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possibly with boundary.
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1. Introduction and statement of the results. The pair (�,g) is called

Lorentzian manifold if � is a connected finite-dimensional smooth manifold

with dim� ≥ 2 and g is a Lorentzian metric on �, that is, g is a smooth sym-

metric two covariant tensor field such that for any z ∈ �, the bilinear form

g(z)[·,·] induced on Tz� is nondegenerate and of index ν(g) = 1. Its points

are called events. A Lorentzian manifold (�,g) is called (standard) stationary

if � is a product manifold

�=�×R, � any connected manifold (1.1)

and g can be written as

〈ζ,ζ′〉L = 〈ξ,ξ′〉+
〈
δ(x),ξ

〉
τ′ +〈δ(x),ξ′〉τ−β(x)ττ′ (1.2)

for any z = (x,t) ∈ �, ζ = (ξ,τ), ζ′ = (ξ′,τ′) ∈ Tz� = Tx�×R, where 〈·,·〉,
δ, and β are, respectively, a Riemannian metric on �, a smooth vector field,

and a smooth scalar field on �. We refer to [13, 15, 17] for all the background

material assumed in this paper. Let A be a smooth stationary vector field on

�, that is,

A(z)=A(x,t)=A(x)= (A1(x),A2(x)
) ∀z = (x,t)∈�, (1.3)

and let � be the (1,1) tensor field associated to curlA. In this paper, we look

for smooth curves γ : [0,1]→� (trajectories) which solve the problem

Dsγ̇(s)= 1
2

�
(
γ(s)

)[
γ̇(s)

]
,

γ(0)= z, γ(1)=w,
(1.4)
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where z and w are two fixed events of �, � is an open connected subset of �.

When γ is a trajectory, there exists Eγ ∈R such that

〈
γ̇(s), γ̇(s)

〉
L = Eγ ∀s ∈ [0,1] (1.5)

(see Remark 2.2) thus its causal character is well defined. We point out that

(1.4) represents the Lorentz world-force law which determinates the motion of

relativistic particles submitted to an electromagnetic field, when we take into

account timelike curves γ (see [17, page 88]). In this case, A1 is called vectorial

potential and A2 is called scalar potential, see [12]. It is clear that this problem

generalizes the one of the geodesic connectedness (see, e.g., [6, 11, 13]). Our

problem has a variational nature. Indeed trajectories connecting two events

are the critical points of the functional

F(γ)=
∫ 1

0
〈γ̇, γ̇〉Lds+

∫ 1

0

〈
A(γ),γ̇

〉
Lds (1.6)

on a suitable infinite-dimensional manifold, see [5] and Section 2. When the

manifold is (standard) static, existence and multiplicity results for these tra-

jectories have been found in [2] and very recently timelike trajectories on sta-

tionary complete manifolds have been studied in [9]. For results on periodic

trajectories, we refer to [4, 9, 14].

In the following, for any vector ξ ∈ T�, we set |ξ| =
√
〈ξ,ξ〉. Now, we are

ready to state our first result, where we assume the completeness of �.

Theorem 1.1. Let (�,〈·,·〉L) be a stationary Lorentzian manifold with �

complete and assume that

(i) there exist η,b,d∈R such that

0< η≤ β(x)≤ b ∀x ∈�,

sup
x∈�

∣∣δ(x)∣∣= d; (1.7)

(ii) there exist a1,a2 ∈R such that

sup
x∈�

∣∣A1(x)
∣∣= a1, 0≤A2(x)≤ a2. (1.8)

Then, for each two given events in � a trajectoryγ joining them exists. Moreover,

if � is noncontractible in itself, then, for each two given events of � a sequence

{γm} of trajectories joining them exists.

Remark 1.2. A gauge transformation does not modify (1.4). Indeed adding

to A any irrotational vector field B independent on t, say B(x,t)= (∇V(x),a0)
with V ∈ �2(�,R) and a0 ∈ R, the critical points of the corresponding func-

tional satisfy the same Euler-Lagrange equation. Thus it is enough that A+B
satisfies assumption (ii) of Theorem 1.1 for such B (in particular it suffices that

A2 is bounded from below).
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We also deal with noncomplete stationary Lorentzian manifolds having bou-

ndaries satisfying some convexity assumptions. Let � be an open domain of

a Lorentzian manifold �, ∂� its differentiable topological boundary and � =
�∪∂�.

We recall the following definition.

Definition 1.3 (global convexity, variational point of view). We say that

∂� is convex if and only if for one, and then for all, nonnegative function Φ on

� such that

Φ−1(0)= ∂�,

Φ > 0 on �,

∇LΦ(z)≠ 0 ∀z ∈ ∂�,

(1.9)

it results that

HLΦ(z)[ζ,ζ]≤ 0 ∀z ∈ ∂�, ζ ∈ Tz∂�. (1.10)

In [3], it has been proved that the previous definition is equivalent to the

following one.

Definition 1.4 (global convexity, geometrical point of view). We say that

∂� is convex if for any z,w ∈ � the range of any geodesic γ : [0,1]→ � such

that γ(0)= z, γ(1)=w satisfies

γ
(
[0,1]

)⊂�. (1.11)

We recall that also the definition of causal convexity can be given, see, for

example, [7] (see also [3]).

We use the following definition.

Definition 1.5. A manifold (�,〈·,·〉L), with � = �×R, is said to be a sta-

tionary Lorentzian manifold with differentiable boundary ∂�= ∂�×R if a sta-

tionary Lorentzian manifold (�,g), with � = �×R, exists such that � is an

open domain of �, g restricted to � is 〈·,·〉L, and � is a complete manifold

with differentiable boundary.

Remark that if � is a stationary Lorentzian manifold with convex boundary,

since ∂� is differentiable, there exists a smooth function φ : �→R satisfying

φ−1(0)= ∂�,

φ > 0 on �,

∇φ(x)≠ 0 ∀x ∈ ∂�.

(1.12)

Moreover, Φ can be chosen such that, for any z = (x,t)∈�,

Φ(z)= Φ(x,t)=φ(x) (1.13)
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and then

∇LΦ(z)= (∇φ(x),0). (1.14)

We prove the following theorem.

Theorem 1.6. Let (�,〈·,·〉L) be a stationary Lorentzian manifold with dif-

ferentiable and convex boundary; assume that the assumptions of Theorem 1.1

hold and that

〈
�(y)[ζ],∇LΦ(y)〉≤ 0 ∀y ∈ ∂�, ζ ∈ Ty∂�. (1.15)

Then, for each two given events in � a trajectory γ joining them exists. Moreover,

if � is noncontractible in itself, then, for each two given events of � a sequence

{γm} of trajectories joining them exists.

Example 1.7. We consider an open subset of the Minkowski spacetime.

This spacetime is the model of special relativity which describes situations

in which the gravitational effects are negligible. Given the vector field A, the

2-form curlA can be written as

curlA=
3∑
i=1

Eidxi∧dt+B1dx2∧dx3+B2dx3∧dx1+B3dx1∧dx2, (1.16)

where Ei, Bi, i = 1,2,3, are differentiable functions. This 2-form, or the as-

sociated endomorphism field �, is called the electromagnetic field. Moreover,

E = ∑3
i=1Ei∂i is the electric field and B = ∑3

i=1Bi∂i the magnetic field. These

concepts can be extended to the tangent space of any Lorentzian manifold,

whenever a timelike tangent vector (which plays the role of ∂t) is fixed (see,

e.g., [17, page 75]). Thus, hypothesis (1.15) only involves the magnetic field

naturally associated to the decomposition �=�×R.

The paper is organized as follows. In Section 2, we state a variational princi-

ple which allows us to overcome the problems arising in the study of F because

of the indefiniteness of the metric. Then in Section 3 we prove Theorem 1.1

by using classical critical point theory. Finally, in Section 4, thanks to a pe-

nalization technique (necessary in order to find trajectories not touching the

boundary), we demonstrate Theorem 1.6.

2. A variational principle for trajectories. From now on, we assume that

an � is a submanifold of (RN,〈·,·〉), for N sufficiently large. Thus (see [16])

H1([0,1],�)= {y ∈H1([0,1],RN) |y([0,1])⊂�
}

(2.1)
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is a submanifold of the Sobolev space H1([0,1],RN). Fix z = (p,t1), w =
(q,t2)∈� and consider the product manifold

�=Ω1(�)×H1(t1, t2), (2.2)

where

Ω1(�)= {y ∈H1([0,1],�) |y(0)= p, y(1)= q},
H1(t1, t2)= {t ∈H1([0,1],R) | t(0)= t1, t(1)= t2}. (2.3)

We recall that for any y ∈ H1([0,1],�), the tangent space at H1([0,1],�) is

given by

TyH1([0,1],�)= {v ∈H1([0,1],RN) | v(s)∈ Ty(s)� ∀s ∈ [0,1]} (2.4)

(see [16]) and for any t ∈H1(t1, t2) the tangent space at H1(t1, t2) is

H1
0

(
[0,1],RN

)= {y ∈H1([0,1],RN) |y(0)= 0=y(1)}. (2.5)

We will consider on � the functional F in (1.6) given explicitly by

F(γ)=
∫ 1

0

[〈ẋ, ẋ〉+2
〈
δ(x),ẋ

〉
ṫ−β(x)ṫ2]ds

+
∫ 1

0

[〈
A1(x),ẋ

〉+〈δ(x),ẋ〉A2(x)
]
ds

+
∫ 1

0

[〈
δ(x),A1(x)

〉
ṫ−β(x)A2(x)ṫ

]
ds.

(2.6)

Integration by parts and a boot-strap argument show that the critical points

of F are smooth, (see [9, Proposition 6.1]). The following lemma holds (see [5,

Section 2] and [2, Lemma 2.1]).

Lemma 2.1. Let γ ∈�. Then γ satisfies (1.4) if and only if it is a critical point

of F on �.

Remark 2.2. The first equation in (1.4) or equivently

−2Dsγ̇+
(∇LA(γ))T γ̇−∇LA(γ)γ̇ = 0, (2.7)
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where∇LA denotes the gradient of the vector fieldA and (∇LA)T its transpose,

has a prime integral, in fact

d
ds
〈γ̇, γ̇〉L = 2

〈
Dsγ̇, γ̇

〉
L =

〈(∇LA(γ))T γ̇−∇LA(γ)γ̇, γ̇〉
L
= 0. (2.8)

We recall that in [5] a new variational principle for the fundamental equations

of the classical physics has been introduced; such a principle allows one to

obtain a sort of unification of the gravitational and the electromagnetic fields.

The basic point of this variational principle is that the world-line of a material

point is parametrized by a parameter s which carries some physical informa-

tion, namely it is related to the rest mass and to the charge. In particular, the

inertial mass turns out to be a constant of the motion, which is determined

by the initial conditions and also the equality between the inertial and gravi-

tational mass can be deduced.

By Lemma 2.1, to find trajectories joining two events, we have to investigate

the existence of the critical points of functional (1.6) on �. Classical minimiza-

tion arguments cannot be applied to functional F since it is strongly indefinite

(i.e., it is unbounded both from above and from below and the Morse index of

its critical points is +∞). As for the geodesic problem (see, e.g., [11]), when we

deal with stationary manifolds and stationary vector fields, a variational prin-

ciple can be proved. This variational principle (see [1] for the details) reduces

the study of the critical points of F to the search of the critical points of a

functional which is bounded from below under our assumptions on the coef-

ficients of the metric and on the vector field. Remark that for any x ∈ Ω1(�)
the functional F(x,·) has on H1(t1, t2) one and only one critical point, say

that t = Ψ(x) (where Ψ can be explicitly determinated). Consider on Ω1(�) the

functional

J(x)= F(x,Ψ(x)) (2.9)

which is smooth by the implicit function theorem and whose first variation is

given by

J′(x)[ξ]= Fx
(
x,Ψ(x)

)
[ξ], (2.10)

(where Fx denotes the partial derivative of F with respect to x). Thus we get

the following result.

Theorem 2.3. Let γ = (x,t)∈�. The following propositions are equivalent:

(a) γ is a critical point of F ;

(b) (i) x is the critical point of J;

(ii) t = Ψ(x).
Moreover, if (a) or (b) is true,

F(γ)= J(x). (2.11)
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The functional J can be explicitly evaluated and it results that

J(x)=
∫ 1

0
〈ẋ, ẋ〉ds+

∫ 1

0

〈
δ(x),ẋ

〉2

β(x)
ds+ 1

4

∫ 1

0

〈
δ(x),A1(x)

〉2

β(x)
ds

+
∫ 1

0

〈
A1(x),ẋ

〉
ds+

∫ 1

0

〈
δ(x),A1(x)

〉〈
δ(x),ẋ

〉
β(x)

ds

− 1
2

∫ 1

0

〈
δ(x),A1(x)

〉
A2(x)ds

+ 1
4

∫ 1

0
A2

2(x)β(x)ds−
K2(x)

4

∫ 1

0

1
β(x)

ds,

(2.12)

where

K(x)= 2∆−2
∫ 1
0

(〈
δ(x),ẋ

〉
/β(x)

)
ds−∫ 1

0

(〈
δ(x),A1(x)

〉
/β(x)

)
ds+∫ 1

0 A2(x)ds∫ 1
0

(
1/β(x)

)
ds

,

(2.13)

with ∆= t2−t1.

3. Proof of Theorem 1.1. By Lemma 2.1 and Theorem 2.3, we have to study

the critical points of the functional (2.12) on Ω1(�).

Remark 3.1. The assumptions of Theorem 1.1 imply, by using the Hölder

inequality, that

J(x)≥
∫ 1

0
〈ẋ, ẋ〉ds−C1

∫ 1

0

√
〈ẋ, ẋ〉ds−C2, (3.1)

where

C1 = a1+ d
2a1

η
+ d

2a1

η2
+ da2

η
+ 2∆d
η
,

C2 = da1a2

2
+∆2+a2∆+ da1a2

2η
+ a

2
2

2
+ ∆da1

η
,

(3.2)

hence the functional J is bounded from below (we assume b = 1).

Before proving Theorem 1.1, we recall some definitions. If (X,h) is a Rie-

mannian manifold modelled on a Hilbert space and f ∈ �1(X,R), f satisfies

the Palais-Smale condition if every sequence {ym} such that

{
f
(
ym

)}
is bounded,∥∥∇f (ym)∥∥ �→ 0,

(3.3)

contains a converging subsequence, where ∇f(y) denotes the gradient of f
at the point y with respect to the metric h and ‖·‖ is the norm on the tangent

bundle induced by h. By standard arguments, it can be proved that J satis-

fies the Palais-Smale condition, (see, e.g., [1, Proposition 3.5]). The category,
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denoted with catX Y , of a subspace Y of a topological space X is the least num-

ber of closed and contractible subset of X covering Y . If Y is not covered by a

finite number of such subsets of X, we set catX Y =+∞.

Proof of Theorem 1.1. As J is bounded from below and satisfies the

Palais-Smale condition on Ω1(�), it admits a minimum point x which cor-

responds to a critical point γ = (x,Ψ(x)) of F by virtue of Theorem 2.3. By

Lemma 2.1, the proof of (i) is complete. Moreover, by a result of Fadell and

Husseini (see [10]), the Ljusternik-Schnirelman category of Ω1(�) is infinite.

Since

catΩ1(�) Jc <+∞ ∀c ∈R, (3.4)

(where Jc = {x ∈ Ω1(�) | J(x) ≤ c}), by classical arguments of Ljusternik-

Schnirelman critical point theory, we get the existence of a sequence {xm} of

critical points of J such that

lim
m→+∞J

(
xm

)=+∞. (3.5)

Hence, set γm = (xm,Ψ(xm)) for any m ∈N, by Theorem 2.3 and Lemma 2.1,

we get the existence of infinitely many trajectories joining the two given events

such that

lim
m→+∞F

(
γm

)=+∞. (3.6)

4. Proof of Theorem 1.6. When we deal with open subsets � of �, we need

to penalize functionals F and J because Palais-Smale sequences converging

to a critical point touching the boundary ∂� could exist. We consider for any

ε∈ ]0,1] the functionals

Fε(γ)= F(γ)+
∫ 1

0
ψε
(

1
Φ2(γ)

)
ds,

Jε(x)= J(x)+
∫ 1

0
ψε
(

1
φ2(x)

)
ds,

(4.1)

respectively, on Ω1(�)×H1(t1, t2) and Ω1(�), where Φ is as in (1.9), φ is as

in (1.12), and (ψε)ε∈]0,1] is a family of nonnegative increasing functions in

�2(R,R) such that

ψε(s)= 0 if s ≤ 1
ε
,

lim
s→∞ψε(s)=∞,
ψε(s)≥ aεs−bε

(4.2)

for some aε > 0, bε ≥ 0. We point out that the variational principle stated in

Theorem 2.3 still holds since the penalizating term does not depend on t. The
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following lemma (see, e.g., [13]) plays a basic role in our penalization technique.

We denote by ‖·‖2 the usual norm in L2([0,1],RN).

Lemma 4.1. Let {xm} be a sequence in Ω1(�) such that

sup
m∈N

∥∥ẋm∥∥2 <+∞, (4.3)

and let {sm} be a sequence in [0,1] such that

lim
m→+∞φ

(
xm

(
sm
))= 0. (4.4)

Then

lim
m→+∞

∫ 1

0
ψε

(
1

φ2
(
xm

)
)
ds =+∞. (4.5)

Lemma 4.2. For any ε∈ ]0,1], let {xm} be a sequence in Ω1(�) such that

Jε
(
xm

)≤ C ∀m∈R (4.6)

for a C ∈R. Then

d= inf
{
φ
(
xm(s)

) |m∈N, s ∈ I}> 0. (4.7)

Proof. By (4.6) and the form of the penalization, we get

J
(
xm

)≤ C ∀m∈R. (4.8)

Then, by (2.12) and the assumptions of Theorem 1.1, it results that

∥∥ẋm∥∥2
2 ≤ C+

(
a1+ d

2

η
a1+ 2

η
d
)∥∥ẋm∥∥2+c (4.9)

for a suitable c ∈ R. Thus {‖ẋm‖2} is bounded and the proof follows by

Lemma 4.1.

We omit the proof of the following proposition since it is a combination of

the proof of [11, Theorem 3.3] and [4, Lemma 4.3].

Proposition 4.3. Let Jε be as in (4.1). Then

(i) for any ε∈ ]0,1] and for any c ∈R, the sublevels

Jcε =
{
x ∈Ω1(�) | Jε(x)≤ c

}
(4.10)

are complete metric subspaces of Ω1(�);
(ii) for any ε∈ ]0,1], Jε satisfies the Palais-Smale condition.
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By the previous proposition and Remark 3.1, there exists a family {xε} of

critical points of Jε satisfying (4.6). Thus, by Theorem 2.3, set γε = (xε,Ψ(xε)),
we find a family {γε} of critical points of Fε such that

Fε
(
γε
)≤ C ∀ε∈ ]0,1]. (4.11)

Remark 4.4. It is easy to prove that a critical point γ of Fε satisfies the

following equation:

Dsγ̇ = 1
2

�(γ)[γ̇]− 2
Φ3(γ)

ψ′ε
(

1
Φ2(γ)

)
∇LΦ(γ). (4.12)

Thus, multiplying by γ̇, we get the existence of Hε(γ)∈R such that

Hε(γ)= 〈γ̇, γ̇〉L−ψε
(

1
Φ2(γ)

)
. (4.13)

We set for any ε∈ ]0,1], s ∈ [0,1],

µε(s)= 2
Φ3
(
γ(s)

)ψ′ε
(

1
Φ2
(
γ(s)

)). (4.14)

The following estimate on the family {µε} holds.

Lemma 4.5. There exists ε0 ∈ ]0,1] such that the family of functions

(µε)ε∈]0,ε0] is bounded in �([0,1],R).

Proof. For any ε∈ ]0,1] and s ∈ [0,1], we set uε(s)= Φ(γε(s)), so uε is a

�2 function on [0,1]. Let sε be a minimum point for uε. Since ψε is convex, ψ′ε
is nondecreasing, thus it results that

µε(s)≤ µε
(
sε
) ∀s ∈ [0,1]. (4.15)

Hence, it is enough to prove that {µε(sε)} is bounded and to study the case in

which

inf
ε∈]0,1]

Φ
(
γε
(
sε
))= 0. (4.16)

Differentiating twice, we get

0≤ üε
(
sε
)=HLΦ(γε(sε))[γ̇ε(sε), γ̇ε(sε)]

+
〈
∇LΦ(γε(sε)), 1

2
�
(
γ
(
sε
))[
γ̇
(
sε
)]�

L

−µε
(
sε
)∣∣∇LΦ(γε(sε))∣∣2.

(4.17)
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We consider on � the Riemannian metric given by

〈ζ,ζ〉R = 〈ξ,ξ〉+β(x)τ2 (4.18)

for any γ = (x,t)∈� and ζ = (ξ,τ)∈ Tγ�. As HΦL is a bilinear form,

HΦL
(
γε
(
sε
))[
γ̇ε
(
sε
)
, γ̇ε

(
sε
)]≤ c1

〈
γ̇ε
(
sε
)
, γ̇ε

(
sε
)〉
R (4.19)

for some c1 > 0. Moreover, as 0 is a regular value for Φ, for ε sufficiently small,

∣∣∇LΦ(γε(sε))∣∣2 ≥ c2 (4.20)

for some c2 > 0. Thus, by (4.17) and (1.15) follows, for ε sufficiently small,

c2µε
(
sε
)≤ c1

(〈
xε
(
sε
)
,xε

(
sε
)〉+β(xε(sε))ṫ2ε (sε)). (4.21)

By (4.13), it results that

c2µε
(
sε
)≤ c1

∣∣Hε(γε)∣∣+2c1β
(
xε
(
sε
))
ṫ2ε
(
sε
)

+2c1

∣∣〈δ(xε(sε)), ẋε(sε)〉∣∣+c1ψε

(
1

Φ2
(
γε
(
sε
))
)
.

(4.22)

By Remark 3.1 and (4.6), it is easy to verify that

∣∣Hε(γε)∣∣≤ c3 (4.23)

for some c3 > 0, so that

c2µε
(
sε
)≤ c4+c1ψε

(
1

Φ2
(
γε
(
sε
))
)

(4.24)

for some c4 > 0. Since

ψε(s)≤ψ′ε(s) ∀ε∈ ]0,1], s ∈ [0,1], (4.25)

we get

µε
(
sε
)≤ c5+c6ψ′ε

(
1

Φ2
(
γε
(
sε
))
)

(4.26)

for some c5,c6 > 0. From (4.16), for a σ ∈ ]0,1[ and ε small enough,

Φ
(
γε
(
sε
))
<
σ
c6

(4.27)
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hence we get

µε
(
sε
)≤ c5+σµε

(
sε
)

(4.28)

and the proof is complete.

The same arguments used in [11, Lemma 4.7] allow us to obtain the following

proposition.

Proposition 4.6. Let {γε} be a family in � such that for any ε ∈ ]0,1], γε
is a critical point of Fε and (4.6) holds. Then there exist an infinitesimal and

decreasing sequence {εm} in ]0,1] and a curve γ = (x,t) ∈ H1([0,1],�)×
H1(t1, t2) such that

γεm �→ γ in H1([0,1],RN)×H1([0,1],R). (4.29)

Proof of Theorem 1.6. Standard arguments show that the curve γ found

in Proposition 4.6 belongs toH2([0,1],RN)×H2([0,1],R) and that it solves the

equation

Dsγ̇(s)= µ(s)∇LΦ
(
γ(s)

)+ 1
2

�
(
γ(s)

)[
γ̇(s)

]
, (4.30)

where µ ∈ L2([0,1],R) is positive almost everywhere in [0,1] and vanishes if

γ(s) ∈ �. If s0 ∈ ]0,1[ is such that γ(s0) ∈ ∂� (γ(0) = z, γ(1) = w ∈ �), and

Dsγ̇(s0) exists, set u(s)= Φ(γ(s)) we get

0≤ ü(s0)=HLΦ(γ(s0))[γ̇(s0), γ̇(s0)]
+
〈
∇LΦ(γ(s0)), 1

2
�
(
γ
(
s0
))[
γ̇
(
s0
)]�

L

−µ(s0)∣∣∇LΦ(γ(s0))∣∣2.

(4.31)

Thus by (1.15) and the convexity of ∂�

µ
(
s0
)∣∣∇LΦ(γ(s0))∣∣2 ≤ 0 (4.32)

and this implies that µ(s0)= 0. Moreover, it can be proved that if s0 ∈ [0,1] is

such that γ(s0)∈�, there exists a neighborhood I of s0 such that u(s)= 0 for

every s ∈ I. Thus γ is a trajectory joining z andw. Now, it suffices to prove that

the range of γ is contained in �. Let C = {s ∈ [0,1] | γ(s) ∈ ∂�} and assume

that C is nonempty. Clearly, C is compact; say sM ∈ ]0,1[ its maximum. Using
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the Gronwall lemma, we prove that there exists σ > 0 such that [sM,sM+σ]⊂
C , getting a contradiction. Indeed, for a η1 > 0, as γ(sM) ∈ ∂�, there exists

σ > 0 such that

Φ
(
γ(s)

)
< η1 ∀s ∈ [sM,sM+σ] (4.33)

and we can consider the projection γp = (xp,tp) : [sM,sM+σ]→ ∂� of γ on ∂�

obtained by using the flow of the vector field −∇Φ/|∇Φ|2. From (1.10), we get

HLΦ
(
γp(s)

)[
γ̇p(s), γ̇p(s)

]≤ 0 ∀s ∈ [sM,sM+σ]. (4.34)

Consider u as before; then for any s ∈ [sM,sM+σ]

ü(s)≤HLΦ
(
γ(s)

)[
γ̇(s), γ̇(s)

]−HLΦ(γp(s))[γ̇p(s), γ̇p(s)]
+ 1

2

〈∇LΦ(γ(s)),�(γ(s))[γ̇(s)]〉L. (4.35)

Reasoning as in [3, Theorem 4.3], it results that

HLΦ
(
γ(s)

)[
γ̇(s), γ̇(s)

]−HLΦ(γp(s))[γ̇p(s), γ̇p(s)]≤M1u(s)+M2u̇(s) (4.36)

for any s ∈ [sM,sM+σ] for some M1,M2 ∈R. Moreover, by (1.15)

〈∇LΦ(γ(s)),�(γ(s))[γ̇(s)]〉L
≤ 〈∇LΦ(γ(s)),�(γ(s))[γ̇(s)]〉L
−〈∇LΦ(γp(s)),�(γp(s))[γ̇p(s)]〉L

= 〈∇LΦ(γ(s)),�(γ(s))[γ̇(s)]〉L
−〈∇LΦ(γp(s)),�(γ(s))[γ̇(s)]〉L
+〈∇LΦ(γp(s)),�(γ(s))[γ̇(s)]〉L
−〈∇LΦ(γp(s)),�(γp(s))[γ̇p(s)]〉L.

(4.37)

As � and φ are �2, M3 > 0 exists such that

〈∇LΦ(γ(s)),�(γ(s))[γ̇(s)]〉L ≤M3

∣∣x(s)−xp(s)∣∣≤M3u(s) (4.38)

for an M3 ∈R. Thus

ü(s)≤ (M1+M3
)
u(s)+M2u̇(s) ∀s ∈ [sM,sM+σ]. (4.39)
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Since u(sM) = 0 and u̇(sM) = 0 by the Gronwall lemma, we obtain u ≡ 0 in

[sM,sM+σ]. Now, assume that � is not contractible in itself. Set for any c ∈R

Jc =
{
x ∈Ω1(�) | J(x)≥ c}, Jε,c =

{
x ∈Ω1(�) | Jε(x)≥ c

}
. (4.40)

It can be proved that even if J does not satisfy the Palais-Smale condition,

catΩ1(�) Jc <+∞ (4.41)

(see [8, Lemma 4.3]). Then by the Fadell and Husseini result and classical ar-

guments there exists m∈N such that

X∩Jc ≠∅ (4.42)

for any X ∈ Γm = {Y ⊂Ω1(�) | catΩ1(�) Y ≥m}. Since Jc ⊂ Jε,c , for any X ∈ Γm
it also results that

X∩Jε,c ≠∅ ∀ε∈ ]0,1]. (4.43)

By Proposition 4.3, for any m∈N, ε∈ ]0,1], the values

cε,m = inf
X∈Γm

sup
x∈X

Jε(x) (4.44)

are well defined and are critical values of Jε. Thus we obtain

c ≤ cε,m ∀ε∈ ]0,1]. (4.45)

Since the singular homology has compact support, then there exists a compact

C ∈ Γm. Therefore,

c ≤ cε,m ≤maxJε(C)≤maxJ1(C) ∀ε∈ ]0,1]. (4.46)

Reasoning as in the first part of the proof, we get the existence of a critical

point of J. Moreover,

J(x)≥ c (4.47)

(see [8, Theorem 1.9]), thus being c arbitrary the thesis follows.
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