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A RATIONALITY CONDITION FOR THE EXISTENCE
OF ODD PERFECT NUMBERS
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A rationality condition for the existence of odd perfect numbers is used to derive
an upper bound for the density of odd integers such that o (N) could be equal to
2N, where N belongs to a fixed interval with a lower limit greater than 10390, The
rationality of the square root expression consisting of a product of repunits multi-
plied by twice the base of one of the repunits depends on the characteristics of the
prime divisors, and it is shown that the arithmetic primitive factors of the repunits
with different prime bases can be equal only when the exponents are different, with
possible exceptions derived from solutions of a prime equation. This equation is
one example of a more general prime equation, (q;‘ - 1)/(q? -1) = ph, and the
demonstration of the nonexistence of solutions when h > 2 requires the proof
of a special case of Catalan’s conjecture. General theorems on the nonexistence
of prime divisors satisfying the rationality condition and odd perfect numbers N
subject to a condition on the repunits in factorization of o (N) are proven.

2000 Mathematics Subject Classification: 11A07, 11A25, 11B37, 11D41, 11D45.

1. Introduction. The algorithm for demonstrating the nonexistence of odd
perfect numbers with fewer than nine different prime divisors requires the ex-
pansion of the ratio o (N)/N and strict inequalities imposed on the sums of
powers of the reciprocal of each prime divisor [20, 55]. Although it is possible
to establish that o (N)/N # 2 when N is divisible by certain primes, there are
odd integers with a given number of prime divisors such that o (N)/N > 2,
while o (N)/N < 2 for other integers with the same number of distinct prime
factors. Moreover, the range of the inequality for |0 (N)/N — 2| can be made
very small even when N has a few prime factors. Examples of odd integers
with only five distinct prime factors have been found, which produce a ratio
nearly equal to 2: |o(N)/N —2| < 10712 [28]. Since it becomes progressively
more difficult to establish the inequalities as the number of prime factors in-
creases, a proof by method of induction based on this algorithm cannot be
easily constructed.

In Section 2, it is shown that there is a rationality condition for the existence
of odd perfect numbers. Setting o (N)/N equal to 2 is equivalent to equating
the square root of a product, 2(4k +1) 1_[’;’):1 ((qi"i —-1)/(qi—1))(((4k+1)4m+2 —
1)/4k), which contains a sequence of repunits, with a rational number. This
relation provides both an upper bound for the density of odd perfect numbers
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in any fixed interval in N with a lower limit greater than 103% and a direct
analytical method for verifying their nonexistence, since it is based on the ir-
rationality of the square root of any unmatched prime divisors in the product.
This condition is used in Section 3 to demonstrate the nonexistence of a spe-
cial category of odd perfect numbers. The properties of prime divisors of Lucas
sequences required for the study of the square root of the product of the re-
punits are described in Sections 4 and 5. An induction argument is constructed
in Section 6, which proves that the square root expression is not rational for
generic sets of prime divisors, each containing a large number of elements.
This is first established for odd integers with four distinct prime divisors and
then by induction using the properties of the divisors of the repunits.

2. Rationality condition for the existence of odd perfect numbers. Since
the nonexistence of odd perfect numbers implies that all integers of the type

= (4k + 1)mrle2 — (4 + 1)Am1g2 L g2 ged(4k +1,5) = 1, o = 1,
k,m > 1, g; prime, q; > 3 [15, 16, 56] w111 have the property

oN) _ [(4k+ 1)4"”2—1]0(32)

N 4k(4k +1)4m+1 | 2
- [(4"*1)47"*2*1][06)2][U(SZ)] @.1)
T ak@k+ amet |2 |l o(s)2
* 2,
it follows that
¢ x+1 12
als) (@ -1) 4k (4k +1)4m+1 Y/
S ¢\/§E (qifl)”z(qiza +1_ )1/2[(4k+1)4m+2 1] ) (2.2)
0
1 o) 1 1
ﬂw_l \/71_[ D) (T I
o l (2.3)

. [ 4k (4k +1)4m+1 ]”2

(4k+1)4m+2 -1

Irrationality of the entire square root expression for all sets of primes {g;;
4k+11qg; =3, k=1, q; # 4k + 1} is therefore a sufficient condition for the
proof of the nonexistence of odd perfect numbers.

The known integer solutions to (x™ —1)/(x —1) = ¥2 [32, 38, 39, 42] do
not include the pairs (x,n) = (4k +1,4m + 2), implying that [((4k + 1)4m+2 —
1)/4k]'/? is not a rational number. The number [1+q; +q? + - - - + 1/11.20("]1/2 is
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only rational when g; = 3, «; = 2, so that if 3 is a prime factor of s, then

L

1—[ 1 1
Tl 72 7z
i1 (@™ -1) " (ai-1)
1 20i11/2
=[] e +ai+ai+---+a;"]
i1 (a7 -1) ' ' (2.4)
11 )%3%2 1
= (— < Il
242 (@i,20+1)%(3,5) (a;"" -1)

2011/2
x[1+aqi+aq2+---+q;%]".

From (2.3), the nonexistence of odd perfect numbers can be deduced only if

264k + D[ (1 +aqi+a? +---+a;™)
i (2.5)
(14 (4k+1) + (4k+1)% + - - - +(4k + 1) @meD)

is not the square of an integer, with g; # 3 or «; # 2. This condition also can
be deduced directly from the form of the integer N and the multiplicative
property of o(n) as o (N) + 2N if

¢ 5 1/2
2 (4k + 1)[0((4k+ 1)4m+1) ]‘[a(qi”‘i)]

i=1

4 1/2
#2(4k + 1)[2((4k+ 1)4m+1)]_[qf“i] (2.6)

i=1

¢
=2(4k+1)*™ 1 a.
i=1

As the repunit (x™—1)/(x —1) is the Lucas sequence derived from a second-
order recurrence relation

Un+2(a,b) = aUps1(a,b) —bUy(a,b),
" — g (2.7)
x—p

withx=x,B=1,a=x+B=x+1,and b = xf = x, the rationality condition
is being applied to the product [2(4k + 1) ]_[f:1 Uze;+1(qi +1,9;) - Ugmr2(4k +
2,4k +1)]42.

The number of square-full integers up to N is N1/2 - (3/2)N-1 + O(N-3/2),
With a lower bound of 103% for an odd perfect number [4], it follows that
204k +1) - [T @ + 0@ ™) - ((4k + 1)#m+1 4 O((4k + 1)4m)) > 10301,
Given a lower bound of 106 for the largest prime factor [22], 104 for the second
largest prime factor, and 102 for the third largest prime factor of N [25, 26], the

Un(a,b) =
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density of prime products (4k+1) Hf:1 qi, given by ]_[f:1 (1/Ing;) x (1/In(4k +
1)), is bounded above by 8.032 x 10~> when there are eight different prime
factors [20] and 1.004 x 10~6 when there are eleven different prime factors not
including 3 [21, 29]. Given that the probability of an integer being a square is
independent of it being expressible in terms of a product of repunits, the den-
sity of square-full numbers having the form 2(4k + 1) o ((4k + 1)4m+1 Hiqiz“i

in the interval [N*,N* + Ny], where N* > 103%! and Nj is a fixed number, is
bounded above by 3.28 x 107139 when there are at least eight different prime
factors and 5.13 x 107163 when N is relatively prime to 3 and has more than

ten different prime factors.

3. Proof of the nonexistence of odd perfect numbers for a special class of
integers. The even repunit ((4k +1)4™*2 —1)/4k contains only a single power
of 2 since 1+ (4k+1)+ 4k +1)2+ -+ + (4k + D)*™+1 = 4m + 2 = 2(mod4).
Thus, the rationality condition can be applied to a product of odd numbers
[(4k+ 1) TT{) Uza1 (@i +1,0) (1/2) Usm o2 (4k +2,4k +1)]V/2. Suppose

lﬁqu“i“—l [ 8k (4k +1) ]_ r?

oai-1 (4k+1)4m+2 1] 2

- (3.1)
¢ 2o+l 4m+2 _
19— (ak+1)p2 = BRIV

i1 i 8k

with ged(r,t) = 1. If ged(((4k+1)4m+2 —1)/8k, (q:*"" —~1)/(qi—1)) = 1 for
all i, the relation (3.1) requires ((4k +1)#m+2 —1)/8k | t2 or equivalently ((4k +

1)4m+2 _1)/8k = Uﬂf where o7y | t. The substitution t = opTpu gives

‘Pq‘?o‘l’*l,
(4k+DJ] lq—l (opTou)’ = oty vt
i=1 t
0 20+l (3.2)
@k+D [ ——ou® =7

20 +1

which, in turn, requires that (4k + 1)Hf:1((qi -1)/(qi—1)) = oyv? and
¥ = opvu, so that oyu | ¥ and oju | t, contrary to the original assumption
that » and t are relatively prime unless oy = u = 1. The rationality condition
reduces to the existence of solutions to the equation

x"—1 5
~_1 =2y, x=1(mod4), n =2(mod4). (3.3)

This relation is equivalent to the two conditions (x2"*1 —1)/(x—1) = ylz and
(x2m+1 1 1)/2 = y3, v = ¥12, (V1,¥2) = 1 since ged (x2™+1 —1,x2m+1 4 1) =
2. It can be verified that there are no integer solutions to these simultane-
ous Diophantine equations, implying that when ((4k + 1)*"+2 —1)/8k satisfies
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the gcd condition given above, the square root of [(4k + 1)]_[14}:1 Uz, +1(qi +
1,qi)(1/2)Ugyp+2(4k + 2,4k +1)] is not a rational number and there is no odd
perfect number of the form with this constraint on the pair (4k+ 1,4m +2).

4. Lucas terms with index 3 and the matching of prime divisors. When
the index is 3, generally, (x3—1)/(x —1) will be a multiple of the square of an
integer. Since the solution to x> +x +1 = y?/a is

—-1+.4v2/a-3
N ) @

it will be an integer only if

a(z2+3)
Y= 5 zeZ 4.2)

is an integer. If z > 1, (z+1)2—2z2 = 2z+1 > 3 and /z2+3 is not rational,
confirming that there are no integer solutions to the original equation when
a =1, except when x = 0 or x = —1. Integer solutions to (4.2) are determined
by solutions to the quadratic equation

22— Dr?=-3. 4.3)

This equation has been investigated using the continued fraction expansion
of /D, and ordering the integer solutions of this equation by the magnitude
of z +r+/D, the fundamental solutions, given by the smallest value of this
expression, will be denoted by the pair of integers (z;,7,). For any solution
(x,y) of the Pell equation x2 — Dy? = 1, an infinite number of solutions of
(4.3) are generated by the identity

(z1+1VD)(x+yVD) = zix +riyD + (z1y + 1 x)VD (4.4)

as the pairs of integers {(z1x +71yD,z1y +11x) | x> —~Dy? = 1} define a class
of solutions to (4.3). If D is a multiple of 3 but not a perfect square, there is
one class of solutions, whereas, if D is not a multiple of 3, then there may be
one or two classes of solutions [34].
Given any two solutions to (4.3), (z1,71) and (z2,72), it follows that
xi-1x3-1 _(2{+3) (25+3) _Dr{ Drj

x1—-1x,—1 4 4 4 4 4.5

Although the repunits (x3—1)/(x —1) are not perfect squares, the extra fac-
tors may be matched in a product of quotients of this type.

A table of the square-free factors of repunits with exponent 3 and prime ba-
sis reveals that only a selected set of coefficients occur so that the elimination
of unmatched prime divisors becomes more problematical. However, consider
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the following choices for the primes 4k + 1 and g; and the exponents 4m + 1
and 2«; and the product of the prime powers:

4k+1 =37,
a1 =3,
a =5,
as =29,
qs =79,
qs = 83,
qe =137,
q; = 283,
qs =313,

8
(4k+ 1)1 [[q;" = 37°-32.52.292.792.83% . 137228323132,

i=1

4m+1 =75,
2001 = 2,
200 =2,
2003 = 2,
2004 = 2,
2065 = 2,
206 = 2,
2007 =2,
200 = 2,

(4.6)

the sum of divisors functions of the following prime power factors are ob-

tained:
o (4 1yt — (4k+1ﬁm+2—1 . (37;2—1

= 71270178 =2-3-7-19-31-43 67,
o(ai™) = {ﬁ;ill 332_1 =13,
o (@) = qg:;ll_l 534_1 - 31,
o(a;™) = qg;jll_l = 29;8_1 ~871=13-67,
o(a;™) = qi;:illl 79;8_1 — 6321 =3-7%.43,
o(a5™) = q§::“1—1 - 83;;1 — 6973 = 19367,
o (ag™) = qz;zz_l = 1317;1 — 18907 = 7-37-73,
o(az;") = qg{:ill_l - 2823;2_1 = 80373 =3-73-367,
o (@) = a5 =1 31301 _ 98283 = 3-1812,

as—1

311

(4.7)

so that the prime divisors match in the rationality condition. However, for this
integer, o (N)/N =+ 2, aresult which is consistent with the nonexistence of odd
perfect numbers with 2¢¢; +1 = 0(mod3),i=1,...,¢ [33].
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Other sets of primes include {g;} = {3,29,67,79,83,137,283} and {q;} =
{3,7,11,29,79,83,137,191,283} with 4k + 1 = 37. The odd integers formed
from the products of these powers of primes

37°.32.292.67%2.792.832.137%.2832

37°-3%.72.11%.29%.792.83%-1372-1912 - 2832 8
also do not satisfy the constraint o (N)/N = 2. The decomposition of the re-
punit ((4k+1)4m+2_1)/4k for different choices of 4k + 1 includes factors
which cannot be matched without introducing successively higher prime di-
visors. For example, the prime factors {157;307;271;547,1723;409,919;523}
occur in the decomposition of the repunits with prime bases {13;17;29;41;53;
61} and exponent 6. Matching these divisors requires repunits with sufficiently
large bases or exponents, and these new terms will generally contain signifi-
cantly greater prime factors. Since the integers in (4.6) and (4.8) did not satisfy
the condition o (N)/N = 2 and the rationality condition is satisfied by selected
sets of primes only, the results provide support for the nonexistence of odd
perfect numbers for large categories of prime divisors and exponents, which
will be established in Theorem 7.1.

5. Prime power divisors of Lucas sequences and Catalan’s conjecture.
The number of distinct prime divisors of (q"—1)/(q—1) is bounded below
by T(n) —1if g > 2, where T(n) is the number of natural divisors of n [44, 55].
The characteristics of these prime divisors can be deduced from the proper-
ties of Lucas sequences. Since the repunits (61;?0("+l —1)/(g;i—1) have only odd
prime divisors, the proofs in the following sections will have general validity,
circumventing any exceptions corresponding to the prime g = 2.

For a primary recurrence relation, defined by the initial values Uy = 0 and
U, = 1, denoting the least positive integer n such that Uy (a,b) = 0(modp),
the rank of apparition, by «(a, b, p), it is known that «x(x +1,x,p) = ord, (x)
[49].

The extent to which the arguments a and b determine the divisibility of
Un(a,b) [23, 31] can be summarized as follows.

Let p be an odd prime.

(i Ifpla,plb,thenp|U,(a,b) for all n > 1.

(ii) If p t a, p | b, then either p | Uy(a,b), n > 1 or p { Uy(a,b) for any

n=1.

(iii) If p | a and p { b, then p | Uy(a,b) for all even n or all odd n or p {

Uy(a,b) for any n > 1.

@iv) Ifpta,ptb,p|D=a?-4b, then p | Uy(a,b) when p | n.

(v) If ptabD, then p | Up_p/p)(a,b).

For the Lucas sequence U,(q + 1,q), there is no prime which divides both
q and g + 1, and since only g is a divisor of the second parameter, there are
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no prime divisors of Uy, (q +1,q) from this category because (q"-1)/(q—1) =
1(modq). If p | (g+1), then (q"-1)/(g—1) = (1-(-1)")/2 = 0(modp)
when n is even. However, p t (q" —1)/(q—1) with n odd, and therefore, prime
divisors from this class are not relevant for the study of the product of repunits
with odd exponents.

Whena=qg+landb=q,D=(qg—1)%?andifp | (g—1),thenp | U,(q+1,q)
when p | n. However, p2 } (q” —1)/(q — 1), and under this condition, p? ¢
(q"—1)/(g—1) unless n = Cp?2. More generally, denoting the power of p which
exactly divides a by p¥» (@, it can be deduced that v, ((g" —1)/(q—1)) = vp(n)
if pl(g—1)and x(g+1,q,p) =p [42, 44].

From the last property, it follows that «(a,b,p) | (p — (D/p)) when p ¢
(@-1), (D/p) =1, and a(q+1,q,p) | (p—1).1f p?> +(gP1 =1)/(q—1), then
x(q+1,q,p%) =pa(a+1,q,p) so that x(q+1,4,p%) | p(p-1). 1 p* | (q"~' -
D/(q-1), x(qg+1,q,p%) = x(qg+1,q,p) | p—1[5, 57]. Thus a repunit with
primitive divisor p is also divisible by p? if Q, = 0(mod p) where Q, = (a?~' —
1)/p is the Fermat quotient.

Since g" — 1 = [ [, Pa(q) where ®,(q) is the nth cyclotomic polynomial, it
can be shown that the largest arithmetic primitive factor [3, 10, 54] of g"* —1
wheng>2and n=>3is

®,(q) if ®,(q) and n are relatively prime,

(5.1
Enla) if a common prime factor p of ®,(q) and n exists.

In the latter case, if n = pfp’f p" /" ... is the prime factorization of n, then
®,(q) is divisible by p if and only if e = n/pf = ord,(q) when p { (g—1), and
moreover, pl\d>epf(q) when f > 0 [55].

Division by g — 1 does not alter the arithmetic primitive factor, since it is
the product of the primitive divisors of g™ — 1, which are also the primitive
divisors of (g™ —1) /(g —1). For all primitive divisors, p’  (q—1), so that (p")" |
(@"-1)/(g—1)if (p")" | " — 1 and the arithmetic primitive factor again would
include (p’)". The imprimitive divisors would be similarly unaffected because
the form of the index n = ep/ prevents g — 1 from being a divisor of ®,(q)
when p t (q—1).1If p | (@ — 1), the rank of apparition for the Lucas sequence
{Un(q+1,q)} is p, so that it is consistent to set n = p/*1. Then, p”q)anrl (q)
and the arithmetic primitive factor is ®,/+1(q)/p.

If (q; —1) t ®y,(q;), the product of the arithmetic primitive factors of each
repunit (g, —1)/(g;—1) and ((4k +1)*m*+2 —1)/4k in expression (2.5) is

(5.2)

Py (1) Pnp(a2) - Png(a0) [<I>4m+2(4k+ 1)]
p1 p2 pe Pes '
where the indices are odd numbers n; = 2x; + 1, p;, i = 1,...,1, represents

the common factor of n; and ®,,(q;), and py,; is a common factor of 4m +2
and @442 (4k + 1). Division of @, (q;) by the prime p; is necessary only when
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gcd(ng, ®p,(qi)) # 1, and p; = P(n;/gced(3,n;)), where P(n) represents the
largest prime factor of n [46, 51, 52, 53].

THEOREM 5.1. The arithmetic primitive factors of the repunits with different
prime bases could be equal only if the exponents are different, with possible
exceptions being determined by the solutions to the equation (q;‘ -1)/(q}t -

v, qi * q; with q;, q;, and p prime.

PROOF. Consider the following four cases.

(I) The arithmetic primitive factors of q?" —1 and q;lj —1 are ®,,(q;) and
(I’nj (Qj)-

Since ®,(x) is a strictly increasing function for x > 1 [35, 36], ®,(q;) >
@, (q;) when g is the larger prime, and equality of ®,,(q;) and &, i(aj) could
only be achieved, if at all feasible, when n; = n;.

(I) The arithmetic primitive factors of g;'* — 1 and q?j —1 are &,,(q;) and
P (aj)/pj.

Comparing ¢, (q;) and ®,,(q;)/p, p = p; is acommon factor of n and ®,(q;)
but it does not divide ®,(q;). It follows that the relation ®,(q;) = ®x(q;)/p
could only hold if p[|®, (q;). The prime decomposition of e as p; - - - ps, gcd(py,
p)=1,t=1,...,s, leads to the following expressions for ®,(q;) and ®,(q;),

I
b, qP
P (i) = P,pr (ai) = %
b, (qi )
ep Ipt,p
Hk even Htk>t >t [ a; 1 e 1]
k=S

epf lpt, --pr

k
leoddnf;z>“'>t1 [qi *1]
k=1 t,ESS
epf’l/ml Pty B 1]

[z odaTeg>>0 [‘L’

k>1 tk<_§‘
epf=1/pg, --p ’
Hk even Htk> >t [qi tl e _ 1]
t"“( ) (5.3)
o, Qfl
P (a)) = Popr(ay) = —
e(a] )
epf /oty o
Hk even Htk> >t [ J 1 e 1]
ty=s

epf pey--pr;
k
H]E Oddl_[tf{>"'>t1 [qJ *1]
k=1 t,;SS
el”ffllptl“'l?t]z
[Tk oqa [Tez>- >t1[ a; —1]

k=1 tk

ervenl_[tk> sty [ e Yo -y, )
k<5 J N
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Since e = ord, (q;), it follows that p | (g5 —1), and if g} = 1 + pk;(mod p),
then (qj)’”f = (1+pk)? =1+plpk; = 1(modpf*!). Thus, p/*! | (q?”f -1)

;“p””"”k)”f —1). Let H(f) = f +1 de-
note the exponent such that p/ | (qj”f —1). Since qj.”f_l = 1(modpHU-1),
qj’”f = (L+pHU=DK)P =1+ p - pHU-DK) = 1(mod pH/~1*1). Consequently,
H(f)—-H(f—-1) = 1, which is consistent with ®,(q;) being exactly divisible
by p.

Although &, (g;) and ®,(q;)/p are not divisible by p, consider a primitive

prime factor p’ of ®,(gq;). It must divide some factor q? P07P 1 in the

/ T )
expression for @, (g;), and thus, it will also divide q? PP _ 1, £ < k. Since

/ .
the exponent of q? PR n ®,(q;) is (—1)!, there will be 2! factors

in the numerator and 2¥~! factors in the denominator divisible by p’. When
k > 1, the factors of p’ are exactly canceled because each term q?/ptl TP 1
is divisible by the same power of p’. The exception occurs when p’ | /' — 1
only; if p./® gl -1, then pile1®, (q:) [43]. Equivalence of &, (g;) and @, (q)/p
requires that the prime power divisors of these quantities are equal, so that

pflf“ I1®,,(q;)/p for all primes {p, }. However, if pflf“ IIq;‘ —1,theng}'—1and q;‘ -
1 have the same primitive prime power divisors. The imprimitive prime divisor

p which divides g} —1 might also divide g;' -1, although overall cancellation
n/pey Py,
i

' 1. When p"[lq" — 1 and (q" — 1)/ (ql" ~ 1) = pHH~

and p/ | (""" - 1), while p } (q

of p in ®,(q;) requires that p" | g —1 for some k > 1 and p"! |
n/(ppty Pty

13

ar-1= Ku?(f)_r,
H(f)-
at-1=xkuf’", (5.4)
Uz _
Uuy a

Integer solutions of w = y™, v > 2, m > 2 can be written as w = x™, x > 2
with m | n. Since y | x", v t (x™ — 1) because y > 2. The nearest integers
to x™ having a similar form, {(x —1)",(x+1)", (x+1)"1 (x —1)""1} do not
provide a counterexample to the conclusion since none of them are divisible
by y. Furthermore, x™* — (x —1)" > 1, (x + )" —x" > 1, [(x + )" 1 —x"| > 1,
x=22,n=4x=3,n=3and |x"-(x-1D"' >1, x =2, n=3 so that
none of these integers will have the form ™ + 1. The exception occurring
when x = y =2, m = n = 3 is the statement of Catalan’s conjecture, that
(X,Y,U,V) = (3,2,2,3) is the only integer solution of XV —YV = 1. Thus, if k =
1, any nontrivial solution to (5.4) is constrained by the condition H(f) -7 =1,
which implies that (g} —1)/(q;' —1) = p. Since the odd primes q;, q, and the
exponent n in the prime decomposition of N must be greater than or equal to
3, this restriction is consistent with Catalan’s conjecture.
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When k # 1, it may be noted that for q;, q; > 1, (q?—l)/(q{‘—l) = (qj/q)"*
p™. Exceptional solutions to (5.4) occur, for example, when h = 1; they include
{(qi,a;;mp) = (3,5:2;3),(5,7;2;2),(5,11;2;5),(5,13;2;7),(11,19;2;3), (7, 23;
2,11),(11,29;2;7),(29,41;2;2)}. Since gq; # q;, with the exception of the
nontrivial solutions to (5.4), it would be necessary to set n; # n; to obtain
equality between ®,,(q;) and Dy, (aj)/p.

() The arithmetic primitive factors of q:”' —1 and q?j -1 are ®,,(qi)/pi
and fbnj (aj)-

The proof of the necessity of n; # n; for any equality between the arithmetic
primitive factors is similar to that given in case (II) with the roles of i and j
interchanged.

(IV) The arithmetic primitive factors of g;* — 1 and q;l" —1 are &y, (q:)/pi
and @, (q;)/p;-

Since p; = ged(ni, @y, (1)) and p; = ged(nj, @n;(4;)), Py, (q:) and &y, (q;)
share a common factor if n; = n;. Thus, the primes p; and p; must be equal,
and a comparison can be made between ®,,(q;)/p and ®,,(q;)/p. Again, by the
monotonicity of &, (x), it follows that these quantities are not equal when g;
and q; are different primes. Equality of the arithmetic prime factors could only
occur if n; # n;. 0

6. The exponent of prime divisors of repunit factors in the rationality
condition. Since all primitive divisors of U, (a,b) have the form p = nk +1,
it follows that p | (g»~V/'P) —1)/(q—-1). If «(p) is odd, where ((p) is the
residue index, the exponent (p —1)/t(p) will be even for all odd primes p,
whereas if ((p) is even, the exponent (p —1)/t(p) may be even or odd. Given

that p | Uss,+1(gi + 1,44), t(p) is even and p | (qi”*l)/2 —1)/(q; - 1) imply-

ing ql(p_l)/z = 1(modp) and (q;/p) = 1. Moreover, if (q;/p) = (qj/p) = 1,
(qiq;/p) = 1 implying that p | (qiq,;)* "> - 1. Thus, the Fermat quotient
is Qqua; = (((@ia) P2 =1)/p)(@a)""""? +1) = Ngya; (Ngya; p + 2) where
N4 can be defined to be (q»~1/2-1)/p. By the logarithmic rule for Fermat
quotients, Qqq' = Qq + Qg (modp) [13], so that Ng,q; = Ng; + Ng, (modp).

Recalling that «(q; +1,q;,p?) = «(q; +1,q;,p) only when p? 4 (61?7l -1)/(q;
—1), it is sufficient to prove that the Fermat quotient Q4; # 0(modp) to show
that p? is not a divisor of the repunit (qiz"“'+1 —1)/(qi — 1). It has been es-
tablished that g?~' —1 = p(p1 + p2/2 + -+ + pp_1/(p — 1)) (mod p?), where
u; = [—i/pl(modgq) [11, 18, 19]. Since u; *+ 0 in general, except when i = g,
it follows that g?~! —1 # 0(mod p?) except for p — 1 values of g between 1 and
p?—1.

By Hensel’s lemma [24, 30], each of the integers between 1 and p — 1, which
satisfy x?~! —1 = O(mod p), generate the p — 1 solutions to the congruence
equation

(x)P~!1 =1 =0(modp?) (6.1)
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through the formula
x’:x+<M>(modp2) (6.2)

with x?~1 -1 = g1 (x)p(mod p?). Since @ (p?) = p(p —1), a set of p —1 solu-
tions to (6.1) can also be labelled as c? (mod p?), 1 <c < p—1, since (¢?)P~1 =
cPr-1 = ¢2* = 1(modp?). Each power c? is different, because c! =
cf(mod p?) implies ¢; = ¢, since p? ¢ (cé’ —1) for any c3 between 1 and p — 1.

Theorems concerning the Fermat quotient (q" —1)/(q—1) can be extended
to quotients of the type (¢ —1)/(q"*—1). It has been proven, for example,
that pll(g" -1)/(q"=1),pt7r,ptq"—1,then Q= ("' ~1)/p # 0(mod p)
[27], and more generally, if p"*[|(q™ - 1)/(q"—1),p tr,p t q"—1,then g* ' }
1(mod p"*1). When p | (¢" — 1), the following lemma is obtained.

LEMMA 6.1. For any prime p which is a primitive divisor of Uz, +1(qi +1,q;),
(20 +1) 20 +1 _

p b @™ =1/ =1), and if p"|Usx1 (i + 1,4i), then p"||(q;
1)/(q£2°“'+1)/5 —1) for any nontrivial divisor s of 2c¢; + 1.

PROOF. Defining the residue index (;(p) by p—1 = (2x; +1)(;(p), then

, ‘ q;g—l -1 _ |:q(20(1'+1)li(]0) _ 1] . [q(sziH) _ 1] (6.3)
i—1 q;Zai+l)_1 qi—l

Suppose that p | (g% —1)/(g>*"" —1). Then, by (6.3), p* | (¢"" -

1

1)/(g—1). By alemma on congruences, if q° = 1(modp), where e | (p —1) and
20 +1

q’~' = 1(modp?), then q° = l(modp?) [57], so that p* | (q; -
1)/(gq;—1). Consequently, p3 | (qf”1 —1)/(q;—1). This lemma can be extended
to larger prime powers: g° = 1(modp™) and g”~! = 1(modp™*!), then q° =
1(modp™*!). From the first congruence relation, g¢ = 1 + k’p™ for some inte-

ger k’. Raising this quantity to the power (p —1)/e, it follows that
1= qp—l _ (qe)(p—l)/e _ (1+k/pn)(lﬂfl)/e = 1+k'p"p7_1(m0dpn+l)- (6.4)

Since (p—1)/e < p, the integer kK’ must be a multiple of p. Thus, g° = 1 +
kK’ p™*! = 1(mod p™*!). By the generalized congruence theorem, p? | (Olimi+1 -
1)/(q; — 1) and (6.4) in turn implies that p* | (qff1 —1)/(gi—1). Since this
process can be continued indefinitely to arbitrarily high powers of the prime
p, a contradiction is obtained once the maximum exponent is greater than h,

where p" | (¢” ' —1)/(q;—1). Therefore, p (""" —1) /(g7 —1).
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Similarly,
fmﬂfl - [ ithﬁlil ] |:q£21xi+1)/51:| 6.5
qi—1 - qéZ(xﬁl)/s_l qi—1 ' '
If 5 is a nontrivial divisor of 2¢¢; + 1, then p + (qizu”l)/s —1)/(gi—1), because
itis a primitive divisor of U, 11(qi +1,4;). Given that ph 1Uz0;+1(qi +1,qi), by
6.5), Pl (a; "~ 1) /(@ 1), O

Imprimitive prime divisors of Uy, (a, b) are characterized by the property that
p | Us(a,b) for some d | n. The exponent of the imprimitive prime power di-
visor exactly dividing (q"* — 1) /(g — 1) can be determined by a further lemma: if
p" | (@"—1)/(q-1), then either gcd(n,p —1) = 1, g = 1(modp), p" |
n(modp) or e = ged(n,p —1) > 1, p* | d.(q), p"¥lIn [44]. Since v, (P.(q))
=v,(q®—1) if p t q -1, the general formula [25, 26] for the exponent of a
prime divisor of a repunit is

vp(@®—1)+v,(n), e=ordy(q)|n, e>1,
no1
vv(q — )Z vp(n), pla—-1, (6.6)
0, otherwise.

The exponent also can be deduced from the congruence properties of g-
numbers [n] = (q" —1)/(q—1) and g-binomial coefficients [17], as it is equal
tos=eoh+€;+ -+ +€x_1 where p"|q°—1 and

n-l=ap+e(ar+ap+---+arpk™m)
n=bo+e(by+bsp+---+brp*?)
aog+1=¢€pe+by

€otay :€1p+b1 (67)

€Ex—2+ak-1 = €x1P + b

€x-1+ax = by,

with €; equal to 0 or 1, which is consistent with (6.6) because €g = 1 and v, (n) =
€1+ +€Ek-1.
Specializing to the case of h = 2, it follows that if the quotient (g"—-1)/(g—1)
is exactly divisible by p?, then
(i) ged(n,p-1) =1,pl(g-1) orptq"-1,p?in,
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(ii) pll®.(q), where e = x(q+1,q,p) is the rank of apparition of p, plin,

(i) p?ll®e(q), ptn,
and the only indices »n; which allow for exact divisibility of (qi"i -1)/(qi—1)
by p? are n; = up?, when p | (q;—1) or e; t n;, n; = pe;p when p||®,, (q;) and
n; = pue; when p? I®,, (qi). Since n; is odd, the three categories can be defined
by the conditions: (i) n; = up?, (i) n; = pe;p, p is a primitive divisor of (qfi -
D/(@qi—-1), Qq # 0(modp) (iii) p is a primitive divisor of (qfi -1)/(qi—1),
Qg =0(modp).

7. A proof by the method of induction of the nonexistence of a generic
set of primes satisfying the rationality condition. The equation

m __ n__
X I:by 1

R y-1

(7.1)

is known to have finitely many integer solutions for m, n, x, y, given a and b
such that gcd(a,b) =1, a(y —1) # b(x —1), and max(m,n,x,y) < C where C
is an effectively computable number depending on a, b, and F where |x —y| <
F(z/(logz)?(loglogz)3) with z = max(x,y) [1, 48]. Using this relation to re-
express (qf"“'+1 —1)/(q; —1) in terms of ((4k +1)#m+2 —1)/4k, it can be estab-
lished that there are unmatched primes in the product of the repunits (2.5)
and that the square root of this expression is irrational for several different
categories of prime divisors {q;, i=1,...,¥;4k +1}.

THEOREM 7.1. The square-root expressions \/2(4k7+1)[(q;0‘1+1 -1)/(qi—1)
S (q;"Wl —1)/(qp—1)]Y2 - (((4k +1)*m+2 _1)/4k)V? are not rational num-
bers for the following sets of primes {q;, i = 1,...,0;4k + 1} and exponents
20+ 1.

(i) For sets of primes with the number of elements given by consecutive in-
tegers, {qi,i=1,...,0 - 1,4k + 1} and {q;-, j=1,...,4,4k' + 1}, there cannot
be odd integers of the form Ny = (4k + 1)4m+142%1 .. -q?f‘{’l and N» = (4k’ +
D4m'+1(g;)2% - - - (q))%*¢ such that both o (N1)/N; = 2 and o (N») /N, = 2.

(ii) Setting «j = o¢g, extra prime divisors p of the repunits (qjo("'+1 -1)/(q;-1),
j <t and (q;"""" =1)/(q;-1), where p | (q;—1) but p t (q;—1), cannot be
absorbed into the square factors if Qq, # 0(mod p) or phe )| (qjaﬁl -1)/(qe—1)
with h), odd. Similarly, if p t (q; —1) butp | (q¢—1), then an odd power of p di-
vides the product of the two repunits iquJ. # 0(modp) or qu = 0(mod ph}fl),
qu # 0(mod ph;'), with h;. odd, and p remains an unmatched prime divisor.

(iii) Whenn; = 2+ 1 is setequal tony = 2y + 1, the primitive prime divisors
of(qjmj+1 -1)/(q;—1) and (q‘;mﬂ+1 —1)/(qe—1) cannot be matched to produce
the square of a rational number if(q;”" — 1)/(q§”" -1) + yzz/ylz, y1,Y2 € Z. This

property is valid, for example, when q?"/z < gcd(q?" 1,9, -1).
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PROOF. Suppose {a;} and {b;} are defined by

4 ! _p, kDI -1
g1 4k

@ -1 @ks1)imez g

a2 qul :b2 4k

(7.2)

qi)"‘[”l_l b (4k+1)4m+2_1
a-1 ! 4k ’

ag

then

2(4k+1)|:q%0<1+1 1 q20(z+1 1 . q€2a¢;+1_1 (4k+1)4m+2_1:|1/2
a-1 -l ar-1 4k

bibo---bo) 2 4k + 1)4m+2 _ 1\ (E+D)/2
_ 2k ) (k2 f)m.(( ik ) _

(alaz v ﬂf,)

(7.3)

If

; — q.; -
aiqu - =bl’j J ) (7.4)

define {a;;} and {b;;} with gcd(a;;,bij) =1,

bibebs _ b1z az (b2b3)2
aia»as a3 by azas

blbz---be:m@”_am(bzbg---be)z
araz---ap ayby by \axaz---ap)

(7.5)

(7.6)

Since the fraction b;/a; can be expressed in terms of b, /a;

(r12)o ,(r12=(r12)0)

12
by _b2pyy’ _b2pi2” " pro
- S12 (s12)0 ,,(512—(s512)0) *
a as X12 az XlZlZ 0 Xlzlz 120

(7.7)

where 10122 and x1 > denote products of various powers of different primes,
with 7> and s1, representing the sets of exponents, (712) and (s12)¢ labelling
a collection of exponents consisting of 0 or 1, and p;» and 12 being products
of these primes with all of the exponents equal to 1. The sets (¥12)¢ and (s12)¢
are chosen so that 7y, — (712)9 = 2712 and 512 — (512)0 = 2512 represent even
exponents. Since a similar relation exists between a, /b, and as/bs,

( 2
bisas [ a2 pit?° p# | (P12 (03 (7.8)
aixb> | by v&12)0 ,(s23)0 S12 S3 ) ¢ ’
13 B2 2 X127 X23 X12 X23
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If (112)0 = (512)0 = (123)0 = (S23)0 = {0}, then (b13/ai3)(az/b2) + (4k +
1)/2 - 0 (O denotes the square of a rational number) because rationality of
V2@ D@ = 1) /(@2 — 1)) (((4k + 1)¥m+2 — 1) /4k)]'/2 would be con-
trary to the nonexistence of solutions to equation (3.3) and the nonexistence
of multiply perfect numbers with less than four prime factors [6].

If (112)0 = (s12)0 = {0}, the expression in brackets is not (4k + 1)/2 times
the square of a rational number because

(123)0 23 273\ ~1 23\ 2
Az Pa3~ ~ _ A2 Pz (P23 ) _as <X23 ) (7.9)
23)0 $23 28 - 7 :
b2 xg30 baxof \xoy” bs \ p33’

and as/bs = (4k+1)/2 -0, since vV2(@k+ D@5 = 1)/(q3 — 1)) (((4k +
1)4m+2 _1)/4k)]Y? is not rational. A similar conclusion holds when (#23)¢ =
{0} and (s23)0 = {0}.

If both fractions p\52"° /x\52)0 and p$230 /X230 are nontrivial, at least one
of the pair of exponents ((¥12)0, (512)0), and at least one of the pair of exponents
((723)0, (523)0), must be equal to one. Under these conditions, the argument is
not essentially changed when all of the exponents are set equal to one, because
replacement of the prime factors in any of the coefficients p12, x12, p23, Or X23
by 1 only eliminates the presence of these prime factors from the remainder
of the proof. The nontriviality of both fractions, therefore, can be included by
setting (712)0 = (723)0 = {1} and (s12)0 = (S23)0 = {1}. Expression (7.6) then
would be (4k +1)/2 times the square of a rational number if

2

a2=(4k+1)p12-p23-%, by = X12-X23 - 4°

or (7.10)
p2

a2=(4k+1)X12'X23'7, by = p12- P23 - q°,

where ged(p,q) = 1. If ap = (4k+1)p12p23(p?/2) and by = x12X239°,

as a2 p23

by by X3’
as  2X1 (p23p)°

(7.11)

b_3(4k+ 1)p12 (X23q)2-

Since gcd(as,b3) = 1, the square-free factors can be separated in the fraction
as/bs = (as/bz) - (p*/4°),

2x12 ds  (pa3pd)’ (7.12)

(4k+1)p12 by (x23apP)°
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Since a3 is even, and a3 is divisible by a single factor of 2, x12 = p23(p/2)4, and
similarly, because 133 is odd, p12 = (1/(4k+1))x239p. Since p12p23/X12X23 =
(2/(4k+1))(qp/pq), rationality of [(2/(4k + 1))(b13/a13)(az/b2)]'/? also
could be achieved by setting a» = (4k+1)qp(p’?/2) and b, = p4q’?. Then

A paspas _Ak+1app” pas _ pr2 ((4k+1)pas(p’12))? (7.13)

by Xx23 X23 2 paa?x;s X (x230'2)°

Separating the square factors in a»/b» = (d2/b2) - (p'2/@'?), it follows that

ax (dk+1)(p/2)d) _ (4k+1)(p'/2)d)° (7.14)

by (ap) (@'p’)?

Either there is an overlap between the prime factors of (4k +1)(p/2) and g
or d, = (4k+1)(p/2)q = (4k+1)(p'/2)3’, and similarly, there is either an
overlap between the prime factors of g and p or b, = qap = q'p’. Removing
any overlap, then the remaining square factors can be separated in a, and
b, obtaining the form a,/ b, for the square-free part of the ratio a,/b,. The
equalities containing d, and b, imply that p > p’ > p’ >pand 4> 4’ = q' > q.
By interchanging the roles of a», b, and as, b3 in the above argument, the
inequalities p > p and g > 4 can be derived, implying a contradiction. Thus,
when £ = 3, it should not be possible to find coefficients {a;} and {b;} sat-
isfying (7.2) such that (bi3/aq3)(a/b2) is (4k + 1)/2 times the square of a
rational number. The validity of this result is confirmed by the nonexistence
of odd perfect numbers with four different prime factors.

A variation of the standard induction argument can be used to show that
there cannot be different odd perfect numbers with prime decompositions

(4k+ D)4 1 T 2% and (4K + 14 1112 g7 When £ is odd,

i

qfoqﬂ_l.”qzn_ﬂfl_l - bi---by, ((4k+1)4m+271)€—1: by---by_, .

a1 -1 de-1—1  ar---ap, 4k ay---apq
(7.15)

rationality of square root of the product of repunits with £ — 1 prime bases {g;,
i=1,...,£ -1} would require

u _ 2(4k+1)pgﬂ-lil,
bi---by :
7{11 ay 2(4k+1)py-0O.

Since the values gy = 3 and &y = 2 can be excluded from the product of re-
punits, py is odd and is not equal to 1, so that by - - - by/a; - --ap + 2(4dk+1)0.
The square root of the product of repunits with £ prime bases {g;,i=1,...,¢}
is therefore not rational.
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When ¥ is even,

a1 . qé%i‘ffﬁl_l _bi---byp, <(4k+1)4m+2_1) -0 (7.17)

a1 -1 di-—1  ay---ap 4k
so that rationality of the square-root expression with £ — 1 primes {q;, i =
1,...,£—1} requires

by---b

14 = .
4 -ap =2(4k+1)py (

4m+2 _
(4"”)—1) .o (7.18)

4k

Again, since py # 1, (7.18) implies that (by---by/a;---ap) (((4k + 1)3m+2 —
1)/4k) with £ primes {q;, i =1,...,¥} is not rational.

The proof can be continued for £ > 3 by assuming that there do not exist
any odd primes qy,...,q¢-; and 4k + 1 such that V2(4k+ 1) [(q;"™ = 1)/ (q1 -
D @ 1) /(@ = DIV2(((4k + 1)#m+2 — 1)/4k)1/2 is rational and
proving that the same property is valid when £ odd primes qi,...,q; arise
in the prime decomposition of the integer N.

If £is odd, (((4k+1)4m+2—1)/4k)¢*1/2 ig integer, and nonexistence of odd
perfect numbers of the form (4k + 1)4’”“1,1]20‘1 .- -qf,i‘f’l is equivalent to the
condition by - - -by/a,---ap + 2(4k+1)0, as

- Mol 4mi2 _
204k+1)4 11...611—1 11((4k+14)u< 1)
" o 4m+2 (7-19)
:2(4k+1)b1-..b3_1((4k+1) 71).&
ap---ap-y 4k

Since the irrationality of the square root expression is assumed to hold gen-
erally for £ — 1 odd primes {g;} and any value of 4k + 1, the effect of the
inclusion of another prime g, can be deduced. Thus, given an arbitrary set of
£ odd primes, q1,...,q¢ and some prime of the form 4k + 1, irrationality of the
square root of expression (7.19) implies that

e 4m+2 _
Miz(ywrl)(wﬁ'l)—l).g_ (7.20)
a---ap_q 4k

However, by (7.2), (((4k+1)*"+2 —1)/4k) = (ap/be) (4. = 1)/ (g - 1)),
and if (qf,oWl -1)/(qe—1) = ng%, separating the square-free factors from the
factors with even exponents, it follows that

% +2(4k+ 1)%” .o,
1 -1 ¢ (7.21)

by---by
— +2(4 1 - 0.
al---aqu (4k+1)py-O
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The form of relation (7.21) is valid for arbitrary values of by/ay, but the
choice of py is specific to the repunit (q?“ﬁl—l)/(qg —1). Since (q?“”+1 -
1)/(qe¢ — 1) is the square of an integer only when g, = 3 and oy = 2, it is
preferable to represent the rationality condition for £ —1 and € primes {g;} as

M :2(4k+1)ﬂw[.u,
ap---ap- by (7.22)
by---b :

L —2(4k+ 1wy 0O,
a'l .. -a”

when £ is odd. Irrationality of the square root expression for £ —1 primes {g;,
i=1,...,£ -1}, which requires that wy_; # 1 is a square-free integer, implies
irrationality for £ primes {q;, i =1,...,€} if wy_1pp = wy # 1 is square free.

When £ is even, odd perfect numbers of the form (4k + 1)4’"*1(1%“1 ‘e q‘?f‘f’l
donot existif by ---by_1/ay---ap1 +2(4k+1)-0. Then b, ---by/a,---ayp-
(((4k + 1)¥m+2 —1)/4k) + 2(4k + 1) p, - O. Irrationality of the square root ex-
pression with € — 1 primes {g;, i = 1,...,£ — 1} also can be represented as
bi---bp_1/ay---ap-; = 2(4k + 1)wy_; - O where wy_; # 1 is a square-free
number. Consequently, by ---by/a,---ap = 2(4k + 1)wy_1(by/ay) - O. Since
irrationality of the square root expression with £ primes {g;,i =1,...,£} would
be equivalent to

4m+2 _
b, by((4k+1) 1)=2(4k+1)w9-|:|,

a ---ayp 4k (7.23)
bi---by ap '
7611---613 _2(4k+1)w€p€b(g a,
this again can be achieved if w,_1pp = wy-0O.
For any prime divisor p
-1 e
L)l [2]) ]
vy (wy_q) = v ol ——|—|)+vy(n
p( r-1) l;[ p(qi_l e; e; p( i)
4m+2 _
+vp((4k+li—kl>(mod2),
' . (7.24)
a1 e [e]) rvrno]
vy (wyp) = v Ol ——-|—|)+vy(n
o =3 [un (T )0 (G- [ 5 ]) rurtm)
(4k +1)4m+2 — 1
+v,,(T>(mod2),
where e; = ord, (q;). It follows that
a, -1
U (wp) = vy (wp_1) +vp( o ) Fvp (1) (7.25)
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Suppose that p is one of the extra prime divisors so that v, (wy_;) = 1. If
eptnporptng thenpt(qy)’ —1)/(q,—1) and vy (wy) = 1.

If ph|| (qif —1)/(qe—1), and p is a primitive prime divisor of this repunit,
then v, (ny) = 0 and v, (wy) = 1+h(mod?2). Since v, (wy) = 0(mod?2) if h =1,
it would be the next category of prime divisors, with the property vp((q? -
1)/(a¢—1)) = 2 or equivalently Q,4, = 0(mod p), which contributes nontrivially
to a square-free coefficient wy.

Since it has been assumed that the square root expression with £ — 1 primes
{qi,i=1,...,4—1} is irrational, there is either an unmatched primitive divisor
or an imprimitive divisor in the product Hf;ll((qizo“+1 —1)/(qi - 1) (((4k +
1)4m+2 — 1) /4k). Suppose that the extra prime divisor p; is a factor of the

repunit (4, =1)/(q; - 1). By (7.4),

2ci+1
qjo(JJr 1 ﬂqzo{{ﬂrl_l

by
41 TPiX = =—Lpyx3 (7.26)
J

aje qe—1 aije

so that pjpy =bje/a;e- 0.

To proceed further, it is first useful to choose the exponent 2¢¢y + 1 to be
equal to 2xx;+1.If p | (g; - 1), phf | Qej+1),pl(qp—1), and pﬁf | Qexp+1),
then p’ | (q;"" ~1)/(q;~ 1) and phe | (@' ~1)/(q,~ 1) when &, = o,
phi = pi‘f = pﬁﬂ = pht, where h; and hy denote the exponents of p exactly
dividing the repunits with bases q; and gy, respectively, so that this prime
divisor will be absorbed into the square factors.

Ifpl(q;—1) and pt(qp—1), then h; =h;and hy = hy+v,((a,) —1)/(qr -
1)). Since h; = hy when «; = &g, hy = h;j +vp((qff -1)/(qp—1)). Matching
of the prime factors in the two repunits would require vp((qf;p -1)/(qe —
1)) = 0(mod2). Because p | (q;” — 1), the minimum value of this exponent
is 2, implying that Q4, = O(modp). Conversely, if Q4, # O(modp) or Q,, =
0(mod ph/ﬂfl), Qgq, # 0(mod ph/ﬂ), where h, is odd, the prime divisor p in the
product of the two repunits cannot be entirely absorbed into the square fac-
tors. Similar conclusions hold when p t (g;—1) and p | (q¢—1).

Let p be an imprimitive prime divisor such that pt(g; —1) and pt(qe —1),
then v, ((q;’ -1)/(q;-1)) = vy(a;’ ~1) and vy, ((ay’ 1)/ (@e-1)) = vp(ay’ -
1). If p" | ny, and nj = ny, then hj = hy = h, again implying that the prime
divisor can be absorbed into the square factors.

The arithmetic primitive factors of (q;lj -1)/(gj—1) and (q?” -1)/(qe—1),
D, (a))/pj and &y, (qe)/py, respectively, are different when n; = ny, except
possibly for solutions generated by the prime equation (g; —1)/ (q;‘ -1)=p
required when either p; = gcd(nj,tbnj(qj)) or pg = ged(ng, ®n, (qe)) equals 1.
The algebraic primitive factors &, i(a j) and &4, (q¢) will be necessarily differ-
ent if n; = ny. Consider a prime divisor p’ of the arithmetic primitive factors
which is raised to a different power in Py, (aj)/pjand @y, (q¢)/pe. If this prime
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is the only factor with this property, then (q," - 1)/(q;[j -1) =(q,'-1)/ (q?” -
1) = (p’)hl"hj, and the nonexistence of solutions to this equation for hy—h; >
2 has been shown in Section 5.

The error in the approximation is given by (g, / q?")[l ~1/q," +1/ q?j +
@(1/(15”(1?0)], and since |1/q;l” - 1/01?@‘ < min(l/q?”, 1/q?£), the error is less
than g,/ q?“’ (q}”’ -1)=q,"/ qu-n”. Given a rational number a/b, the inequality
la/b—zy/z1| < 1/2‘12 has a finite number of solutions satisfying z; < b and
gcd(zy,z2) =1 [40]. In particular, there should be finite number of solutions
to
a' 3

a;’ i

1
i

"z
’ w2 (7.27)
J

a;' =

if y, is constrained by the inequality y; < q}”" /2 The condition a,! /q}”" -

y2/y?| < q?‘” /anl' , therefore, will be satisfied by these solutions when

ny/2 nyl4 ny/2
a;" lay <>»1<4;

Since it has been established that square classes of the repunits (g" —1)/(q—
1) consist of only one element [41], it follows that (q?l’1 - 1)((1:;[2 -1) =
(k")2(qe —1)%(»1)?(v5)? and there is only one representative from each se-
quence {q;lj -1, n; € 7}, {q?ﬂ —1, ny € Z} which has a specified square-
free factor k. Thus, (q,* - 1)/(q}” —1) # ¥5/y7 unless n,; (k) coincides with
ng, (k). If q?” —1=«k(y3)?%and q}”’ —1=«k(y7)? and y3/y? is the irreducible
form of (v3)%/(y;)?, it follows that y; < q?”z/\/m, where & = ged(y],75).
Both inequalities for y; cannot be satisfied if q?” < VKR? or equivalently
q?”z < gcd(q}” ~1,q," —1). When the pair of primes (q;,q;) satisfies the last
inequality, the prime divisors in p; and p, do not match and the product of the
repunits (q?" -1)/(g;j—1) and (q?‘? —1)/(qe—1),withn; # ny, is not a perfect
square.

The number of solutions to the inequality |ax™ — by™| < h when x >
(2h/al=Px)1//2-D) with & = (b/a)'/™ does not exceed 6 + (1/In(n/2))[29 +
Inp~! +In(1 +mn2h/Ina)] [37]. Setting (q; —1)/(q} —1) = y3/y{, it follows
that y{ (q} —1) = ¥7(q} —1) leading to consideration of the inequality | y5q/ —
yia}| <|y3—yil. The constraint placed on g; is

2|y§—y12| )1/(11/2—1)

- (7.28)
AN 700 b

6112(
y

Since (q;—1)/(qe—1) = (¥#/¥3)(1/n) = q;/qy, it is sufficient for q; to satisfy
the stronger constraint

-1 1/(n/2-1)
aj= (2—2’1 13/5") (7.29)
J

\
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which is equivalent to an upper bound for y» of

1 B 1g:—1 p!
y:<qf "? “-(E—Z;_J : (7.30)

The number of solutions to the inequality is not greater than

2 _ A2
64 (29+lnp’l+ln<1+w>)
In(n/2) Iny2 o
71 .
<64 29+In(2+In2) +Inp

In(n/2)

It has been established that the sequence g" —1 has a primitive divisor n > 2,
q=+2,n+6]2, 3,8, 58], and the same property holds for {(g"—1)/(g—1)}.
If ny is multiplied by a prime factor p'¢, where p | py, then the product p,p"*
will contain the power f)?”. While the prime power can lqg absorbed into the
product of square factors when 7, is odd, the repunit (q?’p ‘_ 1)/(qe—1) now
has extra primitive divisors, giving rise to a nontrivial wy, implying irrational-
ity of the square root expression with £ primes {q;, i = 1,...,¥}. Moreover,
gcd(d)ﬁi(q),tbﬁj (q)) =1wheni=+jand p{ (q—1), multiplication of the index
by p"t will introduce new prime divisors through the decomposition of the
repunit (@} ~1)/(ag—1) = Tapm,pe Palar).

a>1
The abstract argument given for £ = 3 could also be extended to higher

values of £. This approach would consist of the demonstration of the property
bi---bplay---ap+2(4k+1)-0if £ is odd, and by ---by/a, - --ap + 2(4k +
1)-(((4k +1)#m+2 _1)/4k)-Oif £ is even, given that there are no sets of primes
{q;} with less than ¥ elements satisfying the rationality condition. It may be
noted that since

by by _ (b&)(%ﬁ) S (be’/’ _““)

ap---ayp a3 bz ) \asg bs ap—o¢0bpy

. ( bab3bsbg - - -by_1by

aaszasae - - -agp-14yp

bi---by _ (%%)(%ﬁ) . (b«f’;&t’fl M)@
a3 by ) \aye bs ag-se-1beo/ap

_ ( bab3bsbg - - -by_ by,

aasasae - --aAp-20a0-1

by---by _ (@Q) (%@) o (b(/—u—z ag,g;) by_1by
a3 by ) \aye bs ap-a0-2be 3/ apay

_ ( bab3bsbeg - - -by 3by »

aAazasae - - - Ap-3ap-2

2
) when £ = 0(mod 3),

a .. .a -
Lo (7.32)

2
) when £ = 1(mod3),

alag

2
) when € = 2(mod 3)
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and (bi3/aiz)(az/b2) =2(4k+1)(p1/X1) - O,....,bp_w 2k /Ao —20-k =
2(4k+1)(ﬁ[g/3]/}_([[f/3]) . D,whereﬁ = k’(mod3), k' = 0,1,2, ﬁl,...,ﬁ[g/_g],}_(],...,
X1e¢y31 are square-free factors, the quotient will be equal to (2(4k+1)) LB fr(pr/
X1) - - (Press1/Xres31) -awith fo = 1, f1 = bp/ag, and f>» = by_1by/ap_a,. Ithas
been established that by/a, + 2(4k + 1) - O because there is no odd integer of
the form (4k +1)#m+147% such that v2(@k+ D[ (a3 ™ =1)/(qs— 1)) (((4k +
1)4m+2 _1)/4k)]11/? is ratlonal and by_1by/ap_ap + 2(4k+1) (((4k +1)4m+2 —
1)/4k) - 0 as V2ERFD L@, = 1) /(@ — D) (@™ = D/ (ap — 1))-
(((4k +1)4m+2 _1)/4k)]"/? is irrational [6, 7]. Setting by/a, = 2(4k +1)(py/
Xer) -0 and by_1bp/ap-ap = 2(4k +1) (Pe2/ Xe2) (((4k +1)4m+2 1) /4k) - O, it
follows that

b Pe_ (p(ap+1))P L BU5S o g = o(mod3),
a---ayp X1 X€/3
M=(2(4k+1))[4/3]+1ﬁ1...M.%.D £ =1(mod3),
a---ay X1 Xz Xe (7.33)
buobe (g gyl Py Pus |
a,---ap X1 X10/3]

A 4m+2 _

_@(‘4’”1)—1).5 £=2(mod3)

X2 4k

and the coefficients {a;, b;} will not satisfy the rationality condition when the
square-free factors pi,...,01¢/31, Pe1, P02, X1+, X1£/31, Xe1, Xe2 have prime divi-
sors other than 2 and 4k + 1 which do not match to produce the square of a
rational number.

When £ is odd and greater than 5, there always exists an odd integer £, and
an even integer ¥, such that £ = 34, + 2{,, implying the following identity

bi---by _ (b13 Q) <b46 @) o (bwrz,wo ase,-1 ) ( b3py+1D300+2 )
ap---ag ai3 by ) \ase bs aA30y-230y V30,-1/ \A30511a3¢5+2

(7.34)
] <bef1be> .
ap-1ag

Consequently,
bl"'b1€ :(2(4k+1))€0+'{}'€&...%...M...%
a---ap Xt Xe,  Xe-200+12  Xe2
am+2 _ 1\ Le
.(M—kl) 0 (7.35)

—2(k+1)- PPl Plte22 | P2

X1 X, Xo-20+2,2 Xe2
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Regardless of the factors of 2 and 4k + 1, the coefficients {a;, b;} will produce
an irrational square root expression (7.3) for odd ¥ if the product of fractions
is not the square of a rational number.

If £ is even and greater than 4, there always exists an odd integer £, and an
even integer ¥, such that £ = 2£, + 3,. From the identity

by---by _ <b1bz>___ (bz%,leQ,)___< bapy+1,200+3 a2%+2)
ap---ayp aaz A20,-1A2¢, A20,+1a20,+3 D2g,+2

(7.36)
<b€72,€ apy )
. _ . D
ap-z¢bpy
it follows that

. 4m+2 _ o 4 A 5 Dp_ -
by---by _ (2(4k+1))fu+ﬂe((4k+1>—1) P22 P2uo2 Ploslert
ai---ap 4k X22 X20,2 X0-30e+1

— 2(4k +1)lo+Le . P22 Paty.2 Pe-s3tert  Prz
X22 X200,2 X0-300+1 Xo-2
(7.37)

Again, the factors of 2 and 4k + 1 are not relevant, and the coefficients {a;, b;}
give rise to an irrational square root expression (7.3) for even £ if

ﬁ (ﬁzl‘z) ﬁ (ﬁ# 3j+1) (7.38)

X2i,2 Xe-3j+1

is not the square of a rational number. O

8. On the proof of the nonexistence of odd perfect numbers. Since the
condition for the existence of an odd perfect number is equahty of (((4k +
1)4m+2 _ 1) /4k) [T, (@2 = 1)/ (q; — 1)) with 2(4k + 1) [T', ¢/, the num-
ber of distinct prime divisors of the product of repunits in the ratlonahty con-
dition must be £ + 1. The following lemma will be useful for obtaining an upper
bound for the number of integers N which could possibly satisfy the condition
o(N) =2N.

LEMMA 8.1. The number of integer solutions to the prime equations

. n;
q?—l_n_qf—l
ai-1 " gqj-1’
n; nj
q;'-1 4; -1 .
n;- = i #qj, Ny, nj prime, (8.1)
j qi—1 a1 ai #q4j, ni, nj p
. n;
a;' -1 a; -1
nJ =N;-
qi—1 q;—1
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is bounded by the number of integers (qi,qj) and (n;,n;) which satisfy the
following conditions:

k1T
e trr = (p1)g£{p2)g- = (Pn)a>
1
. . n—-1
pi prime fori=1,....n, k=1,..., o deZ, (8.2)
1.y |db 2 2 s .
(pla= S tan pra +db' =4p*  for the minimum value of s.

PROOF. Consider the factorization

x"i—1
x-1

=(x-—w)(x-wH(x-w?)(x-—w™?)

(= MV (x - m D), 8.3)

(21Ti>
w = exp )
1

As the real quadratic factors have the form x2 — 2cos(2km/ni)x + 1, k =
.,(n;j—1)/2, the trigonometric term equals 2((1 — tan®(km/n;))/(1 +
tan? (k1 /n;))), and tan8 = (b/a)Vd, a,b,d € Z when

O=tm=(p1)yx(p2)y=-- +t{(pn),; forsomet e Q, (8.4)
where the prime decomposition of a? +db? is p; - - - pn and

1., |db?

(p>d = ;tan ? (85)

with s being the smallest positive integer such that 4p* is expressible as a’? +

db’? [9], quadratic factors will be rational when k1t /n; = t1T+{(p1)a = (p2)a =
rx(pp)gforallk=1,...,(n;—1)/2.

Except for the values of n; and n; for which cos(2km/n;) and cos(2ktr/n;)

are rational, the quadratic expressions qi2 — 2cos(2ktmr/ni)q; + 1 and q? -

2cos(2km/nj)q;+ 1 must be unequal. Furthermore, equality of the products

such as 1‘[<nl—1 /2(ql 2cos(2km/ni)g; + 1) and n; - <nJ ( 2 _
2cos(2kt/nj)q;+1) over the Galois extension
Q(cos<2n> Cos<4n);...;cos<w>;
n; n; n;
(8.6)

COS(%);COS (%), ;COS (M))

would require that products of selected sets of the real quadratic factors qf -
2cos(2ktr/n;)q; + 1 coincide with products of other sets of the quadratic fac-
tors qf —2cos(2ktr/ni)q;+ 1 with the exception of the extra primes n; and n;.
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However, there will be no collection of quadratic factors qiz —2cos(2ktr/ni)q;+
1 such that their product will be equal to n;, for example, because an irrational
term will still be present in a product with less than (n; —1)/2 quadratic fac-
tors, since trigonometric sums of the form Zk1<...<kmE{K} cos(2kytr/ng) - - -
cos(2ky,1/n;) will be rational only if {K} is the entire set {1,...,(n;—1)/2}.
Since the inequality of (g;' —1)/(g;—1) and ni((q;lj ~1)/(q;—1)) holds over
the Galois extension of Q, for n;, n; such that cos(21/n;) or cos(21m/n;) is
irrational, it is also valid over Q and the integers Z, implying the nonexistence
of integer solutions to the first relation in (8.1), and the same conclusion is
valid for the other two relations. |

THEOREM 8.2. Any odd integer N of the form (4k+1)*m+1T'_ q°%, 4k +1,

qi prime, m > 1, «; > 1, subject to the condition that none of the prime divisors
satisfy one of the following three equalities:

. ni
q'-1_ 41
ai—1 "ai-1
n; n]
a4’ -1 _a; -1 s b (8.7)
n;j gi-1 = qj—l’ n; =2 +1,ni,n; prime,
. n;
I W Vet
ai-1 "ai-1
will not be a perfect number.
PROOF. As the number of distinct prime divisors of (q?"(”1 —-1)/(gi—1)is

at least T(2c¢; + 1) — 1, since each of the cyclotomic polynomials in the fac-

torization (q?o‘”1 -1)/(qi—1) = [laj2a;+1Pa(qi) has a distinct prime divisor

1
congruent to 1(modd), it should be gdr>elmer than or equal to 1 when 2x; + 1 is
prime and at least 3 when 2«; + 1 is composite. When there is an Aurifeuillian
factorization of the cyclotomic polynomial ®,(qg;), both factors are divisible
by a primitive prime divisor of ®;(g;) [50], so that if the index 2x; +1 is a
prime of the form 4k’ +1 for some k' € Z, the Lucas number Uzq, +1(qi +1,4:)
has at least two primitive prime divisors [45], whereas if the index is an odd
multiple (28 +1)(4k’ + 1), N > 1 there are at least five primitive prime divi-
sors. This result can be generalized to composite indices of the form dé with
gcd(d, o) = 1 given an Aurifeuillian factorization of ®,(g;), based on the for-
mula @45 (q;) = [1,5Pa(q] )# /). If the exponent is an odd multiple of a prime
of the form 4k’ + 3, then the repunit contains at least three distinct prime di-
visors, except when 2x; + 1 equals the prime itself, as the minimum number
of prime divisors is attained if ®4+3(q;) = (q*¥ "3 ~1)/(q; —1) is prime.

If the exponent of (qf it 1)/(g;—1) is prime, the repunit will have prime
divisors which divide g; — 1 or have the form a(2c; +1)? +1 [47]. Primes which
divide g; — 1 also must be a factor of 2«x; + 1, since (ql-zo‘i+1 -1)/(gqi—1) =
2+ 1(modp) when g; = 1(modp), and therefore they must be equal to the
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exponent 2; + 1 if it is prime. Since repunits with different bases are generally
different with two known exceptions, unless one of the three equations

20+1 205+1
a; " - 4aj -1
(1) A—
ai—1 (200 +1) a;—1
206+1 20j+1
AL : -1
(20;+1) - & L_4 : (8.8)
qai—1 q;-1
20(i+1_ 2'o(j+171

a; 4
20 +1) —— =L +1) - —
a1 Bt = o) T

holds, there will be a prime divisor of the form a(2«; + 1)? +1 or a (2. +
1)?" + 1 which will not be a common factor of both repunits. Each repunit
(qizo‘i+l —1)/(q;—1) with a prime exponent 2x; + 1 has a distinct primitive
prime divisor if there is no pair (qi,q;) which satisfies any of the three equal-
ities in (8.8).

Equality between (4" ~1)/(g;—1) and (2c; + 1)((1112'%'+1 -1)/(q;-1))
would imply that the repunit (qjaj . 1)/(g;—1) does not introduce any addi-
tional prime divisors and ((qizoq+1 -1)/(qi— 1))((615()("+1 -1)/(qj-1)) = Qex;+
1) - O, so that the square root of the product of the two repunits contains only
one irrational factor. Since every primitive prime divisor of (q;Z arl_q )/ (qi—1)
is strictly greater than 2«; + 1, this product does contribute at least two new
prime divisors. In contrast to the primitive divisor a(2«; +1)? + 1, however, the
prime 2; + 1 might be equal to the primitive prime divisor of another repunit
(qf,ui' 1 )/ (qi — 1), even if this repunit does not satisfy any equalities of the
type given in (8.8). It follows that the product of three repunits with prime ex-
ponents may not necessarily contain three distinct prime divisors if any two
of the repunits satisfy one of these relations, and therefore, it will be assumed
in the rest of the proof that the equalities in (8.8) do not hold for any of the
prime divisors and exponents {gq;,2«; +1, i = 1,...,g} in the factorization of
the odd integer N.

Denoting the repunits with composite exponents by (qfl“ atl 1)/(gqc - 1),
the product

(4k+1)4me2 1 g gieatt g

4k 1 da—1

(8.9)

contains the union of g +1 sets of at least three prime divisors. Combined with
the prime divisors of the product of repunits with prime exponents,

l-g 20p,+1 1

I1 [1””71, (8.10)

=1 9dp;—
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which number more than £ — g — 1, it is sufficient to prove that if there are only
{ + 2 distinct prime divisors in the factorization of o (N), then o (N)/2N = 2.
Otherwise there are at least £ + 3 distinct prime divisors of o (N).

For a composite exponent 2., +1 = p¢, - 64,

200, +1 o
cla ! qfx - (1+qm1 +qml (6,- 1)) (8.11)
dc,—1 de, —1 “

so that the product of the repunits with these exponents is

g 20‘61 +1 Pe

1—[ dc -1 ﬁ de, — (l Per Pey-(5,-1)
1 +aE" el ). ®812)
-1 C1

Since the repunits (q’ﬂ“ —1)/(gqc, — 1) have distinct prime divisors, the min-
imum number dividing the product (8.9) is g + 2, and the entire product of
repunits must contain at least £ + g + 2 different prime divisors.

Since this lower bound is precisely the number necessary for equality be-
tween o (N) and 2N, itis not sufficient to establish the nonexistence of odd per-
fect numbers. Instead, it is preferable to use the method of induction Suppose
that there are no odd perfect numbers of the form (4k+1)4m+1 ]!} ql %, Then
for any splitting of the set of exponents {2¢;+1,i=1,...,.¢ -1} = {2, + 1,
1=1,. ,g} Uf{2ap, +1, 7 =1,...,¢ =1 - g}, the product (((4k +1)*m*+2 —
1)/4k) 1_[1 1 ( (ql‘z‘x “ —1)/(gq; — 1)) will be divisible by at least £ + 1 distinct
prime divisors and it will not be equal to 2(4k + 1)4m+! Hg’l 20

C0n81der an odd integer N of the form (4k + 1)4m+1 1_[1 1q2”’ If the last
repunit (qg —1)/(qe — 1) has a composite exponent, it will introduce at
least three prime divisors, including one distinct factor, derived from the re-
punit (q?c"“ - 1)/(q¢—1), where p., , would be a prime factor of 2 + 1.
Since this prime divisor is not even and must be chosen from the set {2;4k +
1;q1,...,q¢} and gy ¢ (qzc“’+l —1)/(q¢—1), it must be either 4k + 1 or g, for
some jp € {1,...,£—1}. Otherwise, equality between o (N) and 2N cannot be
obtained. To proceed with full generality, it will be assumed that the prime
divisor of this repunit is not equal to 4k + 1. Similarly, by interchanging the
roles of gy with ql, ie{l,...,0 -1} and (4k + 1), it follows that (((4k +
1)#m+2 — 1) /4Kk) [T{-, ((q; """ = 1) /(q; - 1)) will not be divisible by q;. for some

l#l
Jiedl,..., 0}, ji # 1, with the exception of one value i,, for which the product

of (((4k+1)*m+2—1)/4k) [T, ((q 2“1“ 1)/(qi — 1)) will not be divisible by
4k+1. There will also be an index jj,, such that g, isthe new prime divisor con-
tained in ((4k + 1)#™+2 — 1) /4k which is not a factor of Hl 1((q12“ 1 -1)/(qi—
1)). Since each prime power divisor of the product of repunits qj;if divides
20¢:+1

(qi- ' —=1)/(g;—1), consideration of the entire set of prime power divisors

implies every repunit must be equal to the power of a different prime, with the
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exception of the repunit ((4k +1)#m*2 —1)/4k which should also contain the
factor of 2.
Solutions to the equation (x™—1)/(x—1) = y™, m = 2 include

m=2
x =18, n=3, yv=7, m=3, (8.13)
m=2

and it is known that if y is prime then n must be prime and x = p? and
b =n” for some odd prime p and v > 0 [12]. The finite bound on the number
of solutions [14] to the equation

4, 4', p prime (8.14)

provides constraints on the odd primes g;, but it is the nonexistence of solu-
tions to the equation that must be satisfied by the prime 4k + 1

4k +1)4m+2 — 1 hj;
% 24", (8.15)

for hj, even, obtained by setting y = q?i";" 2 in (3.3), that implies that there are
no sets of primes {q;, i = 1,...,¢;4k + 1} of this type which allow for equality
between o (N) and 2N.

When (q?cg+1 —1)/(q¢—1) is a prime, then it must be equal to one of the
other prime divisors g 7 SO that g 7, > ae- By repeating this process for all
of the prime divisors, an ordering of the magnitudes of these factors is es-
tablished. Let g;,,,, represent the largest prime in this ordering and suppose
that it is greater than 4k + 1. As it is a factor of the odd integer N, o (N)
will contain the repunit (qii‘ina"ﬂ —1)/(Qjmax — 1), which, if set equal to one
of the prime divisors, would be larger than g ... This process therefore leads
to a contradiction, so that it is not possible for the inclusion of one repunit
(q?o‘” e 1)/(qe—1) in o (N) to provide only one additional prime divisor and
obtain equality between o (N) and 2N.

When the inclusion of this repunit gives rise to two additional prime factors,
the total number of distinct prime divisors will be at least ({-1—-g) + (g +
2) +2 = {+ 3, which is sufficient to establish the inequality o (N) # 2N.

If the last repunit (qi}“ﬁl —1)/(qe—1) has a prime exponent, the extra fac-

tor 1+ q?cg” . (qzch y@a+1-1) is no longer present, but all choices of the
prime bases {4k +1;q;,i=1,...,¢} and exponents {4m +1;2«;} either lead to
a contradiction when the restriction of only one additional prime factor is im-
posed, or at least two additional prime divisors, implying directly o (N) = 2N.

O



1290 SIMON DAVIS

9. Conclusion. The rationality condition provides an analytic method for
investigating the existence of odd perfect numbers, as it would be sufficient
to demonstrate that there is an unmatched prime divisor in the product. An
upper bound for the density of odd integers greater than 103%, in an interval
of fixed length, which could satisfy o (N)/N = 2, may be found by considering
the square root expression containing the product of repunits, combining the
estimate of the density of square-full numbers in this range with the proba-
bility of an integer being expressible as the product of repunits with prime
bases multiplied by 2(4k + 1). The arithmetic primitive factors of these re-
punits, products of the primitive prime power divisors, can be compared for
different values of the prime basis, and it has been shown that they could
only be equal if the exponents differ, except possibly for pairs of divisors
(9,,(qi),Pn(qj)/p;) generated by the prime equation (q}l -1)/(@'-1)=p.In
Theorem 7.1, nonexistence of the odd perfect numbers for alarge set of primes
{qi,i=1,...,0;4k+1}, exponents {2«;,i=1,...,¢;4m+1}, and values of £ us-
ing the method of induction adapted to the coefficients {a;, b;} in the product
of m repunits. An abstract argument is given for the nonexistence of coeffi-
cients satisfying the rationality condition when £ = 3 and then various results
are proven for # > 3 by using the properties of prime divisors of product of
two repunits, (qj-ajﬂ -1)/(gj—1) and (qio("+1 —1)/(qe—1), belonging to each
of the four categories: () p [ (q;—1), p [ (qe—1); @) p | (q;—1), p t (qe—1);
(iii) p t (g; —1), p | (qe—1); and (iv) p + (q; — 1), p t (q¢ — 1). Irrationality
of the square root expression for any set of £ —1 primes {g;,i=1,...,¢ -1}
implies that each unmatched prime divisor in the product of repunits with
bases {gqi,i=1,...,¢— 1',4k + 1} can be associated with a single repunit. Primi-
tive prime divisors of (¢, ~1)/(q;~1) and (q;"*"' 1)/ (s - 1), which be-
long to the fourth category, cannot be matched to produce a perfect square if
(a,’ - 1)/(q;lj —1) # y3 /v, which holds when q?”/z < gcd(q;lj -1,q,' - 1).

The set of odd integers N with a prime decomposition (4k +1)4m+1 H'f:l g%

i s
qi = 3, m > 1, «; > 1 which does satisfy rationality condition consists of only
a few elements. While the examples given in Section 4 contain at least eight
prime divisors including 3, each of the exponents of the primes g; has been
set equal to 2, because of the coincidence of the prime divisors in the square-
free factors of the repunits (q? —1)/(q;i—1), and it is verified for these integers
that o (N) # 2N.

Combining the properties of the primitive prime divisors of the repunits
in o (N) with the required form for equality of o (N) and 2N, the nonexis-
tence of odd perfect numbers, with the prime factors satisfying a set of three
inequalities, is demonstrated in Section 8. First, a lower bound of £+ 1 prime
divisors is established for o (N) when there are £ primes g;. Classifying the
repunits according to whether the exponents are prime or composite, it can be
shown that the inclusion of an additional factor in the prime decomposition of
N has the effect of either introducing at one additional prime divisor in o (N)
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subject to constraints which imply o (N) = 2N or, at least, at two prime di-
visors. The nonexistence of odd perfect numbers then follows by using the
method of induction to establish thatintegers of the form (4k+1)4m+! Hfﬂ qf o
satisfy this inequality for all £.
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