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We show that the category BCH of BCH-algebras and BCH-homomorphisms is com-
plete. We also show that it has coequalizers, kernel pairs, and an image factoriza-
tion system. It is also proved that onto homomorphisms and coequalizers, and
monomorphisms and one-to-one homomorphisms coincide, respectively, in BCH.
It is shown that MBCI is a coreflexive subcategory of BCH. Regular homomorphisms
have been defined and their properties are studied. An open problem has been
posed.
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1. Introduction. In 1966, Imai and Iséki introduced two classes of abstract

algebras, BCK-algebras and BCI-algebras [10, 11]. The notion of a BCI-algebra

is a generalization of the notion of a BCK-algebra. These algebras have been

studied extensively by various researchers but little attention has been given

to their categorical aspects. Some categorical aspects of these algebras have

been investigated by Chaudhry and Bhatti [3], Hoo [6], Iséki [12], and Yutani

[19, 20, 21].

In 1983, Hu and Li [8, 9] introduced the notion of a BCH-algebra, which is

a generalization of the notions of BCK- and BCI-algebras. They have studied

a few properties of these algebras. Certain other properties of these algebras

have been studied by Chaudhry [2] and Dudek and Thomys [4]. But, categorical

aspects of these algebras have not yet been investigated. The purpose of this

paper is to initiate a study about categorical aspects of BCH-algebras.

We will follow standard definitions. Our categorical concepts will be those

of standard texts [1, 17] to which we refer the reader for the definitions of

standard categorical terms. We denote by BCK(BCI) the category of BCK(BCI)-

algebras and BCK(BCI)-homomorphisms. Recall that in both categories, a ho-

momorphism f :X → Y means f(x1∗x2)= f(x1)∗f(x2). This implies f(0)=
0 and x ≤y gives f(x)≤ f(y).

A BCH-algebra is an algebra (X,∗,0) of type (2,0) satisfying the following

conditions:

(1) x ≤ x,

(2) x ≤y and y ≤ x imply x =y ,

(3) (x∗y)∗z = (x∗z)∗y , where x ≤y if and only if x∗y = 0 (see [8]).

In any BCH-algebra, the following hold:

(4) x∗(x∗y)≤y (see [8]),
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(5) x∗0= 0 implies x = 0 (see [8]),

(6) 0∗(x∗y)= (0∗x)∗(0∗y) (see [4]),

(7) x∗0= x (see [4]),

(8) (x∗y)∗x = 0∗y (see [8]),

(9) x ≤y implies 0∗x = 0∗y (see [2]).

It is known that every BCI-algebra is a BCH-algebra but not conversely [8, 9].

A BCH-algebra X is called proper if it is not a BCI-algebra. It is known that

proper BCH-algebras exist. It is known [9] that in a BCH-algebra, x ≤y implies

x∗z ≤ y∗z and x ≤ y implies z∗y ≤ z∗x do not hold. The set X+{x : x ∈
X, 0≤ x} is called the BCA-part of a BCH-algebra X. It is known that X+ is an

ideal of X (see [2]).

A BCH-homomorphism f : X → Y means f(x1∗x2) = f(x1)∗f(x2). This

implies f(0) = 0 and x ≤ y gives f(x) ≤ f(y). The category of BCH-algebras

and BCH-homomorphisms is denoted by BCH. We will denote a general cate-

gory by K, its objects by |K|, and the set of morphisms from a K-object A into

a K-object B by K(A,B).
Our notions of BCK-algebras will be as developed in [14, 15], those of BCI-

algebras will be as in [5, 7, 13, 16, 18], and those of BCH-algebras will be as in

[2, 4, 8, 9].

2. Limits in BCH. In this section, we show that the category BCH has arbi-

trary products and equalizers.

Theorem 2.1. The category BCH has arbitrary products.

Proof. Let {Xα : α ∈ J} be a family of BCH-algebras. Let
∏
α∈J Xα = {f |f :

J →⋃α∈J Xα is a function, f(α)∈Xα for all α∈ J}.
We define the binary operation∗ in

∏
α∈I Xα by (f∗g)(α)= f(α)∗g(α) for

all α ∈ J. Then routine calculations give that
∏
α∈J Xα is a BCH-algebra under

this operation with zero as zero function given by 0(α)= 0α, 0α being the zero

of Xα.

Further, the mapping prα :
∏
α∈J Xα → Xα, α ∈ J, defined by prα(f)= f(α),

for all α∈ J, is a BCH-homomorphism. Further, for all X ∈ |BCH |, fα ∈ BCH(X,
Xα), α∈ J, the mappingψ :X →∏α∈J Xα defined by (ψ(x))(α)= fα(x) for all

x ∈X, α∈ J is the unique BCH-homomorphism making the following diagram

commutative:

∏

α∈J
Xα prα

=
Xα.

X

fα
ψ

(2.1)

This completes the proof.
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Theorem 2.2. The category BCH has equalizers.

Proof. Let f ,g ∈ BCH(X,Y). Define Z = {x : x ∈ X, f(x) = g(x)}. It is

easy to verify that Z is a subalgebra of X. Let i : Z →X be imbedding of Z into

X, given by i(z)= z for all z ∈ Z . Obviously, i∈ BCH(Z,X) and satisfies f ◦i=
g ◦ i. Further, let C ∈ |BCH | and let h ∈ BCH(C,X) be such that f ◦h = g ◦h.

Then the function ψ : C → Z given by ψ(c) = h(c) is well defined because

f(h(c)) = g(h(c)) implies h(c) ∈ Z for all c ∈ C . Further, ψ ∈ BCH(C,Z)
and is the unique such BCH-homomorphism making the following diagram

commutative:

Z
i

=
X

f

g
Y .

C

h
ψ (2.2)

Thus, i= eq(f ,g). This completes the proof.

Since a categoryK with arbitrary products and equalizers has arbitrary limits

[17], we have the following theorem.

Theorem 2.3. The category BCH has arbitrary limits and is complete.

We now pose the following problem.

Open problem. Whether the category BCH has coproducts or not.

3. Monomorphisms, epimorphisms, and coequalizers in BCH. In this sec-

tion, we show that BCH has kernel pairs and coequalizers. It is also proved

that onto homomorphisms and coequalizers, and monomorphisms and one-

to-one homomorphisms coincide, respectively, in BCH. Further, onto homo-

morphisms are epimorphisms but the converse is not obvious. However, we

give a partial solution of the converse.

We now prove the following propositions which will be used in the sequel.

Their proofs are carried out on the lines of the proofs given by Hoo [6] for

similar results about the categories BCK and BCI.

Proposition 3.1. In BCH, onto homomorphisms are epimorphisms.

Proof. Let f ∈ BCH(X,Y) be an onto homomorphism. Let Z ∈ |BCH | and

let g1,g2 ∈ BCH(Y ,Z) be such that g1 ◦f = g2 ◦f . We will prove that g1 = g2.

Now, g1◦f = g2◦f implies g1(f (x))= g2(f (x)) for all x ∈X. Let y ∈ Y . Since

f is onto, so there exists an x1 ∈ X such that f(x1) = y . Hence, g1(f (x1)) =
g2(f (x1)) or g1(y)= g2(y) for all y ∈ Y , that is, g1 = g2. This completes the

proof.
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Proposition 3.2. In BCH, one-to-one homomorphisms are monomorphisms.

Proof. Let f ∈ BCH(X,Y) be a one-to-one homomorphism. Let Z ∈ |BCH |
and let g1,g2 ∈ BCH(Z,X) be such that f ◦g1 = f ◦g2 which gives f(g1(z))=
f(g2(z)) for all z ∈ Z . Since f is a one-to-one homomorphism, it follows that

g1(z)= g2(z) for all z ∈ Z , that is, g1 = g2. This completes the proof.

We now prove the following results.

Theorem 3.3. The category BCH has kernel pairs.

Proof. Let f ∈ BCH(X,Y). Let Z = {(x1,x2) : x1,x2 ∈ X, f(x1) = f(x2)}.
Obviously, Z is a subalgebra of the product algebra X×X. Let p1,p2 : Z → X
be defined by p1(x1,x2)= x1 and p2(x1,x2)= x2 for all (x1,x2)∈ Z . It is easy

to verify that p1 and p2 are BCH-homomorphisms and satisfy f ◦p1 = f ◦p2.

We claim that the pair (p1,p2) is a kernel pair of f . Let g1,g2 ∈ BCH(D,X)
be such that f ◦g1 = f ◦g2. We take g :D→ Z as

g(d)= (g1(d),g2(d)
) ∀d∈D. (3.1)

Now, g is well defined because f ◦g1 = f ◦g2 gives f(g1(d))= f(g2(d)), which

gives (g1(d), g2(d))∈ Z . Further

g
(
d1∗d2

)= (g1
(
d1∗d2

)
,g2
(
d1∗d2

))

= (g1
(
d1
)∗g1

(
d2
)
,g2
(
d1
)∗g2

(
d2
))

= (g1
(
d1
)
,g2
(
d1
))∗(g1

(
d2
)
,g2
(
d2
))

= g(d1
)∗g(d2

)
.

(3.2)

Thus, g ∈ BCH(D,Z) and satisfies p1 ◦g = g1 and p2 ◦g = g2.

Now, we prove that g is unique. Let g′ ∈ BCH(D,Z) be such that p1◦g′ = g1

and p2 ◦g′ = g2. Let g′(d)= (ad,bd).
Now, p1 ◦g′ = p1 ◦g gives p1(ad,bd) = p1(g1(d),g2(d)) which gives ad =

g1(d). Similarly, we can prove that bd = g2(d). Thus, g′(d)= (g1(d),g2(d))=
g(d) for all d∈D. Hence, g is unique. This completes the proof.

Theorem 3.4. Let f ∈ BCH(X,Y) be onto, then f is a coequalizer.

Proof. Let f : X → Y be onto and let X×X be the product BCH-algebra of

X with itself. Let Z = {(x1,x2) : x1, x2 ∈ X,f(x1) = f(x2)}. Obviously, Z is a

subalgebra of X×X and thus Z ∈ |BCH |. Let p1,p2 : Z →X be defined by

p1
(
x1,x2

)= x1, p2
(
x1,x2

)= x2 ∀(x1,x2)∈ Z. (3.3)

It is easy to verify that p1 and p2 are BCH-homomorphisms and satisfy f ◦p1 =
f ◦p2. Let g ∈ BCH(X,C) be such that g◦p1 = g◦p2. Since f :X → Y is onto, so

for any y ∈ Y , there exists an x ∈X such that f(x)=y . We define h : Y → C by

h(y)= g(x), where f(x)=y for all y ∈ Y . To show that h is well defined, we
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consider f(x1) = f(x2) = y , say. This implies (x1,x2) ∈ Z and g◦p1 = g◦p2

gives g(x1) = g(x2). Thus, h(y) = g(x1) = g(x2). Further, let y1,y2 ∈ Y ,

then there exist x1,x2 ∈ X such that f(x1) = y1 and f(x2) = y2, and hence

g(x1) = h(y1) and g(x2) = h(y2). Further, y1∗y2 = f(x1)∗f(x2) = f(x1∗
x2). Hence, h(y1∗y2) = g(x1∗x2) = g(x1)∗g(x2) = h(y1)∗h(y2). Thus,

h∈ BCH(Y ,C) and obviously it satisfies h◦f = g. The uniqueness of h follows

from the fact that f is an onto homomorphism and Proposition 3.1. Thus,

f = coeq(p1,p2).

Definition 3.5. Let f : X → Y be a homomorphism of BCH-algebras. The

kernel of f is defined by {x ∈X : f(x)= 0} and is denoted by Ker f .

Obviously, 0∈ Kerf and thus Kerf is nonempty.

Definition 3.6. A nonempty subset A of a BCH-algebra X is called an ideal

of X if (i) 0∈A and (ii) y∗x ∈A, x ∈A imply that y ∈A.

A nonempty subset A of a BCH-algebra X is called a closed ideal of X if (i)

0∗x ∈A for all x ∈A and (ii) y∗x ∈A, x ∈A imply that y ∈A.

It is known that every ideal is not necessarily closed. In the sequel, by an

ideal, we will always mean a closed ideal.

Definition 3.7. A BCH-algebra X is called medial if x∗(x∗y)=y for all

x,y ∈X.

It is known that a medial BCH-algebra is a medial BCI-algebra [4]. MBCI de-

notes the category of medial BCI-algebras and BCI-homomorphisms.

Proposition 3.8. Let f ∈ BCH(X,Y). Then Kerf is an ideal of X.

Proof. Let x ∈ Kerf . Then f(0∗x)= f(0)∗f(x)= 0∗0= 0. Thus, 0∗x ∈
Kerf for all x ∈ Kerf . Next, suppose x∗y , y ∈ Kerf . Then

0= f(x∗y)= f(x)∗f(y)= f(x)∗0= f(x). (3.4)

Hence, x ∈ Kerf . This proves that Kerf is an ideal of X.

Theorem 3.9. Let X,Y ,Z ∈ |BCH | and let f ∈ BCH(X,Y) be onto. Let g ∈
BCH(X,Z) be such that Kerf ⊆ Kerg. Then there exists a unique h∈ BCH(Y ,Z)
such that h◦f = g.

Proof. Let D = {(x1,x2) : x1,x2 ∈ X, f(x1) = f(x2)}. Then D is a subal-

gebra of X×X. Define p1,p2 : D → X as p1(x1,x2) = x1 and p2(x1,x2) = x2.

Obviously, p1 and p2 are BCH-homomorphisms and satisfy f ◦p1 = f ◦p2.

Let (x1,x2) ∈ D. Then f(x1) = f(x2) which gives that x1 ∗x2 ∈ Kerf and

x2 ∗ x1 ∈ Kerf . Since Kerf ⊆ Kerg, it follows that g(x1) = g(x2). Thus,

g ◦p1 = g ◦p2. Since every coequalizer in a category K is a coequalizer of its

kernel pairs and the BCH-algebraD, together with the projections p1 and p2, is

a kernel pair of f , then f = coeq(p1,p2). So by the definition of a coequalizer,

there exists a unique homomorphism h : Y → Z making the following diagram
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commutative, that is, h◦f = g:

D
p1

p2

X

g

f

=
Y

h

Z.

(3.5)

This completes the proof.

In the coming results, we will need the definitions of regular congruences

and quotient algebras and for these, we refer the reader to [2].

Theorem 3.10. Every coequalizer in BCH is an onto homomorphism.

Proof. Let f ∈ BCH(X,Y) be a coequalizer. Since every coequalizer in

a category K is a coequalizer of its kernel pairs and the BCH-algebra Z =
{(x1,x2) : x1, x2 ∈ X, f(x1) = f(x2)}, together with the projections defined

in Theorem 3.4, is a kernel pair of f , therefore f = coeq(p1,p2). We further

note that Z is a regular congruence on X generated by Kerf =K because

Z = {(x1,x2
)

: x1,x2 ∈X, f
(
x1
)= f (x2

)}

= {(x1,x2
)

: f
(
x1∗x2

)= 0= f (x2∗x1
)}

= {(x1,x2
)

: x1∗x2 ∈K, x2∗x1 ∈K
}
.

(3.6)

Let X/K be the corresponding quotient BCH-algebra and let nat : X → X/K be

defined by nat(x) = [x]K , where [x]K = {y ∈ X : (x,y) ∈ Z}. We consider

nat(x1 ∗x2) = [x1 ∗x2]K = [x1]K ∗ [x2]K = nat(x1)∗ nat(x2). Thus, nat ∈
BCH(X,X/K). Further, nat◦p1(x1,x2) = nat(x1) = [x1]K = [x2]K = nat(x2) =
nat◦p2(x1,x2) for all (x1,x2)∈ Z . Thus, nat◦p1 = nat◦p2. Since f = coeq(p1,
p2), there exists a unique ψ ∈ BCH(Y ,X/K) such that ψ◦f = nat, that is, the

following diagram commutes:

Z
p1

p2

X

nat

f

=
Y

ψ

X/K.

(3.7)

Let x ∈ Ker(nat). Then nat(x) = [0]K . But, nat(x) = [x]K . Thus, (0,x) ∈ Z ,

which gives x∗0 = x ∈ Kerf . Obviously, nat is onto. Thus, by Theorem 3.9,
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there exists a unique g ∈ BCH(X/K,Y) such that g ◦nat = f , that is, the fol-

lowing diagram commutes:

X

f

nat

=
X/K

g

Y .

(3.8)

Now

ψ◦g◦nat=ψ◦f = nat= IX/K ◦nat,

g◦ψ◦f = g◦nat= f = IY ◦f . (3.9)

Since nat is onto and f is a coequalizer, both are epimorphisms. Hence, (3.9)

gives that

ψ◦g = IX/K, g◦ψ= IY . (3.10)

Thus, ψ∈ BCH(Y ,X/K) is an isomorphism. Since nat is onto, f is onto.

Combining Theorems 3.4 and 3.10, we get that coequalizers and onto ho-

momorphisms coincide in the category BCH.

Theorem 3.11. Let f ∈ BCH(X,Y). Then f is a monomorphism if and only

if Kerf = {0}.
Proof. Let f ∈ BCH(X,Y). Obviously, Kerf ∈ |BCH |. Define g,h : Kerf →

X as g(x)= x andh(x)= 0. Then g,h∈ BCH(Kerf ,X) and satisfy f ◦g = f ◦h.

Since f is a monomorphism, it follows that g = h, that is, g(x)= h(x) for all

x ∈ Kerf , which gives x = 0. Thus, Kerf = {0}.
Conversely, suppose that Kerf = {0}. Let x1,x2 ∈ X be such that f(x1) =

f(x2), which gives f(x1 ∗x2) = 0 = f(x2 ∗x1). Thus, x1 ∗x2 ∈ Kerf and

x2∗x1 ∈ Kerf . Since Kerf = {0}, it follows that x1 = x2. Thus, f is one-to-

one. Now, Proposition 3.2 gives that f is a monomorphism. Hence the theorem

follows.

Theorem 3.12. In BCH, monomorphisms are one-to-one homomorphisms.

Proof. Let f ∈ BCH(X,Y) be a monomorphism. Let a1,a2 ∈ X be such

that f(a1)= f(a2). Let Z = {(x1,x2) : x1, x2 ∈X,f(x1)= f(x2)}. Then Z is a

subalgebra of the product algebra X×X. Let p1,p2 : Z →X be defined by (3.3).

It is easy to verify that p1 and p2 are BCH-homomorphisms satisfying f ◦
p1 = f ◦p2.
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Since f is a monomorphism, it follows that p1 = p2. Now, f(a1) = f(a2)
gives that (a1,a2) ∈ Z . Thus, p1(a1,a2) = p2(a1,a2), which gives a1 = a2.

This proves that f is a one-to-one homormorphism.

Remark 3.13. Combining Proposition 3.2 and Theorem 3.12, we get that, in

the category BCH, monomorphisms and one-to-one homomorphisms coincide.

Theorem 3.14. Let f ∈ BCH(X,Y) be an epimorphism. Then f is an onto

homomorphism whenever Y is a medial BCH-algebra.

Proof. Let f ∈ BCH(X,Y) be an epimorphism and Y a medial BCH-algebra.

Then it is easy to verify that f(X)= {f(x) : x ∈X} is a subalgebra, and hence

an ideal of Y , because every subalgebra of a medial BCH-algebra Y is an ideal

of Y , see [7]. So it follows that Y/f(X) is well defined. Define g,h : Y → Y/f(X)
as g(y)= [y]f(X) and h(y)= [0]f(X). Easy calculations give that g and h are

BCH-homomorphisms and satisfy g ◦f = h◦f . Since f is an epimorphism, it

follows that g = h. Thus, g(y) = h(y) for all y ∈ Y , which gives [y]f(X) =
[0]f(X). Thus, y∗0=y ∈ f(X). Hence, Y ⊆ f(X), proving that f is onto.

Corollary 3.15. Let X be a BCH-algebra and let f ∈ BCH(X,X/X+) be an

epimorphism. Then f is onto.

Proof. It follows from Theorem 3.14 because X/X+ is always medial [2].

Theorem 3.16. Let X,Y ,Z ∈ |BCH |, g ∈ BCH(X,Z), and let h ∈ BCH(Y ,Z)
be a monomorphism with Im(g) ⊆ Im(h). Then there exists a unique f ∈
BCH(X,Y) such that g = h◦f .

Proof. Let x ∈ X. Then g(x) ∈ Im(g) ⊆ Im(h). Since h is a monomor-

phism, so it is one-to-one. Thus, there exists a unique y ∈ Y such that h(y)=
g(x). Now, we define f : X → Y as f(x) = y if h(y) = g(x). First, we prove

that f is a homomorphism. Let x1,x2 ∈ X. Then there exist y1,y2 ∈ Y such

that h(y1)= g(x1) and h(y2)= g(x2). Further, h(y1∗y2)= h(y1)∗h(y2)=
g(x1)∗g(x2) = g(x1∗x2). Thus, f(x1∗x2) = y1∗y2 = f(x1)∗f(x2). Let

x ∈ X. Then there exists a unique y ∈ Y such that h(y) = g(x) which im-

plies f(x) = y . Now, h◦f(x) = h(f(x)) = h(y) = g(x) for all x ∈ X. Thus,

h◦f = g. The uniqueness of f follows from the fact thath is a monomorphism.

This completes the proof.

Theorem 3.17. Let f ∈ BCH(X,Y) and let i : f(X) → Y be an imbedding

of f(X) into Y , where f(X) = {f(x) : x ∈ X}. Then there exists exactly one

epimorphism f ∈ BCH(X,f (X)) such that i◦f = f . If f is a monomorphism,

then f is a monomorphism.

Proof. Define f : X → f(X) as f(x) = f(x) for all x ∈ X. Obviously,

f ∈ BCH(X,f (X)) and satisfies i ◦f = f . The uniqueness of f follows from

the fact that i is a monomorphism. Let f be a monomorphism. We prove that
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f is a monomorphism. Let C ∈ |BCH | and let h1,h2 ∈ BCH(C,X) be such that

f ◦h1 = f ◦h2. Then i◦f ◦h1 = i◦f ◦h2, which gives f ◦h1 = f ◦h2. Hence,

h1 = h2 because f is a monomorphism. This proves that f is a monomorphism.

Theorem 3.18. The category BCH has coequalizers.

Proof. Let f ,g ∈ BCH(X,Y). Let R be the minimum regular congruence

containing R = {(f (x),g(x)) : x ∈ X}. Such a regular congruence exists and

is the intersection of all regular congruences on Y containing R. The quo-

tient algebra Y/R is a BCH-algebra and the mapping nat : Y → Y/R defined

as nat(y)= [y]R is an onto BCH-homomorphism.

We show that nat = coeq(f ,g). Obviously, nat◦f(x) = nat(f (x)) =
[f (x)]R = [g(x)]R = nat◦g(x) for all x ∈X because R ⊆ R and (f (x),g(x))∈
R for all x ∈ X. Thus, nat◦f = nat◦g. Let h ∈ BCH(Y ,Z) be such that h◦g =
h ◦ f . We now define ψ : Y/R → Z by ψ([y]R) = h(y). To show that ψ is

well defined, we suppose that [y1]R = [y2]R . Thus, (y1,y2) ∈ R. Further,

R1 = {(y,y ′) : y,y ′ ∈ Y , h(y) = h(y ′)} is the regular congruence on Y
generated by Kerh. We note that h(f(x)) = h(g(x)) for all x ∈ X. Thus,

(f (x),g(x))∈ R1. Hence, R ⊆ R1. Now, (y1,y2)∈ R gives (y1,y2)∈ R1. Thus,

h(y1)= h(y2), which gives thatψ is well defined. Further,ψ([y1]R∗[y2]R)=
ψ([y1 ∗y2]R) = h(y1 ∗y2) = h(y1)∗h(y2) = ψ([y1]R)∗ψ([y2]R). Thus,

ψ ∈ BCH(Y/R,Z) and obviously it satisfies ψ ◦nat = h, that is, it makes the

following diagram commutative:

X
f

g
Y

h

nat

=
Y/R

ψ

Z.

(3.11)

The uniqueness of ψ follows from the fact that nat is onto and hence an

epimorphism in BCH. This completes the proof.

4. Image factorization system and certain other notions. In this section,

we show that BCH has an image factorization system and that MBCI, the cat-

egory of medial BCI-algebras and BCI-homomorphisms, is a coreflexive sub-

category of BCH. Further, we will define regular homomorphisms and discuss

some of their properties. For the definition of an image factorization system,

we refer the reader to [1]. Further, we state the following result which will be

used in the sequel.

Proposition 4.1 (see [1, page 40]). Let K be a category in which every mor-

phism factors as a coequalizer followed by a monomorphism. Then the system

(coequalizers, monomorphisms) yields an image factorization system in K.
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We now use this result to prove the following theorem.

Theorem 4.2. The system (coequalizers, monomorphism) form an image

factorization system in BCH.

Proof. Let f ∈ BCH(X,Y). Then it is easy to verify that f(X) = {f(x) :

x ∈ X} is a BCH-algebra. Thus, f(X)∈ |BCH |. Now, we define e : X → f(X) as

e(x)= f(x). Obviously, e is an onto homomorphism. Then by Theorem 3.4, e
is a coequalizer. Further, we definem : f(X)→ Y asm(y)=y for ally ∈ f(X).
Obviously, m is a one-to-one homomorphism. Thus, by Proposition 3.2, m is

a monomorphism. Also note that m ◦ e(x) =m(e(x)) = e(x) = f(x) for all

x ∈X, that is, m◦e= f . This completes the proof.

Obviously, MBCI is a subcategory of BCH. We now prove the following result.

Theorem 4.3. The category MBCI is a coreflexive subcategory of BCH.

Proof. LetX ∈ |BCH |. ThenX/X+ is a MBCI-algebra (see [2]). Thus,X/X+ ∈
|MBCI|. We define natX : X → X/X+ by natX(x) = [x]X+ . Obviously, natX ∈
BCH(X,X/X+). Let Y ∈ |MBCI| and f ∈ BCH(X,Y). Let x ∈ X+, then 0∗x = 0

gives 0= f(0)= f(0∗x)= f(0)∗f(x)= 0∗f(x). Therefore, x ∈ X+ implies

f(x)∈ Y+.

We now define g :X/X+ → Y by g([x]X+)= f(x). First of all, we show that g
is well defined. Let [x1]X+ = [x2]X+ . Thus, x1∗x2 ∈X+ and x2∗x1 ∈X+, which

gives f(x1 ∗x2) ∈ Y+ and f(x2 ∗x1) ∈ Y+. Since Y is medial, so Y+ = {0}.
Hence, f(x1) = f(x2). This proves that g is well defined. Further, it is easy

to prove that g is a BCH-homomorphism and makes the following diagram

commutative:

X

f

natX

=
X/K+

g

Y .

(4.1)

The uniqueness of g follows from the fact that natX is an onto homomor-

phism and hence an epimorphism. This completes the proof.

Definition 4.4. Let X and Y be BCH-algebras. A BCH-homomorphism f :

X → Y is regular if and only if f(X)= {f(x) : x ∈X} is an ideal in Y .

Proposition 4.5. Let f ∈ BCH(X,Y) be regular. Then for each ideal I ⊇
Kerf ,f (I) = {f(x) : x ∈ I} is an ideal of Y . Further, for each ideal K of Y ,

f−1(K)= {a | f(a)∈K, a∈X} is an ideal of X.

Proof. Assume y∗b, b ∈ f(I) ⊆ f(X). Then there exists a ∈ I such that

b = f(a). Since f(X) is an ideal, so y ∈ f(X). Thus, y = f(x) for some x ∈X.
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Now, y∗b = f(x)∗f(a)= f(x∗a)∈ f(I). This implies that f(x∗a)= f(c)
for some c ∈ I. Thus, we have f((x∗a)∗c)= 0 and so (x∗a)∗c ∈ Kerf ⊆ I.
Since I is an ideal, x∗a∈ I, it follows that x ∈ I. Therefore y ∈ f(I). Clearly,

0∗y ∈ f(I) for all y ∈ f(I). Hence, f(I) is an ideal of Y .

For the second part, we assume x∗a, a∈ f−1(K). Then f(x∗a),f (a)∈K,

that is, f(x)∗f(a), f(a) ∈ K. Since K is an ideal, it follows that f(x) ∈ K or

x ∈ f−1(K). Further, note that 0∗a∈ f−1(K) for all a∈ f−1(K). Thus, f−1(K)
is an ideal of X. This completes the proof.

Theorem 4.6. Let f ∈ BCH(X,Y) be regular. Then there is a one-to-one

correspondence between the ideals of X containing Kerf and the ideals of Y .

Proof. Let Ω = {I : I ⊇ Kerf , I is an ideal of X} and Ω′ = {I′ : I′ is an ideal

of Y}. Let I ∈Ω, then by Proposition 4.5, f(I) is an ideal of Y . Now, we define

ψ :Ω→Ω′ as ψ(I) = f(I). Obviously, ψ is well defined. In order to prove the

theorem, we show that ψ is one-to-one and onto.

(i) The mapping ψ is one-to-one.

Let I1, I2 ∈ Ω be such that ψ(I1) = ψ(I2). This implies that f(I1) = f(I2).
Let x1 ∈ I1. Then f(x1) ∈ f(I1) = f(I2). Thus, there exists x2 ∈ I2 such that

f(x1) = f(x2), which gives x1∗x2 ∈ Kerf ⊆ I2. Since x2,x1∗x2 ∈ I2 and I2
is an ideal, it follows that x1 ∈ I2, proving that I1 ⊆ I2. Similarly, we can prove

that I2 ⊆ I1. Hence, I1 = I2. This proves that ψ is one-to-one.

(ii) The mapping ψ is onto.

Let I′ ∈Ω′. Then by Proposition 4.5, f−1(I′) is an ideal of X. Further, Kerf ⊆
f−1(I′) and ψ(f−1(I′))= I′. Thus, ψ is onto. This completes the proof.
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