 <m,and -2 < ¢ < 27 belong-
ing to the space L?(SU(2)) such that

21 21 T 5
L L L | f(h,0,y)|°sin0dOdpdy < o (4.5)
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can be expanded into the mean-convergent series

Sl 00 =2 53 oyl L (cos0), (4.6)
m=—ln=-1
where
1 21+1 2m o1 imsny) pl .
mn = 162 Jo JO S, 0,y)e Pl (cos0)sin0doddpdy.

4.7)
In addition, we obtain from Parseval’s equality that

! ! 1 21T 2T T )
> 2 ST J:ZWJ’O JO | £($,0,0)|*sin0d0dpdy.

> Xy |* =
I me—ln-—1 1 1672
(4.8)
Using Theorem 3.2, we obtain the following theorem.
THEOREM 4.1. If f(¢,0,@) € Lo(SU(2)), then
2 1
En(f)ZSW/l"‘jwk(f'E)z’
1/2 (4.9)
l l 5 1
{lz S 3 gyl } \/“m‘“k(ﬁa) -
>nm=-ln= 2

Using the relation between the polynomial P (‘x A )(z) and P, (z), we con-
clude that

(I-m)'(l+m)!

1/2
_ >\(m-n)/2 (m+n)/2 p(m-—nm+n)
(l—n)!(l+n)!] (1-2) (1+2) Piom :

(4.10)
The Jacobi polynomials obtained here are characterized by the condition that
« and f are integers and n+«x+p € Z,.
Now, we consider the following case.
Let Lé"“m [-1,1] be the Hilbert space of the functions f defined on the seg-
ment [—1,1] with the scalar product

ha(2) =27

1
(fl,fz)=Iﬁlﬁ(x)fz(x)(l—x)"‘(1+x)3dx; (4.11)

then, any function f in this space is expanded into the mean-convergent series

F00 = 0P (x), (4.12)
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where the polynomials P{*"’ (x) are given by

1/2
PP (x) = 2—<a+B+1)/2[k’(k+°‘+3)!(°‘+ﬁ+2k+ 1)} PP (x),

k+ o)l (k+p)! (4.13)
1
0y = J FOOPEP (x) (1 -x)*(1 +x)Pdx. (4.14)
-1
The Parseval’s equality
1 o0
J : |FOO P A-x)%1+x)fdx = > ol (4.15)

n=0

holds. The formulas (4.12), (4.14), and (4.15) are proved for integral nonnega-
tive values of o and . We can show that they are valid for arbitrary real values
of « and B exceeding —1. Finally, we reach the following theorem.

THEOREM 4.2. If f(x) € Lo[—1,1], then the following hold for Jacobi series:

En(f)zﬁwl'f'yilwk(f.;)zy

- R 1
2

‘|l_zn|0‘l|]’ < 1+m‘”’<<f’ﬁ>2'

NOTE. For the ideas similar to this paper we refer to [2] and its references.

(4.16)

ACKNOWLEDGMENTS. This research was supported by Tabriz University.
We would like to thank the research office of Tabriz University for its support.

REFERENCES
[1]  W. K. Bari, Trigonometric Series, vol. II, Holt, Rinehart and Winston, New York,
1967.
[2]  G.Benke, Bernstein’s theorem for compact groups, J. Funct. Anal. 35 (1980), no. 3,
295-303.

[3] R. E. Edwards, Fourier series. A Modern Introduction. Vol. 1, 2nd ed., Graduate
Texts in Mathematics, vol. 64, Springer-Verlag, New York, 1979.

[4] S.Helgason, Groups and Geometric Analysis, Pure and Applied Mathematics, vol.
113, Academic Press, Florida, 1984.

[5] E.Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Anal-
ysis for Compact Groups. Analysis on Locally Compact Abelian Groups,
Die Grundlehren der Mathematischen Wissenschaften, vol. 152, Springer-
Verlag, New York, 1970 (German).

[6] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, vol. 50, Springer-Verlag, Berlin, 1970
(French).

[71 M. A. Naimark and A. I. Stern, Theory of Group Representations, Grundlehren
der Mathematischen Wissenschaften, vol. 246, Springer-Verlag, New York,
1982 (German).



1260 H. VAEZI AND S. F. RZAEV

[8] S.F.Rzaev, Ly-Approximation on compact groups, Proc. “Questions on Functional
Analysis and Mathematical Physics Conference”, Baku, 1999, pp. 418-419.
[9] S. B. Stechkin, On absolute convergence of orthogonal series, Dokl. Akad. Nauk.
SSSR 102 (1955), 37-40.
[10] N.Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and Special Func-
tions. Vol. 1, Mathematics and Its Applications, vol. 72, Kluwer Academic
Publishers, Dordrecht, 1991.
[11]  A. Zygmund, Trigonometric Series. 2nd ed. Vols. I, II, Cambridge University Press,
New York, 1959.

H. Vaezi: Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
E-mail address: hvaezi@tabrizu.ac.ir

S.F.Rzaev: Institute of Mathematics and Mechanics, Azerbaijan Academy of Sciences,

Baku, Azerbaijan
E-mail address: rzseymur@hotmail.com


mailto:hvaezi@tabrizu.ac.ir
mailto:rzseymur@hotmail.com

