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In order to determine the characteristics of peristaltic transport of magnetohydro-
dynamic flow through a porous medium, the motion of a hydromagnetic (electri-
cally conducting), viscous, and incompressible fluid in planer channel filled with
a homogeneous porous medium and having electrically insulated walls that are
transversely displaced by an infinite, harmonic travelling wave of large wavelength
was analyzed using a perturbation expansion in terms of a variant wave number.
We obtain an explicit form for the velocity field, a relation between the pressure
rise and flow rate, in terms of Reynolds number, wave number, Hartmann num-
ber, permeability parameter, and the occlusion. The effects of all parameters of
the problem are numerically discussed and graphically explained.
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1. Introduction. Peristalsis is now well known to the physiologists as one

of the major mechanisms for fluid transport in many biological systems. In

particular, peristaltic mechanism may be involved in swallowing food through

the oesophagus, urine transport from kidney to bladder through the ureter,

movement of chyme in the gastrointestinal tract, transport of spermatozoa in

the ductus efferents of the male reproductive tracts and in the cervical canal,

movement of the ovum in the fallopian tubes, and in the vasomotion of small

blood vessels as well as blood flow in arteries. In addition, peristaltic pumping

occurs in many practical applications involving biomechanical systems. Also,

finger and roller pumps are frequently used for pumps corrosive or very pure

materials so as to prevent direct contact of the fluid with the pump’s internal

surfaces. A number of analytical [3, 5, 7, 9, 11, 12, 16, 23], numerical, and

experimental [2, 10, 19, 20, 21] studies of peristaltic flow of different fluids

have been reported. Several review articles have been written [8, 14]. Also a

summary of analytical papers up to 1984 has been presented in [18]. Most

of the analytical studies use perturbation series in a small parameter such

as Reynolds number or a dimensionless wave number, which, unfortunately,

limits the range of validity of the results. However, a perturbation method

does provide explicit information about the physical effects of that parameter.

Also, the analytical results can be used to check the calculations of wider-range

numerical methods.
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It has been established that the biological systems, in general, are greatly

addicted by the application of the external magnetic field. Moreover, the MHD

flow of a fluid in a channel with elastic rhythmically contracting walls (peri-

staltic flow) is of interest in connection with certain problems of the move-

ment of conductive physiological fluids, and with the need for theoretical re-

search on the operation of a peristaltic MHD compressor, also the principle of

magnetic field may be used in clinical application (magnetic resonance imag-

ing MRI). The effect of moving magnetic field on blood flow was studied by

Agrawal and Anwaruddin [1], they observed, for the flow of blood in arteries

with arterial disease like arterial stenosis or arteriosclerosis, that the influ-

ence of magnetic field may be utilized as a blood pump in carrying out cardiac

operations. Also, the magnetohydrodynamic flow with suspension has been

studied by Parsad and Ramacharyulu [6], and Srivastava and Agrawal [17] con-

sidered the blood as an electrically conducting fluid and that it constitutes a

suspension of red cells in plasma.

Flow through a porous medium has been studied by a number of work-

ers employing Darcy’s law [15]. Some studies about this point have been made

by Varshney [22], Raptis and Perdikis [13], and El-Dabe and El-Mohendis

[4].

Here, we are interested in the nonlinear peristaltic pumping of MHD flow

through a porous medium, and due to the complexity of the nonlinear equa-

tions of motion, we only consider the case: a symmetric, harmonic, infinite

wave train having a wavelength that is large relative to the gap between the

walls; transverse displacement only; and electrically conducting fluid. This

problem may be considered as a mathematical representation to the case of

gall bladder and bile duct with stones under a uniform magnetic field. The gall

stones cause fibrosis of the gall bladder, thus when a stone is later impacted

in the common bile duct, jaundice results and gall bladder cannot dilate as it

fibrosed as a result of the cholecystitis due to stones.

A regular perturbation series is used to solve the problem; variables are

expanded in a power series of the parameter δ, which is defined as the ratio

of half width of the channel to the wavelength of the peristaltic wave. Closed

form solutions up to order δ2 are presented.

2. Formulation of the problem. Consider the two-dimensional unsteady

hydromagnetic flow of a viscous, incompressible, and electrically conducting

fluid in an infinite channel having width 2a and filled with a homogeneous

porous medium. A uniform magnetic filed B′0 is acting along the Ȳ -axis and

the induced magnetic field is assumed to be negligible. We assume an infinite

wave train travelling with velocity c along an electrically insulated walls. We

choose a rectangular coordinate system for the channel with X̄ along the center

line in the direction of wave propagation, and Ȳ transverse to it. The geometry

of the wall surface is defined as
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h̄
(
X̄,t

)= a+bsin
{

2π
λ
(
X̄−ct)

}
, (2.1)

where b is the wave amplitude and λ is the wavelength.

We carry out this investigation in a coordinate system moving with the wave

speed, in which the boundary shape is stationary. The coordinates and veloci-

ties in the laboratory frame (X̄, Ȳ ) and the wave frame (x̄, ȳ) are related by

x̄ = X̄−ct, ȳ = Ȳ ,
ū= Ū−c, v̄ = V̄ , (2.2)

where Ū , V̄ and ū, v̄ are the velocities components in the corresponding coor-

dinate systems.

Using these transformations and introducing the following dimensionless

variables:

x = 2πx̄
λ
, y = ȳ

a
, u= ū

c
, v = v̄

c
,

h= h
(
x̄
)

a
, p = 2πa2

λµc
p̄
(
x̄
)
, τ = 2πct

λ
, ψ= ψ̄

ca
,

(2.3)

we find that the equation which governs the MHD flow in terms of the stream

function ψ(x,y) after eliminating the pressure gradient is

δRe
{(
∂ψ
∂y

∂
∂x

− ∂ψ
∂x

∂
∂y

)
∇2ψ

}
=∇4ψ−M2 ∂2ψ

∂y2
− 1
K
∇2ψ, (2.4)

where

u= ∂ψ
∂y
, v =−δ∂ψ

∂x
, ∇2 = δ2 ∂2

∂x2
+ ∂2

∂y2
, (2.5)

and the dimensionless parameters: Reynolds number Re= caρ/µ, wave num-

ber δ = 2πa/λ, Hartmann number M = √σ/µBoa (suitably greater than
√

2),

and permeability parameter K = k/a2, where ρ is the density, µ the viscosity

of the fluid, σ electrical conductivity of the fluid, and k the permeability of the

porous medium.

3. Rate of volume flow and boundary conditions. The instantaneous vol-

ume flow rate in the fixed frame is given by

Q=
∫ h̄

0
Ū
(
X̄, Ȳ ,t

)
dȲ , (3.1)

where h̄ is a function of X̄ and t.
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The rate of volume flow in the wave frame is given by

q =
∫ h̄

0
ū
(
x̄, ȳ

)
dȳ, (3.2)

where h̄ is a function of x̄ alone. If we substitute (2.2) into (3.1) and make use

of (3.2), we find that the two rates of volume flow are related through

Q= q+ch̄. (3.3)

The time-mean flow over a period T at a fixed position X̄ is defined as

Q̄= 1
T

∫ T
0
Qdt. (3.4)

Substituting (3.3) into (3.4) and integrating, we get

Q̄= q+ac. (3.5)

On defining the dimensionless time-mean flows θ and F , respectively, in the

fixed and wave frame as

θ = Q̄
ac
, F = q

ac
, (3.6)

one finds that (3.5) may be written as

θ = F+1, (3.7)

where

F =
∫ h

0

∂ψ
∂y
dy =ψ(h)−ψ(0). (3.8)

We note that h represents the dimensionless form of the surface of the

peristaltic wall:

h(x)= 1+φsinx, (3.9)

where

φ= b
a

(3.10)

is the amplitude ratio or the occlusion.

If we select the zero value of the streamline at the streamline (y = 0):

ψ(0)= 0, (3.11)
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then the wall (y = h) is a streamline of value

ψ(h)= F. (3.12)

The boundary conditions for the dimensionless stream function in the wave

frame are

ψ= 0,
∂2ψ
∂y2

= 0, on y = 0,

∂ψ
∂y

=−1, ψ= F, on y = h.
(3.13)

4. Perturbation solution. In order to solve the present problem, we expand

the flow quantities in a power series of the small parameter δ as follows:

ψ=ψ0+δψ1+δ2ψ2+··· ,
F = F0+δF1+δ2F2+··· ,
∂p
∂x

= ∂p0

∂x
+δ∂p1

∂x
+δ2 ∂p2

∂x
+··· .

(4.1)

On substituting (4.1) into (2.4) and (3.13), collecting terms of equal powers

of δ, and then equating the coefficients of like powers on both sides of the

equations, we obtain the following set of problems.

4.1. Zero-order problem. We need to solve

(
∂2

∂y2
−γ2

)
∂2ψ0

∂y2
= 0 (4.2)

subject to the boundary conditions:

ψ0 = 0,
∂2ψ0

∂y2
= 0, on y = 0,

ψ0 = F0,
∂ψ0

∂y
=−1, on y = h,

(4.3)

where γ = √1/K+M2.

The solution of (4.2) in terms of stream function is given by

ψ0 =
(
F0γ+tanhγh
γh−tanhγh

)(
y− sinhγy

γ coshγh

)
− sinhγy
γ coshγh

. (4.4)

We point out that this problem is essentially the classical Poiseuille MHD flow.

It can be easily shown that [9]

lim
γ→0
ψ0 =−3

2

(
F0+h

){1
3
y3

h3
− y
h

}
−y. (4.5)
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4.2. First-order problem. On substituting the zero-order solution (4.4) into

the equation of motion obtained for first order in δ, one finds that the latter

equation reduces to

(
∂2

∂y2
−γ2

)
∂2ψ1

∂y2
= Re

{(
∂ψ0

∂y
∂
∂x

− ∂ψ0

∂x
∂
∂y

)
∂2ψ0

∂y2

}
. (4.6)

The solution of (4.6) subject to the first-order boundary conditions:

ψ1 = 0,
∂2ψ1

∂y2
= 0, on y = 0,

ψ1 = F1,
∂ψ1

∂y
= 0, on y = h,

(4.7)

is given as

ψ1 = c11y2 sinhγy+c12y coshγy+c13 sinhγy

+ F1(sinhγy−γy coshγy)
sinhγh−γhcoshγh

+Dy,
(4.8)

where the constants c11, c12, c13, and D are listed in Appendix A.

4.3. Second-order problem. As before, we insert the zero- and first-order

solutions into the equations of motion obtained for δ2 and find that

(
∂2

∂y2
−γ2

)
∂2ψ2

∂y2
= Re

{(
∂ψ1

∂y
∂
∂x

− ∂ψ1

∂x
∂
∂y

)
∂2ψ0

∂y2

+
(
∂ψ0

∂y
∂
∂x

− ∂ψ0

∂x
∂
∂y

)
∂2ψ1

∂y2

}
−2

∂4ψ0

∂y2∂x2
+ 1
K
∂2ψ0

∂x2
.

(4.9)

Using the zero-order and the first-order solutions in (4.9) and then applying

the boundary conditions:

ψ2 = 0,
∂2ψ2

∂y2
= 0, on y = 0,

ψ2 = F2,
∂ψ2

∂y
= 0, on y = h,

(4.10)

we find that the stream function ψ2 turns out to be

ψ2 = c34y4 sinhγy+c35y3 coshγy+c36y2 sinhγy

+c37y coshγy+c38 sinhγy+c39y cosh2γy+c40 sinh2γy

− c29

γ2

(
y3+ 6y

γ2

)
− A
γ2
y+ F2(sinhγy−γy coshγy)

sinhγh−γhcoshγh
+E sinhγy.

(4.11)
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Here, the coefficients c34, c35, c36, c37, c38, c39, c40, c29, A, and E are listed in

Appendix B.

Summing up, we write the perturbation solution through order 2 as follows:

ψ=
(
F0γ+tanhγh
hγ−tanhγh

)(
y− sinhγy

γ coshγh

)
− sinhγy
γ coshγh

+δ
{
c11y2 sinhγy+c12y coshγy+c13 sinhγy

+
(
F1 sinhγy−γy coshγy

)
sinhγh−γhcoshγh

+Dy
}

+δ2
{
c34y4 sinhγy+c35y3 coshγy+c36y2 sinhγy

+c37y coshγy+c38 sinhγy+c39y cosh2γy+c40 sinh2γy

−
(
c29

γ2

)(
y3+ 6y

γ2

)
−
(
A
γ2

)
y

+ F2(sinhγy−γy coshγy)
sinhγh−γhcoshγh

+E sinhγy
}
.

(4.12)

5. Pressure gradient. When the flow is steady in the wave frame, one can

characterize the pumping performance by means of the pressure rise per wave-

length. On substituting (4.1) into the dimensionless equation of motion and

equating the coefficient of like powers of δ on both sides of the equation, we

obtain a set of partial differential equations for ∂p0/∂x, ∂p1/∂x, and ∂p2/∂x.

The nondimensional pressure rise and the nondimensional friction force per

wavelength in the wave frame are defined, respectively, as

�pλ = 2πa2

λµc
�p̄λ =

∫ 2π

0

(
dp
dx

)
dx, Fλ =

∫ 2π

0
−h
(
dp
dx

)
dx. (5.1)

Since ∂p/∂x is periodic in x, the pressure rise and the friction force per wave-

length in the longitudinal direction are independent ofy [11], and the integrals

in (5.1) can be evaluated numerically on the axis at y = 0. Now,

�pλ =�pλ0+δ�pλ1+δ2�pλ2+··· ,
Fλ = Fλ0+δFλ1+δ2Fλ2+··· , (5.2)

and we compute the pressure rise and friction force per wavelength at each

order for a wall shape of the sinusoidal form defined by (3.9). Using the zero-,
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first-, and second-order terms for the pressure gradient in (5.1), we obtain

�p(2)λ =
∫ 2π

0

{
− γ

2
(
F(2)+γ−1 tanhγh

)
(
h−γ−1 tanhγh

)

+δ
[
− γ2

(
c14−hc15

)
(
h−γ−1 tanhγh

) −γ2c15−Re
(
c01c′01+c02c′02

)]

+δ2
[
6c35+6γc36+2γ2c37+11γ2c39+6γ3c40+A+

(
c
′′
01−c

′′
02

)

−Re
[(
c12−γ2D+γc13

)(
c′01−c′02

)

+(c01−c02
)(
c′12−γ−2D′ +γc′13

)]]}
dx,

F(2)λ =
∫ 2π

0

{
hγ2

(
F(2)+γ−1 tanhγh

)
(
h−γ−1 tanhγh

)

+hδ
[
γ2
(
c14−hc15

)
(
h−γ−1 tanhγh

) +γ2c15+Re
(
c01c′01+c02c′02

)]

−hδ2
[
6c35+6γc36+2γ2c37+11γ2c39+6γ3c40+A+

(
c
′′
01−c

′′
02

)

−Re
[(
c12−γ−2D+γc13

)(
c′01−c′02

)

+(c01−c02
)(
c′12−γ−2D′ +γc′13

)]]}
dx,

(5.3)

where �p(2)λ , F(2)λ , and F(2) are the pressure rise, the friction force, and the

flow rate, respectively, in the wave frame to the second order in δ,

�p(2)λ ≡�pλ0+δ�pλ1+δ2�pλ2 ,

F(2)λ ≡ Fλ0+δFλ1+δ2Fλ2 ,

F(2) ≡ F0+δF1+δ2F2.

(5.4)

We note that the relation between the dimensionless flow rate in the frame F(2)

and that in the time-mean flow rate in the lab frame θ(2) is given by

θ(2) = F(2)+1. (5.5)

We have here the second order of the pressure rise as a nonlinear function

of the time-mean flow. For completeness, we give the second-order expression
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of the stream function ψ(2) in terms of F(2),

ψ(2) =
(
F(2)+(1/γ)tanhγh

)
y

h−(1/γ)tanhγh
−

(
F(2)+h)sinhγy

γ coshγh
(
h−(1/γ)tanhγh

)

+δ{c11y2 sinhγy+c12y coshγy+c13 sinhγy+Dy}

+δ2
{
c34y4 sinhγy+c35y3 coshγy+c36y2 sinhγy

+c37y coshγy+c38 sinhγy+c39y cosh2γy

+c40 sinh2γy− c29

γ2

(
y3+ 6y

γ2

)
− A
γ2
y+E sinhγy

}
.

(5.6)

6. Discussion of results. The results of our analysis are presented as fol-

lows:

(1) pumping characteristics;

(2) the streamlines and trapping regions for the parameters {Re,ϕ,δ,γ,
θ(2)}.

6.1. Pumping characteristics. Figure 6.1 is a graph of the dimensionless

pressure change per wavelength (�p(2)λ ) versus the dimensionless flow rate

(θ(2)) for the case {Re = 0,φ = 0.5,M = 2.5 (MHD),K = 0.8,δ = 0,1,2,3}. The

graph is sectored so that the upper right-hand quadrant (I) denotes the region

of peristaltic pumping, where θ(2) > 0 (positive pumping) and �p(2)λ > 0 (ad-

verse pressure gradient). Quadrant (II), where �p(2)λ < 0 (favorable pressure

gradient) and θ(2) > 0 (positive pumping), is designated as augmented flow.

Quadrant (IV) such that �p(2)λ > 0 (adverse pressure gradient) and θ(2) < 0 is

called retrograde or backward pumping. The flow is opposite to the direction

of the peristaltic motion.

Figure 6.1(a) shows that the peristaltic pumping rate (θ(2)) increases (for the

same�p(2)λ ) as δ(≡ 2πa/λ) increases. Also shown in Figure 6.1(a) the case for

ϕ = 0, γ → 0 (M → 0 and K→∞) which is the classical Poiseuille flow through

a two-dimensional channel. Figure 6.1(b) is similar to Figure 6.1(a) except that

Re = 10 and δ = 0, 0.05, 0.1, 0.15. It is clear that the relation between �p(2)λ
(pressure change per wavelength) and the flow rate θ(2) is linear for Re= 0 and

nonlinear for Re≠ 0.

Figure 6.2(a) is a graph of the pressure change per wavelength (�p(2)λ ) ver-

sus the observer flow rate (θ(2)) for {ϕ = 0.3,Re = 1,δ = 0.06,K = 0.8,M =
2,4,6,8}. Figure 6.2(b) is a graph of the dimensionless friction force versus

the observer flow rate for {ϕ = 0.3,Re= 1,δ= 0.06,K = 0.8,M = 2,4,6,8}. We

observe that an increase in M results in an increase in the peristaltic pumping

rate (for the same (�p(2)λ )) and also in an increase in the pressure rise. Also

we observe that the friction force has the opposite behavior compared to the

pressure rise.
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(a)
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Figure 6.1. The pressure gradient per wavelength�p(2)λ versus the

dimensionless flow rate θ(2) for ϕ = 0.5, M = 2.5, K = 0.8, and
different values of δ, at (a) Re = 0 and (b) Re = 10 (ϕ → 0, γ → 0
Poiseuille flow).
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(a) The pressure gradient per wavelength�p(2)λ versus the

dimensionless flow rate θ(2) for Re = 1, ϕ = 0.3, K = 0.8,
δ= 0.06, and different values of M .
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(b) The frictionless force per wavelength F(2)λ versus the

dimensionless flow rate θ(2) for Re = 1, ϕ = 0.3, K = 0.8,
δ= 0.06, and different values of M .
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Figure 6.2



1674 KH. S. MEKHEIMER AND T. H. AL-ARABI

Figure 6.3(a) is a graph of the pressure change per wavelength (�p(2)λ )
versus the observer flow rate (θ(2)) for {ϕ = 0.3,δ = 0.06,M = 2,Re = 1,
K = 0.2,0.4,1,3}. Figure 6.3(b) is a graph of the dimensionless friction force

versus the observer flow rate for {ϕ = 0.3,δ= 0.06,M = 2,Re= 1,K = 0.2,0.4,1,3}.
We observe that an increase in K results in a decrease in the peristaltic pump-

ing rate (for the same (�p(2)λ )), and also, a decrease in the pressure rise.

Also the friction force has the opposite behavior compared to the pressure

rise.

We define the maximum pressure rise (�p(2)λ )max, which is obtained by

putting θ(2) = 0 and would occur in a channel, whose exit was shut off, as

(�p(2)θ=0). Figure 6.4(a) is a graph of (�p(2)λ )max versus K for varying values of

M at δ = 0.06, ϕ = 0.2, and Re = 1, which shows the effects of M and K on

the pumping rate, and we observe that for the same (�p(2)λ )max the affect of

magnetic field increases as permeability parameter increases. Figure 6.4(b) is

a graph of the maximum pressure rise (�p(2)λ )max versus the amplitude ratio

ϕ for different values of K at δ = 0.06, M = 2.5, and Re = 1. It is clear that

the maximum pressure rise increases as ϕ and M increase and decrease as K
increases.

6.2. Streamlines and fluid trapping. The phenomenon of trapping, whereby

a bolus (defined as a volume of fluid bounded by a closed streamlines in the

wave frame) is transported at the wave speed, has been studied by several

investigators (Shapiro et al. [9], Jaffrin [7], and Siddiqui and Schwarz [16]). Fig-

ures 6.5(a), 6.5(b), and 6.5(c) are graphs of the streamlines for the conditions

{ϕ = 0.4,δ= 0.06,M = 1.5,K = 1,Re= 0}, and θ(2) = 0.4,1.2, 1.8, respectively.

In Figure 6.5(a) the case of typical Stokes nontrapping region for peristaltic

pumping, the adverse pressure gradient (�p(2)λ ) > 0 is almost large enough to

cause zero pumping. While Figure 6.5(b) shows the center line trapped eddy,

which was described by Jaffrin [7] and Siddiqui [16], the width of the eddy

(measured on the centerline) increases and the eddy lifts off the center line

and forms a torus-shaped eddy with flow through the center, in case of in-

creasing θ(2). We also observe that a smaller trapped bolus in the crest of the

peristaltic wave (see Figure 6.5(c)), and as θ2 becomes large, the flow has the

same form as the flow through a two-dimensional symmetric channel, having

an axial sinusoidal variation of its width.

The effect of the Hartmann number M on the peristaltic velocity is demon-

strated in Figures 6.6(a), 6.6(b), and 6.6(c) for {ϕ = 0.4,δ= 0.06,Re= 1,θ(2) =
0.8,K = 1,M = 2,5,7}, which shows that as the M increases the center line

trapped eddy disappears and the fluid moves like a block, and as M becomes

larger the rigidity of the fluid appears. The effect of the permeability parameter

on the peristaltic velocity is demonstrated in Figures 6.7(a), 6.7(b), and 6.7(c)

for {ϕ = 0.4,δ = 0.06,Re = 1.0,θ(2) = 0.8,M = 2,K = 0.02,0.08,0.15}, which

shows that as the permeability parameter increases the center line trapped

eddy appears. Small values of K shows some sort of rigidity of fluid.
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(a) The pressure gradient per wavelength�p(2)λ versus the

dimensionless flow rate θ(2) for Re = 1, ϕ = 0.3, M = 2,
δ= 0.06, and different values of K.
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(b) The frictionless force per wavelength F(2)λ versus the

dimensionless flow rate θ(2) for Re = 1, ϕ = 0.3, M = 2,
δ= 0.06, and different values of K.
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Figure 6.3
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(a) The maximum pressure gradient per wavelength

(�p(2)λ )max versus the permeability parameter K for Re=
1, ϕ = 0.2, δ= 0.06, and different values of M .
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(b) The maximum pressure gradient per wavelength

(�p(2)λ )max versus the amplitude ratio ϕ for Re = 1,
M = 2.5, δ= 0.06, and different values of K.
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Figure 6.5. The streamlines for M = 1.5, ϕ = 0.4, δ= 0.06, K = 1.0,
and Re= 0 at (a) θ(2) = 0.4, (b) θ(2) = 1.2, and (c) θ(2) = 1.8.
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Figure 6.6. The streamlines for K = 1,ϕ = 0.4, δ= 0.06, θ(2) = 0.8,
and Re= 1, at (a) M = 2, (b) M = 5, and (c) M = 7.
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Figure 6.7. The streamlines forM = 2,ϕ = 0.4, δ= 0.06, θ(2) = 0.8,
and Re= 1, at (a) K = 0.02, (b) K = 0.08, and (c) K = 0.15.
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Appendices

A. Constants of the first-order solution in δ in terms of F(2)

c01 = F
(2)+(1/γ)tanhγh
h−(1/γ)tanhγh

, c02 = c01+1
coshγh

, c03 = γc′01c02,

c04 =−
(
c01c′02+c′01c02

)
, c11 = Re

4γ2
c03, c12 = Re

2γ2

(
c04− 3

2
c03

)
,

c13 = 3Re
8γ4

c03+ c14−hc15

sinhγh−γhcoshγh
− Re

4M3
c04,

c14 =−c11h2 sinhγh−c12hcoshγh−
(

3Re
8γ4

c03+ Re
4M3

c04

)
sinhγh,

c15 =−c11
(
γh2 coshγh+2hsinhγh

)−c12(γhsinhγh+coshγh)

−
(

3Rec03

8γ3
+ Re

4γ2
c04

)
coshγh, D =

(
c14−hc15

)
(
h−(1/γ)tanhγh

) +c15.

(A.1)

B. Constants of the second-order solution in δ in terms of F(2)

E =−
(
hc42−c41

)
γ coshγh

(
h−(1/γ)tanhγh

) , A= γ2(c42+γE coshγh
)
, (B.1)

where,

c41 = c34h4 sinhγh+c35h3 coshγh+c36h2 sinhγh+c37hcoshγh

+c38 sinhγh+c39hcosh2γh+c40 sinh2γh− c29

γ2

(
h3+ 6h

γ2

)
,

c42 = γc34h4 coshγh+(4c34+γc35
)
h3 sinhγh

+(3c35+γc36
)
h2 coshγh+(2c36+γc37

)
hsinhγh+(c37+γc38

)
coshγh

+2γhc39 sinh2γh+(c39+2γc40
)
cosh2γh− c29

γ2

(
3h2+ 6

γ2

)
,

c34 = c27

8γ
, c35 =− c27

4γ2
+ c28

6γ
, c36 = 3c27

8γ3
− c28

4γ2
+ c31

4γ
,

c37 = 3c27

8γ4
+ c28

4γ3
− c31

4γ2
+ c33

2γ
, c38 = 3c27

16γ5
− c28

8γ4
+ c31

8γ3
, c39 = c30

3γ2
,

c40 =−4c30

9γ3
+ c32

3γ2
, c33 =−24c26

γ5
+ 6c24

γ4
− 2c25

γ3
+ c22

γ2
+ 2c

′′
02

γ
,

c32 =−
(
c20+c23

)
8γ3

+ 1
8γ2

c21, c31 = 18c26

γ4
− 4c24

γ3
+ c25

γ2
,

c30 = 1
8γ2

(
c20+c23

)
, c29 =− 1

12

(
c20+c23

)
, c28 = 6c26

γ3
+ 1
γ2
c24,
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c27 = 1
γ2
c26, c26 =−Reγ3c′01c

′
11,

c25 = Re
(
4γc01c′11+γ2c′12c01−D′c02−6c′01c11−3γ2c′01c12−γ3c′01c13

)
,

c24 = Re
(
γ2c01c′11−6γ2c′01c11−γ3c′01c12

)
, c23 =−4.0Reγc02c′11,

c22 = Re
(
D
γ
c′02+2c01c′11+2γc′12c01+γ2c01c′13

)
,

c21 = Re
(
6c′02c11−2c02c′11+2γc02c′12+2γc′02c12

)
, c20 = 4Reγc11c′02.

(B.2)
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