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B.-Y. CHEN INEQUALITIES FOR SEMISLANT SUBMANIFOLDS
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Chen (1993) established a sharp inequality for the sectional curvature of a sub-
manifold in Riemannian space forms in terms of the scalar curvature and squared
mean curvature. The notion of a semislant submanifold of a Sasakian manifold
was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez
(1999). In the present paper, we establish Chen inequalities for semislant subman-
ifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector
field &.
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1. Preliminaries: Riemannian invariants. The Riemannian invariants of a
Riemannian manifold are the intrinsic characteristics of the Riemannian mani-
fold. In this section, we recall a string of Riemannian invariants on a Riemann-
ian manifold [5].

Let M be a Riemannian manifold. Denote by K (17) the sectional curvature of
M associated with a plane section m C T,M, p € M.

For any orthonormal basis {ej,ez,...,e,} of the tangent space T,M, the
scalar curvature T at p is defined by

T(p) = > K(ejnej). (1.1)
i<j
One denotes
(infK) (p) = inf {K (1) | ™ C T, M, dimm = 2} (1.2)

and introduces the Chen invariant

om(p) =T(p)—(infK)(p). (1.3)

We recall the following lemma of Chen [4].
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LEMMA 1.1. Letay,...,an,c be n+1 real numbers, where n = 2, such that

2
( ai) =(n—l)(2a§+c). (1.4)
i-1

Then 2a,a; > ¢ and the equality holds if and only if a1 +a> = a3 = - - - = a.

TV

Let M be an n-dimensional submanifold of a Riemannian manifold M. We
denote by V the Riemannian connection of M. Also, let h be the second fun-
damental form of M and let R (resp., R) be the Riemann curvature tensor of M
(resp., M).

Then the equation of Gauss is given by

R(X,Y,Z,W)=R(X,Y,Z,W)+g(h(X,W),h(Y,Z))

1.5
-g(h(X,Z2),h(Y,W)), 13

for any vectors X, Y, Z, and W tangent to M, where we denote as usual R(X,Y,
Z,W)=—-g(R(X,Y)Z,W).

Let p € M and {ey,...,e,} an orthonormal basis of the tangent space T, M.
We denote by H the mean curvature vector, that is,

H(p) = Z (ei,ei) (1.6)

_1
n:
Also, we set

hi;=g(h(eiej)er), lhl*= Zg (eivej),h(eiej)). (1.7)

i,j=1

2. Semislant submanifolds in Sasakian manifolds. A (2m+1)-dimensional
Riemannian manifold (M ,g) is said to be a Sasakian manifold if it admits an
endomorphism ¢ of its tangent bundle TM, a vector field &, and a 1-form n
satisfying (see, e.g., [7])

$2=-I1d+neE, nE =1, ¢$E=0, nodp=0,
9(PX,pY) =g(X,Y)-n(X)n(Y), nX)=gX,8), 2.1)
(Vxp)Y =g(X,Y)E-n(Y)X, VxE=-¢X,

for any vector fields X and Y on TM, where V denotes the Riemannian con-
nection with respect to g.

A plane section 1T in Tp]\7[ is called a ¢-section if it is spanned by X and ¢ X,
where X is a unit tangent vector orthogonal to &. The sectional curvature of a
¢-section is called a ¢-sectional curvature. A Sasakian manifold with constant
¢-sectional curvature c is said to be a Sasakian space form and is denoted by
M(c).
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The curvature tensor of M (c) of a Sasakian space form M (c) is given by (see

(1)

RX,Y)Z = %LQ(Y,Z)X—g(X,Z)Y}

c—1

+
4

MXON2)Y -n(Nn(Z2)X+g(X,Z)n(Y)E—g(Y,Z)n(X)E

+9(PY,2)pX —g($pX,Z)PY —29(pX,Y)PZ},
(2.2)

for any tangent vector fields X, Y, and Z on M (c).
As examples of Sasakian space forms, we mention R%"*1 and $2"+1, with
standard Sasakian structures (see [1]).

DEFINITION 2.1 [2]. A differentiable distribution % on M is called a slant
distribution if for each x € M and each nonzero vector X € %, the angle 04 (X)
between ¢ X and the vector subspace %, is constant, which is independent of
the choice of x € M and X € 9. In this case, the constant angle 6 is called
the slant angle of the distribution %.

DEFINITION 2.2 [2]. A submanifold M tangent to & is said to be a bislant
submanifold of M if there exist two orthogonal distributions %; and %, on M
such that

(i) TM admits the orthogonal direct decomposition TM = %, ® %, @ {&};
(ii) for any i = 1,2, 9; is slant distribution with slant angle ;.

DEFINITION 2.3 [2]. A submanifold M tangent to & is said to be a semislant
submanifold of M if there exist two orthogonal distributions %; and %, on M
such that

(i) TM admits the orthogonal direct decomposition TM = %; @ %, & {&};
(ii) the distribution %, is an invariant distribution, that is, ¢ (%) = %;
(iii) the distribution %; is slant with angle 6 = 0.

DEFINITION 2.4 [3]. A submanifold M is said to be a slant if for any x € M
and any X € T, M, linearly independent on &, the angle between ¢X and T, M
is a constant 0 € [0,1r/2], called the slant angle of M in M.

Invariant and anti-invariant immersions are slant immersions with slant an-
gles 0 = 0 and 0 = 11/2, respectively. A slant immersion which is neither in-
variant nor anti-invariant is called a proper slant immersion (see [3]).

In [2], the invariant distribution of a semislant submanifold is a slant dis-
tribution with zero angle. Thus, it is obvious that, in fact, semislant submani-
folds are particular cases of bislant submanifolds. Moreover, it is clear that if
0 = 11/2, then the semislant submanifold is a semi-invariant submanifold.

(a) If @, = 0, then M is an invariant submanifold.

(b) If 91 = 0 and O = 17/2, then M is an anti-invariant submanifold.
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() If @91 =0 and 0 + 11/2, then M is a proper slant submanifold with slant
angle 0.

A semislant submanifold is said to be proper if both %, and %, are nontrivial
and 0 + 1T/2.

For the properties and examples of semislant submanifolds in Sasakian man-
ifolds, we refer to [2].

For any tangent vector field X to M, one decomposes ¢X = PX + FX, where
PX and FX are the tangential and normal components of ¢ X, respectively. We
denote

n
IPI? = > g°(Pei,e;). (2.3)
i,j=1

3. B.-Y. Chen inequality. We prove a Chen inequality for proper semislant
submanifolds in a Sasakian space form. We consider plane sections 7t orthog-
onal to & and invariant by P. We denote dim%; = 2d; and dim%, = 2d..

THEOREM 3.1. Let M be an n-dimensional proper semislant submanifold in
a (2m+ 1)-dimensional Sasakian space form M (c). Then,

n?

n-2
|HII?+
n-1

K(mm)>1- > {
_(e-1)

4

(c+3)(n+1)}
4

[3d2c0s?0+3(d; —1)—(n—-1)],

(3.1

for any plane section 1t invariant by P and tangent to %, and

K(m)>1-

n-2( n?

> 1

(-1
4

>, (c+3)(n+1)
IH? }

4

(3.2)

[3(d2—1)cos?0+3d;—(n—1)],

for any plane section 1t invariant by P and tangent to %5.

The equality case of inequalities (3.1) and (3.2) holds at a point p € M if
and only if there exists an orthonormal basis {ei,...,e, = &} of T,M and an
orthonormal basis {ey1,...,€2m,€2m+1} Of T;M such that the shape operators
of M inM(c) at p have the following forms:

a 0 0 0
Ana1=10 b 0 0|, a+b=uy,
0 0 “In—Z
(3.3)
n hp 0O - - -0
Ay=1|hi, -hi; 0 - . - 0, re{n+2,....2m+1}.

0 0 On-2
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PROOF. We recall the Gauss equation for the submanifold M

R(X,Y,Z,W)=R(X,Y,Z,W)+g(h(X,W),h(Y,Z))

3.4
-g(h(X,Z),h(Y,W)), G4
forall X,Y,Z,W eT(TM).
Since M (c) is a Sasakian space form, we have
RX,Y,Z,W) = %%g(Y,Z)g(X,W)+g(x,2)g(Y,W>}
+ S nXn(Dg W) +n(Nn(Z) g (X, W)
(3.5)

-9X,Z)n(V)g(EW)+g(Y,Z)n(X)g(&,W)
-g(PY,Z)g(pX, W) +g(hpX,Z)g(PpY,W)
+29(pX,Y)g(pZ,W)}, VX,Y,Z,W eT(TM).

Let p € M, {ey,...,en = &} an orthonormal basis of T,M, and {en+1,...,
exm,e2m+1} an orthonormal basis of T;M. For X = Z = ¢; and Y = W = ¢},
Vi, je{1,...,n}, from (3.5), it follows that

. c+3
> Rlei,ejeie;) = T(—n+n2)

i,Jj

. (3.6)
+C_1<[—2(n—1)+3 > gz(d)ei,ej)}.

4 ij=1

Let M be a proper semislant submanifold of M(c) and dimM = n = 2d; +
2d; + 1. We consider an adapted semislant orthonormal frames

e, ex = dey,...,exq,-1,624, = $ezq, -1,
1

92d1+1,ezd1+2 = mpezdprl;---|32d1+2d2—1y92d1+2d2
1 3.7)
= mpe2d1+2d2—1132d1+2d2+1
=3
Obviously, we have
1 forie {1,...,2d; -1}
2(pej,eir1) =1 Y ’ (3.8)
g ($eiei) cos?0, forie{2d;+1,...,2d;+2d>—1}.
Then
n
> g (pei,ej) = 2(dy +dacos? 0). (3.9)

ij=1



1736 DRAGOS CIOROBOIU

Relation (3.6) implies that

D> Rei,ej,ei,e)) = C4L3(n2—n) + C4;1[6(dl +dyc08%0) -2(n—-1)]. (3.10)
i,j
Denoting

Inl? = Zg (eiej),h(eie;)), (3.11)

i,j=1

from relation (3.10), one has

%n(n—l)+%[6(d1+d2c0329)—2n+2]:ZT—nZIIHH2+Hh||2
(3.12)
or, equivalently,
> > 5 C+3
2t =n"||H||* = [|hl +Tn( _1)+T[ (dy +d2cos®0) —2n +2].
(3.13)
If we put
n2
£=2T——1(1’L—2)IIH||2
’31_ X (3.14)
—% nn —1)—CT[ (dy +dzcos?0) —2n+2],
we obtain
n?||H|I* = (n—1) (e +|hl*). (3.15)

Letp e M, T C T,M, dimm = 2, and 1 orthogonal to § and invariant by P.
We consider two cases.

(i) The plane section 7T is tangent to %;. We may assume that T = sp{ej,ex}.
We choose e, .1 = H/||H||. Relation (3.15) becomes

n 2 n  2m+l
(Zh’&“) (n- 1)1 SO } (3.16)
i=1 i,j=1r=n+1
or, equivalently,
2
n n 5 5 2m+1 n )
DhET ] == Y (R Y (R Y Y (h]) +e

i=1 i=1 i+] r=n+2i,j=1

(3.17)
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Using Lemma 1.1, we derive from (3.17)
) n  2m+l )
Rt = Y (R T+ Y Y (h) +e (3.18)

i#j i,j=1r=n+2

From the Gauss equation for X = Z =e; and Y = W = e, we obtain

c+3 1 2m+1 5
K(Tr):T+3-T+ Z [ 1hb, — (i) ]
r=n+l1
c+3 1 2 1 n 2m+l
ZT _T _Z hn+1 E Z Z
i+j i,j=1r=n+2
< 2m+1 2m+1 )
+§+ Z hihy, - Z (hi2)
r=n+2 r=n+1 (3.19)
2m+1
:c:;3 3. c41 % h"“ z z
i+j r n+2i,j>2
1 2m+1 &
3 O (k) s S [+ )]+ 3
r=n+2 Jj>2
> 7C+3 +3- Q-ﬁ-f
4 4 2
or, equivalently,
c+3 c—-1 ¢
K(1m) = e +3- e +§. (3.20)

If we substitute (3.14) into (3.20), we obtain (3.1).

(ii) Similarly, if 17 is tangent to %, we obtain (3.2).

The case of equality at a point p € M holds if and only if it achieves the
equalities in inequalities (3.18), (3.19), and (3.20) and in Lemma 1.1. Then

hitt =0, Vi=j, i,j>2,
h{J.:O, Vi+j, i,j>2, v=n+1,....2m+1,

hi,+hy =0, Vr=n+2,....2m+1, (3.21)
hn‘+1 hn+1 ’ Vj > 2’
hn+1 hn+1 hn+1 - hﬁ;rll_

We may choose {el,ez} such that h"” 0 and we denote a = h}, b = h’,,
and p=hi'=...=nl
It follows that the shape operators take the desired forms. |

Chen inequality for slant submanifolds in Sasakian space forms was proved
in [6].
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THEOREM 3.2 [6]. Let M be ann-dimensional 0-slant submanifold in a (2m +
1)-dimensional Sasakian space form M (c). Then,

6M<"_2{ n? HH||2+(C+3)(1’L+1)}
2 tnod : (3.22)
+(C_l)[3(n—3)c0320—2(n—1)].

The equality case of inequality (3.1) holds at a point p € M if and only if there
exists an orthonormal basis {ei,...,e, = &} of T,M and an orthonormal basis
{eni1y--rCom,e2m+1} Of T;M such that the shape operators of M in M(c) at p
have the following forms:

a 0 0 0
Apa1=10 b 0 0|, a+b=uy,
0 0 UIn—Z
(3.23)
hy, hp O - - - 0
Ar=|hY, -n7, 0O - . . 0|, re{n+2,....2m+1}.
0 0 011—2
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