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Chen (1993) established a sharp inequality for the sectional curvature of a sub-
manifold in Riemannian space forms in terms of the scalar curvature and squared
mean curvature. The notion of a semislant submanifold of a Sasakian manifold
was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez
(1999). In the present paper, we establish Chen inequalities for semislant subman-
ifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector
field ξ.
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1. Preliminaries: Riemannian invariants. The Riemannian invariants of a

Riemannian manifold are the intrinsic characteristics of the Riemannian mani-

fold. In this section, we recall a string of Riemannian invariants on a Riemann-

ian manifold [5].

LetM be a Riemannian manifold. Denote by K(π) the sectional curvature of

M associated with a plane section π ⊂ TpM , p ∈M .

For any orthonormal basis {e1,e2, . . . ,en} of the tangent space TpM , the

scalar curvature τ at p is defined by

τ(p)=
∑
i<j
K
(
ei∧ej

)
. (1.1)

One denotes

(infK)(p)= inf
{
K(π) |π ⊂ TpM, dimπ = 2

}
(1.2)

and introduces the Chen invariant

δM(p)= τ(p)−(infK)(p). (1.3)

We recall the following lemma of Chen [4].
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Lemma 1.1. Let a1, . . . ,an,c be n+1 real numbers, where n≥ 2, such that


 n∑
i=1

ai




2

= (n−1)


 n∑
i=1

a2
i +c


. (1.4)

Then 2a1a2 ≥ c and the equality holds if and only if a1+a2 = a3 = ··· = an.

Let M be an n-dimensional submanifold of a Riemannian manifold M̃ . We

denote by ∇ the Riemannian connection of M . Also, let h be the second fun-

damental form ofM and let R (resp., R̃) be the Riemann curvature tensor ofM
(resp., M̃).

Then the equation of Gauss is given by

R̃(X,Y ,Z,W)= R(X,Y ,Z,W)+g(h(X,W),h(Y ,Z))
−g(h(X,Z),h(Y ,W)), (1.5)

for any vectors X, Y , Z , andW tangent toM , where we denote as usual R(X,Y ,
Z,W)=−g(R(X,Y)Z,W).

Let p ∈M and {e1, . . . ,en} an orthonormal basis of the tangent space TpM .

We denote by H the mean curvature vector, that is,

H(p)= 1
n

n∑
i=1

h
(
ei,ei

)
. (1.6)

Also, we set

hrij = g
(
h
(
ei,ej

)
,er
)
, ‖h‖2 =

n∑
i,j=1

g
(
h
(
ei,ej

)
,h
(
ei,ej

))
. (1.7)

2. Semislant submanifolds in Sasakian manifolds. A (2m+1)-dimensional

Riemannian manifold (M̃,g) is said to be a Sasakian manifold if it admits an

endomorphism φ of its tangent bundle TM̃ , a vector field ξ, and a 1-form η
satisfying (see, e.g., [7])

φ2 =−Id+η⊗ξ, η(ξ)= 1, φξ = 0, η◦φ= 0,

g(φX,φY)= g(X,Y)−η(X)η(Y), η(X)= g(X,ξ),(∇̃Xφ)Y = g(X,Y)ξ−η(Y)X, ∇̃Xξ =−φX,
(2.1)

for any vector fields X and Y on TM̃ , where ∇̃ denotes the Riemannian con-

nection with respect to g.

A plane section π in TpM̃ is called a φ-section if it is spanned by X and φX,

where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a

φ-section is called a φ-sectional curvature. A Sasakian manifold with constant

φ-sectional curvature c is said to be a Sasakian space form and is denoted by

M̃(c).
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The curvature tensor of M̃(c) of a Sasakian space form M̃(c) is given by (see

[1])

R̃(X,Y)Z = c+3
4

{
g(Y ,Z)X−g(X,Z)Y}

+ c−1
4

{
η(X)η(Z)Y −η(Y)η(Z)X+g(X,Z)η(Y)ξ−g(Y ,Z)η(X)ξ
+g(φY,Z)φX−g(φX,Z)φY −2g(φX,Y)φZ

}
,

(2.2)

for any tangent vector fields X, Y , and Z on M̃(c).
As examples of Sasakian space forms, we mention R2m+1 and S2m+1, with

standard Sasakian structures (see [1]).

Definition 2.1 [2]. A differentiable distribution � on M is called a slant

distribution if for each x ∈M and each nonzero vector X ∈�x , the angle θ�(X)
between φX and the vector subspace �x is constant, which is independent of

the choice of x ∈M and X ∈ �x . In this case, the constant angle θ� is called

the slant angle of the distribution �.

Definition 2.2 [2]. A submanifold M tangent to ξ is said to be a bislant

submanifold of M̃ if there exist two orthogonal distributions �1 and �2 on M
such that

(i) TM admits the orthogonal direct decomposition TM =�1⊕�2⊕{ξ};
(ii) for any i= 1,2, �i is slant distribution with slant angle θi.

Definition 2.3 [2]. A submanifold M tangent to ξ is said to be a semislant

submanifold of M̃ if there exist two orthogonal distributions �1 and �2 on M
such that

(i) TM admits the orthogonal direct decomposition TM =�1⊕�2⊕{ξ};
(ii) the distribution �1 is an invariant distribution, that is, φ(�1)=�1;

(iii) the distribution �2 is slant with angle θ ≠ 0.

Definition 2.4 [3]. A submanifold M is said to be a slant if for any x ∈M
and any X ∈ TxM , linearly independent on ξ, the angle between φX and TxM
is a constant θ ∈ [0,π/2], called the slant angle of M in M̃ .

Invariant and anti-invariant immersions are slant immersions with slant an-

gles θ = 0 and θ = π/2, respectively. A slant immersion which is neither in-

variant nor anti-invariant is called a proper slant immersion (see [3]).

In [2], the invariant distribution of a semislant submanifold is a slant dis-

tribution with zero angle. Thus, it is obvious that, in fact, semislant submani-

folds are particular cases of bislant submanifolds. Moreover, it is clear that if

θ =π/2, then the semislant submanifold is a semi-invariant submanifold.

(a) If �2 = 0, then M is an invariant submanifold.

(b) If �1 = 0 and θ =π/2, then M is an anti-invariant submanifold.



1734 DRAGOŞ CIOROBOIU

(c) If �1 = 0 and θ ≠ π/2, then M is a proper slant submanifold with slant

angle θ.

A semislant submanifold is said to be proper if both �1 and �2 are nontrivial

and θ ≠π/2.

For the properties and examples of semislant submanifolds in Sasakian man-

ifolds, we refer to [2].

For any tangent vector field X to M , one decomposes φX = PX+FX, where

PX and FX are the tangential and normal components ofφX, respectively. We

denote

‖P‖2 =
n∑

i,j=1

g2(Pei,ej). (2.3)

3. B.-Y. Chen inequality. We prove a Chen inequality for proper semislant

submanifolds in a Sasakian space form. We consider plane sections π orthog-

onal to ξ and invariant by P . We denote dim�1 = 2d1 and dim�2 = 2d2.

Theorem 3.1. Let M be an n-dimensional proper semislant submanifold in

a (2m+1)-dimensional Sasakian space form M̃(c). Then,

K(π)≥ τ− n−2
2

{
n2

n−1
‖H‖2+ (c+3)(n+1)

4

}

− (c−1)
4

[
3d2 cos2θ+3

(
d1−1

)−(n−1)
]
,

(3.1)

for any plane section π invariant by P and tangent to �1, and

K(π)≥ τ− n−2
2

{
n2

n−1
‖H‖2+ (c+3)(n+1)

4

}

− (c−1)
4

[
3
(
d2−1

)
cos2θ+3d1−(n−1)

]
,

(3.2)

for any plane section π invariant by P and tangent to �2.

The equality case of inequalities (3.1) and (3.2) holds at a point p ∈ M if

and only if there exists an orthonormal basis {e1, . . . ,en = ξ} of TpM and an

orthonormal basis {en+1, . . . ,e2m,e2m+1} of T⊥p M such that the shape operators

of M in M̃(c) at p have the following forms:

An+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µIn−2


 , a+b = µ,

Ar =



hr11 hr12 0 · · · 0

hr12 −hr11 0 · · · 0

0 0 0n−2


 , r ∈ {n+2, . . . ,2m+1}.

(3.3)
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Proof. We recall the Gauss equation for the submanifold M

R̃(X,Y ,Z,W)= R(X,Y ,Z,W)+g(h(X,W),h(Y ,Z))
−g(h(X,Z),h(Y ,W)), (3.4)

for all X,Y ,Z,W ∈ Γ(TM).
Since M̃(c) is a Sasakian space form, we have

R̃(X,Y ,Z,W)= c+3
4

{−g(Y ,Z)g(X,W)+g(X,Z)g(Y ,W)}

+ c−1
4

{−η(X)η(Z)g(Y ,W)+η(Y)η(Z)g(X,W)
−g(X,Z)η(Y)g(ξ,W)+g(Y ,Z)η(X)g(ξ,W)
−g(φY,Z)g(φX,W)+g(φX,Z)g(φY ,W)
+2g(φX,Y)g(φZ,W)

}
, ∀X,Y ,Z,W ∈ Γ(TM).

(3.5)

Let p ∈ M , {e1, . . . ,en = ξ} an orthonormal basis of TpM , and {en+1, . . . ,
e2m,e2m+1} an orthonormal basis of T⊥p M . For X = Z = ei and Y = W = ej ,
∀i,j ∈ {1, . . . ,n}, from (3.5), it follows that

∑
i,j
R̃
(
ei,ej,ei,ej

)= c+3
4

(−n+n2)

+ c−1
4


−2(n−1)+3

n∑
i,j=1

g2(φei,ej)

.

(3.6)

Let M be a proper semislant submanifold of M̃(c) and dimM = n = 2d1+
2d2+1. We consider an adapted semislant orthonormal frames

e1,e2 =φe1, . . . ,e2d1−1,e2d1 =φe2d1−1,

e2d1+1,e2d1+2 = 1
cosθ

Pe2d1+1, . . . ,e2d1+2d2−1,e2d1+2d2

= 1
cosθ

Pe2d1+2d2−1,e2d1+2d2+1

= ξ.

(3.7)

Obviously, we have

g2(φei,ei+1
)=




1, for i∈ {1, . . . ,2d1−1
}
,

cos2θ, for i∈ {2d1+1, . . . ,2d1+2d2−1
}
.

(3.8)

Then

n∑
i,j=1

g2(φei,ej)= 2
(
d1+d2cos2θ

)
. (3.9)
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Relation (3.6) implies that

∑
i,j
R̃
(
ei,ej,ei,ej

)= c+3
4

(
n2−n)+ c−1

4

[
6
(
d1+d2cos2θ

)−2(n−1)
]
. (3.10)

Denoting

‖h‖2 =
n∑

i,j=1

g
(
h
(
ei,ej

)
,h
(
ei,ej

))
, (3.11)

from relation (3.10), one has

c+3
4
n(n−1)+ c−1

4

[
6
(
d1+d2cos2θ

)−2n+2
]= 2τ−n2‖H‖2+‖h‖2

(3.12)

or, equivalently,

2τ =n2‖H‖2−‖h‖2+ c+3
4
n(n−1)+ c−1

4

[
6
(
d1+d2cos2θ

)−2n+2
]
.
(3.13)

If we put

ε = 2τ− n2

n−1
(n−2)‖H‖2

− c+3
4
n(n−1)− c−1

4

[
6
(
d1+d2cos2θ

)−2n+2
]
,

(3.14)

we obtain

n2‖H‖2 = (n−1)
(
ε+‖h‖2). (3.15)

Let p ∈M , π ⊂ TpM , dimπ = 2, and π orthogonal to ξ and invariant by P .

We consider two cases.

(i) The plane section π is tangent to �1. We may assume that π = sp{e1,e2}.
We choose en+1 =H/‖H‖. Relation (3.15) becomes


 n∑
i=1

hn+1
ii




2

= (n−1)




n∑
i,j=1

2m+1∑
r=n+1

(
hrij
)2+ε


 (3.16)

or, equivalently,


 n∑
i=1

hn+1
ii




2

= (n−1)




n∑
i=1

(
hn+1
ii

)2+
∑
i≠j

(
hn+1
ij

)2+
2m+1∑
r=n+2

n∑
i,j=1

(
hrij
)2+ε


.

(3.17)
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Using Lemma 1.1, we derive from (3.17)

2hn+1
11 hn+1

22 ≥
∑
i≠j

(
hn+1
ij

)2+
n∑

i,j=1

2m+1∑
r=n+2

(
hrij
)2+ε. (3.18)

From the Gauss equation for X = Z = e1 and Y =W = e2, we obtain

K(π)= c+3
4

+3· c−1
4
+

2m+1∑
r=n+1

[
hr11h

r
22−

(
hr12

)2
]

≥ c+3
4

+3· c−1
4
+1

2

∑
i≠j

(
hn+1
ij

)2+ 1
2

n∑
i,j=1

2m+1∑
r=n+2

(
hrij
)2

+ ε
2
+

2m+1∑
r=n+2

hr11h
r
22−

2m+1∑
r=n+1

(
hr12

)2

= c+3
4

+3· c−1
4
+1

2

∑
i≠j

(
hn+1
ij

)2+ 1
2

2m+1∑
r=n+2

∑
i,j>2

(
hrij
)2

+ 1
2

2m+1∑
r=n+2

(
hr11+hr22

)2+
∑
j>2

[(
hn+1

1j
)2+(hn+1

2j
)2
]
+ ε

2

≥ c+3
4

+3· c−1
4
+ ε

2

(3.19)

or, equivalently,

K(π)≥ c+3
4

+3· c−1
4
+ ε

2
. (3.20)

If we substitute (3.14) into (3.20), we obtain (3.1).

(ii) Similarly, if π is tangent to �2, we obtain (3.2).

The case of equality at a point p ∈ M holds if and only if it achieves the

equalities in inequalities (3.18), (3.19), and (3.20) and in Lemma 1.1. Then

hn+1
ij = 0, ∀i≠ j, i,j > 2,

hrij = 0, ∀i≠ j, i,j > 2, r =n+1, . . . ,2m+1,

hr11+hr22 = 0, ∀r =n+2, . . . ,2m+1,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 +hn+1

22 = hn+1
33 = ··· = hn+1

nn .

(3.21)

We may choose {e1,e2} such that hn+1
12 = 0 and we denote a= hr11, b = hr22,

and µ = hn+1
33 = ··· = hn+1

nn .

It follows that the shape operators take the desired forms.

Chen inequality for slant submanifolds in Sasakian space forms was proved

in [6].
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Theorem 3.2 [6]. LetM be ann-dimensional θ-slant submanifold in a (2m+
1)-dimensional Sasakian space form M̃(c). Then,

δM ≤ n−2
2

{
n2

n−1
‖H‖2+ (c+3)(n+1)

4

}

+ (c−1)
8

[
3(n−3)cos2θ−2(n−1)

]
.

(3.22)

The equality case of inequality (3.1) holds at a point p ∈M if and only if there

exists an orthonormal basis {e1, . . . ,en = ξ} of TpM and an orthonormal basis

{en+1, . . . ,e2m,e2m+1} of T⊥p M such that the shape operators of M in M̃(c) at p
have the following forms:

An+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µIn−2


 , a+b = µ,

Ar =



hr11 hr12 0 · · · 0

hr12 −hr11 0 · · · 0

0 0 0n−2


 , r ∈ {n+2, . . . ,2m+1}.

(3.23)
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