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By considering the notion of multiplication modules over a commutative ring with
identity, first we introduce the notion product of two submodules of such mod-
ules. Then we use this notion to characterize the prime submodules of a multi-
plication module. Finally, we state and prove a version of Nakayama lemma for
multiplication modules and find some related basic results.
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1. Introduction. Let R be a commutative ring with identity and let M be a

unitary R-module. Then, M is called a multiplication R-module provided for

each submodule N of M ; there exists an ideal I of R such that N = IM . Note

that our definition agrees with that of [1, 2], but in [6] the term multiplication

module is used in a different way. (In this paper, an R-module M is a multipli-

cation if and only if every submodule of M is a multiplication module in the

above sense.) Recently, prime submodules have been studied in a number of

papers; for example, see [3, 4, 5]. Now in this paper, first we define the notion

of product of two submodules of a multiplication module and then we ob-

tain some related results. In particular, we give some equivalent conditions for

prime submodules of multiplication submodules. Finally, we state and prove

a version of Nakayama lemma for multiplication modules.

2. Preliminaries. Throughout this paper, R denotes a commutative ring

with identity and all related modules are unitary R-modules.

Definition 2.1. A proper submodule K ofM is called prime if rm∈K, for

r ∈ R and m ∈M , then r ∈ (K :M) or m ∈ K, where (K :M) = {r ∈ R | rM ⊆
M}.

Theorem 2.2 (see [5]). Let K be a submodule ofM . Then the following state-

ments are satisfied:

(i) K is prime if and only if P = (K :M) is a prime ideal of R and R/P -module

M/K is torsion-free,

(ii) if (K :M) is a maximal ideal of R, then K is a prime submodule of M .

For any R-moduleM , let Spec(M) denote the collection of all prime submod-

ules ofM . Note that some modulesM have no prime submodules (i.e., Spec(M)
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is empty); such modules are called primeless. For example, the zero-module is

primeless. In [5], some nontrivial examples are shown and some conditions for

primeless modules are given.

Definition 2.3. An R-module M is a multiplication module if for every

submodule N of M , there is an ideal I of R such that N = IM .

Lemma 2.4 (see [1]). Let M be a multiplication module and let N be a sub-

module of M . Then N = (ann(M/N))M .

Lemma 2.5 (see [1, Proposition 1.1]). An R-module M is a multiplication if

and only if for each m in M , there exists an ideal I of R such that Rm= IM .

Lemma 2.6 (see [1]). An R-module M is a multiplication if and only if

∩λ∈Λ
(
IλM

)= (∩λ∈Λ [Iλ+ann(M)
])
M (2.1)

for any collection of ideals Iλ (λ∈Λ) of R.

Theorem 2.7 (see [1, Theorem 2.5]). Let M be a nonzero multiplication R-

module. Then,

(i) every proper submodule of M is contained in a maximal submodule of

M ;

(ii) K is a maximal submodule of M if and only if there exists a maximal

ideal P of R such that K = PM ≠M .

Theorem 2.8 (see [1, Corollary 2.11]). The following statements are equiv-

alent for a proper submodule N of M :

(i) N is a prime submodule of M ;

(ii) ann(M/N) is a prime ideal of R;

(iii) N = PM for some prime ideal P of R with ann(M)⊆ P .

Theorem 2.9 (see [1, Theorem 3.1]). Let M be a faithful multiplication R-

module. Then the following statements are equivalent:

(i) M is finitely generated;

(ii) AM ⊆ BM if and only if A⊆ B;

(iii) for each submodule N of M , there exists a unique ideal I of R such that

N = IM ;

(iv) M ≠AM for any proper ideal A of R;

(v) M ≠ PM for any maximal ideal P of R.

Definition 2.10. Let N be a proper submodule of M . Then, the radical of

N denoted by M-rad(N) or r(N) is defined in [1] to be the intersection of all

prime submodules of M containing N.

Theorem 2.11 (see [1, Corollary 2.11]). Let N be a proper submodule of a

multiplication R-module M . Then M-rad(N)=√AM , where A= ann(M/N).
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Definition 2.12. Let M be an R-module. Then, the radical of M denoted

by rad(M) is defined to be the intersection of the maximal submodules of M
if such exists, and M otherwise.

Let � denote the collection of all maximal ideals of R. Define P1(M)= {P ∈
� |M ≠ PM} and P2(M) = {P ∈ � | ann(M) ⊆ P}. Now, define J1(M) = ∩{P |
P ∈ P1(M)} and J2(M)=∩{P | P ∈ P2(M)}.

Theorem 2.13 (see [1, Theorem 2.7]). Let M be a multiplication R-module.

Then rad(M)= J1(M)M = J2(M)M .

3. The product of multiplication submodules

Definition 3.1. LetM be an R-module and letN be a submodule ofM such

that N = IM for some ideal I of R. Then, we say that I is a presentation ideal

of N or, for short, a presentation of N. We denote the set of all presentation

ideals of N by Pr(N).

Note that it is possible that for a submodule N, no such presentation ideal

exists. For example, if V is a vector space over an arbitrary field with a proper

subspace W (≠ 0 and V), then W does not have any presentations. By Lemma

2.4, it is clear that every submodule of M has a presentation ideal if and only

if M is a multiplication module. In particular, for every submodule N of a

multiplication module M , ann(M/N) is a presentation for N.

Let L(R) and L(M) denote the lattices of ideals of R and submodules of M ,

respectively. Define the relation ∼ on L(R) as follows:

I ∼ J ⇐⇒ IM = JM. (3.1)

It is easy to verify that this relation is an equivalence relation on L(R). We

denote the equivalence class of I ∈ L(R) by [I].

Theorem 3.2. LetM be a faithful multiplication R-module. Then, the follow-

ing statements are equivalent:

(i) M is finitely generated;

(ii) each equivalence class of the relation ∼ is a singleton;

(iii) the map

ϕ : L(R) �→ L(M) (3.2)

defined by ϕ(I)= IM is a lattice isomorphism;

(iv) for every proper ideal I of R, [I]= {I};
(v) for any maximal ideal P of R, [P]= {P}.

Proof. (i)⇒(ii) follows from Theorem 2.8, Definition 3.1, and Theorem 2.9.

(ii)⇒(iii). By Theorem 2.8, we conclude thatϕ is bijective and order-preserv-

ing. Obviously, (I + J)M = IM + JM and by Lemma 2.5, (I ∩ J)M = IM ∩ JM
since M is faithful. Therefore, φ is a lattice isomorphism.
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(iii)⇒(iv), (iv)⇒(v), and (v)⇒(i) are an immediate consequence of Theorem 2.8.

Definition 3.3. Let N = IM and K = JM for some ideals I and J of R. The

product of N and K is denoted by N ·K or NK is defined by IJM .

Clearly, NK is a submodule ofM and contained in N∩K. Now, we show that

the product of two submodules is defining an operation on submodules of M .

Theorem 3.4. Let N = IM and K = JM be submodules of a multiplication

R-module M . Then, the product of N and M is independent of presentations of

N and K.

Proof. Let N = I1M = I2M = N′ and K = J1M = J2M = K′ for ideals Ii and

Ji of R, i = 1,2. Consider rsm ∈ NK = I1J1M for some r ∈ I1, s ∈ J1, and

m∈M . From J1M = J2M , we have

sm=
n∑
i=1

rimi, ri ∈ J2, mi ∈M. (3.3)

Then,

rsm=
n∑
i=1

ri
(
rmi

)
. (3.4)

From rmi ∈ I1M = I2M , we conclude that

rmi =
k∑
j=1

tijm′
ij , tij ∈ I2, m′

ij ∈M. (3.5)

Thus,

rsm=
n∑
i=1

k∑
j=1

ritijm′
ij . (3.6)

Therefore, rsm ∈ I2J2M , and hence I1J1M ⊆ I2J2M . Similarly, we have

I2J2M ⊆ I1J1M . This completes the proof.

Proposition 3.5. Let M be a multiplication module N, and let K and L be

submodules of M . Then the following statements are satisfied:

(i) L(M), the lattice of submodules ofM with operation product on submod-

ules, is a semiring;

(ii) the product is distributive with respect to the sum on L(M);
(iii) (K+L)(K∩L)⊆KL;

(iv) K ∩ L = KL provided K + L = M (in this case, K and L are said to be

coprime or comaximal).



ON THE PRIME SUBMODULES OF MULTIPLICATION MODULES 1719

Proof. (i), (ii), (iii) are obtained from Definition 3.3, Lemma 2.5, the well-

known related results of the ideals theory, and the fact that
∑
k∈K IkM =

(
∑
k∈K Ik)M .

(iv) K+L = M implies that M(K∩L) ⊆ KL by (iii), and hence K∩L ⊆ KL.

Clearly KL⊆K∩L. Therefore KL=K∩L.

Lemma 3.6. Let N and K be submodules of a multiplication moduleM . Then,

(i) the ideals ann(M/N)·ann(M/K) and ann(M/NK) are presentations of

NK;

(ii) if M is finitely generated, then ann(M/N)·ann(M/K)= ann(M/NK).

Proof. (i) By Lemma 2.4 and Theorem 3.4, ann(M/N) and ann(M/K) are

presentations for N and K, respectively. Thus, by Definition 3.3, MN =
[ann(M/N) ·ann(M/K)]M . Therefore, (ann(M/N) ·ann(M/K)) is a presenta-

tion for MN.

(ii) By Lemma 2.4, we have MN = ann(M/NK) and hence by Theorem 2.8

and (i), we conclude that

ann(M/N)·ann(M/K)= ann(M/NK). (3.7)

Remark 3.7. (i) Recall that by Lemma 2.5, for anym∈M , we have Rm= IM
for some ideal I of R. In this case, we say that I is a presentation ideal ofm or,

for short, a presentation of m and denote it by Pr(m). In fact, Pr(m) is equal

to Pr(Rm).
(ii) For m,m′ ∈M , by mm′, we mean the product of Rm and Rm′, which is

equal to IJM for every presentation ideals I and J of m and m′, respectively.

Proposition 3.8. Let M be a multiplication R-module. Let N,K,Ni ∈ I be

submodules of M , s ∈ R, and k any positive integer. Then the following state-

ments are satisfied:

(i) Pr(
∑
i∈I Ni)=

∑
i∈I Pr(Ni);

(ii) Pr(∩i∈INi)= (∩i∈I[Pr(Ni)+ann(M)])M ;

(iii) Pr(
∑k
i=1mi)⊆

∑k
i=1 Pr(mi);

(iv) Pr(sm)= s Pr(m);
(v) Pr(NK)= Pr(N)·Pr(K);

(vi) Pr(Nk)= (Pr(N))k;
(vii) Pr(mk)= (Pr(m))k;

(viii) Pr(M-rad(N))=M-rad(Pr(N)).

Proof. (i) Let Ii be presentation ideals of Ni for every i∈ I. Then it is easy

to verify that

∑
i∈I
Ni =

∑
i∈I

(
Mi
)=

(∑
i∈I
Ii

)
M. (3.8)

Thus, Pr(
∑
i∈I Ni)=

∑
i∈I Pr(Ni).
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(ii) It is an immediate consequence of Lemma 2.6.

(iii) By Remark 3.7(i), we have

Pr

( k∑
i=1

mi

)
= Pr

(
R

k∑
i=1

mi

)
⊆ Pr

(
R

k∑
i=1

Rmi

)
= Pr

( k∑
i=1

Rmi

)
=

k∑
i=1

Pr
(
mi
)
.

(3.9)

(iv), (v), (vi), and (vii) are an immediate consequence of Theorem 3.4 and

Remark 3.7.

(viii) It follows from Theorem 2.11.

Definition 3.9. Let M be a multiplication R-module and let N be a sub-

module of M . Then,

(i) N is called nilpotent if Nk = 0 for some positive integer k, where Nk

means the product of N, k times;

(ii) an element m of M is called nilpotent if mk = 0 for some positive

integer k.

The set of all nilpotent elements of M is denoted by NM .

Theorem 3.10. Let M be a multiplication module. A submodule N of M is

nilpotent if and only if for every presentation ideal I of N, Ik ⊆ ann(M) for some

positive integer k∈N.

Proof. Let I be a presentation ideal of N. If N is nilpotent, then Nk = 0 for

some positive integer k, that is, Nk = IkM = 0. Thus, Ik ⊆ ann(M). Conversely,

suppose that Ik ⊆ ann(M) for some presentation ideal I of N. Then,

Nk = IkM ⊆ ann(M)M = 0. (3.10)

Therefore, N is nilpotent.

Corollary 3.11. Let M be a faithful R-multiplication module and let N be

a submodule of M . Then, N is nilpotent if and only if every presentation ideal

of N is a nilpotent ideal.

Theorem 3.12. Let M be a multiplication module. Then, NM is a submodule

of M and M/NM has no nonzero nilpotent element.

Proof. Let x,y ∈NM , say xm = 0 andyn = 0. Consider presentation ideals

I and J of x and y , respectively. Then xm = ImM = 0 and ym = InM = 0. Since

Rx = IM and Ry = JM , then by Lemma 2.5, we have R(x+y) ⊆ Rx+Ry =
IM+JM = (I+J)M , then I+J is a presentation ideal for x+y . Let l=m+n.

Then,

(x+y)m+n = (I+J)m+nM =
( l∑
i=0

(
l
i

)
(I)i(J)l−i

)
M = (0)M = (0), (3.11)
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and hence x+y ∈ NM . Now, let m ∈ NM and r ∈ R. Consider presentation

ideal I of m. Thus, mk = IkM = 0 since Rrm = (rI)M ⊆ IM . Thus, (rm)k =
(rI)kM ⊆ IkM = (0) and hence rm∈NM . Therefore, NM is a submodule of M .

Let x ∈M/NM be represented by x. Then, xn is represented by xn so that

xn = 0. Thus, xn ∈NM and hence (xn)k = 0 for some k≥ 0. Therefore, x ∈NM
and so x = 0.

Theorem 3.13. Let N be a submodule of a multiplication R-moduleM . Then

M-rad(N)= {m∈M |mk ⊆N for some k≥ 0}.
Proof. Let

B = {m∈M |mk ⊆N for some k≥ 0
}
. (3.12)

First, we show that B is a submodule of M . Let x,y ∈ B, and let I and J be

presentation ideals of x and y , respectively. Then, xn = In and ym = JM ⊆N
for some positive integers m and n, and presentation ideals I, J of x and y ,

respectively. Let k=max{m,n}. Then

(x+y)k = (IM+JM)k = ((I+J)M)k

= (I+J)kM =
k∑
i=0

(
k
i

)
(IM)i(JM)k−i,

(3.13)

that is, x+y ∈ B. Also, for x ∈ B and r ∈ R, we have (rx)n ⊆N since xn ⊆N.

Thus, B is a submodule of M . Suppose that m ∈ B and A is a presentation of

m. Then, mk =AkM ⊆N for some n≥ 1 and hence by Theorem 2.11, we have

M-rad
(
mk)= √AkM =

√
AM ⊆M-rad(N). (3.14)

Thus, M-rad(Rm) = M-rad(AM) ⊆ M-rad(N) and this implies that B ⊆
M-rad(N).

Conversely, let m ∈ M-rad(N) = √IM , where I = ann(M/N). Then, m =∑n
i=1 rimi for ri ∈

√
I and mi ∈M . Thus, rnii ∈ I for some ni ≥ 1. Thus, for a

sufficiently largen, we havemk ⊆ IM =N and henceM-rad(N)⊆ B. Therefore,

B =M-rad(N).

Corollary 3.14. LetM be a multiplication R-module. Then NM is the inter-

section of all prime submodules of M .

Proof. By Theorem 2.11, we have M-rad(0) = √AM , where A = ann(M),
and by Theorem 3.13, M-rad(N)=NM .

Corollary 3.15. Let M be a faithful multiplication R-module. Then NM =
�M , where � is the nilradical of R.
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Theorem 3.16. Let P be a proper submodule of a multiplication module M .

Then P is prime if and only if

UV ⊆ P �⇒U ⊆ P or V ⊆ P (3.15)

for each submodule U and V of M .

Proof. Let P be prime and UV ⊆ P , but U �⊆ P and V �⊆ P for some sub-

modules U and V of M . Suppose that I and J are presentations of U and V ,

respectively. Then UV = IJM ⊆ P . Thus, there are ry ∈ U−P and sx ∈ U−P
for some r ∈ I and s ∈ J. Thus, rsx ∈ P and hence rM ⊆ P , that is, ry ∈ P ,

which is a contradiction.

Conversely, suppose that condition (3.15) is true. Let rx ∈ P for some r ∈ R
and x ∈ M −P , but rM �⊆ P ; then, rm �∈ P for some m ∈ M . Let I and J be

presentation ideals of rx and m, respectively. Then

R(rx)·(Rm)= (Rx)·(Rrm)= IM ·JM = IJM ⊆ P. (3.16)

Now, by hypothesis, we must have Rx ⊆ P or Rrm ⊆ P , which implies that

x ∈ P or rm∈ P , which is a contradiction. Therefore, P is prime.

Corollary 3.17. Let P be a proper submodule ofM . Then P is prime if and

only if

m·m′ ⊆ P �⇒m∈ P or m′ ∈ P (3.17)

for every m,m′ ∈M .

Proof. If P is prime, then, clearly, (3.17) is true. Conversely, suppose that

(3.17) is true, and UV ⊆ P for submodules U and V ofM , but U �⊆ P and V �⊆ P .

Thus, there areu∈U−P and v ∈ V−P . Thenuv = RuRv ⊆UV ⊆ P and hence

by (3.17), we must have u∈U or v ∈ V , which is a contradiction. Therefore, P
is prime.

Definition 3.18. An element u of an R-module M is said to be a unit pro-

vided that u is not contained in any maximal submodule of M .

Theorem 3.19. Let M be a multiplication R-module. Then u∈M is a unit if

and only if 〈u〉 =M .

Proof. The sufficiency is clear. For a necessary part, let u be a unit ele-

ment. Then 〈u〉 is not contained in any maximal submodule of M . Thus, by

Theorem 2.7, we must have 〈u〉 =M .

Theorem 3.20. Let M be an R-module (not necessarily multiplicative) such

that M has a unit u. Then m ∈ rad(M) if and only if u−rm is unit for every

r ∈ R.

Proof. See [7, Theorem 4.8].
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Theorem 3.21. Every homomorphic image of a multiplication module is a

multiplication module.

Proof. Let M be a multiplication R-module, φ :M →M′ an R-module ho-

momorphism, and K = φ(M). Let k ∈ K, then k = (φm) for some m ∈ M .

Since M is a multiplication, then by Lemma 2.5, there is an ideal I of R such

that Rm= IM . Thus,

ϕ(IM)= Iϕ(M)= IK =ϕ(Rm)= Rϕ(m)= Rk. (3.18)

Therefore, by Lemma 2.5, K is a multiplication R-module.

Corollary 3.22. Let M be a multiplication R-module and N a submodule

of M . Then, M/N is a multiplication R-module.

Theorem 3.23 (a version of Nakayama lemma). Let M be a faithful multi-

plication R-module such that M has a unit u. Then, for every submodule N, the

following conditions are equivalent:

(i) N is contained in every maximal submodule of M ;

(ii) u−rx is a unit for all r ∈ R and for all x ∈N;

(iii) if M is a finitely generated R-module such that NM =M , then M = 0;

(iv) if M is finitely generated and K is a submodule of M such that M =
NM+K, then M =K.

Proof. (i)⇒(ii) is an immediate consequence of Theorem 3.19.

(ii)⇒(iii). Since M is finitely generated, there must be a minimal generating

set X = {m1, . . . ,mn} of M . If M ≠ 0, then m1 ≠ 0 by minimality. Now, let I be

a presentation of N. Then, NM = M implies that M = IM ·M = M , and since

M is faithful, then by Theorem 2.13, we have N ⊆ rad(M)= J1(M)M ⊆ J(R)M .

Thus, m1 = j1m1+j2m2+···+jnmn (ji ∈ J(R)) whence j1m1 =m1 so that

(1−j1)m1 = 0 if n= 1, and

(
1−j1

)
m1 = j2m2+···+jnmn, n > 1. (3.19)

Since 1−j1 is a unit in R, m1 = (1−j1)−1(1−j1)m1+···+(1−j1)−1jnmn.

Thus, if n = 1, then m1 = 0, which is a contradiction. If n > 1, then m1 is

a linear combination of m2,m3, . . . ,mn; consequently, {m2, . . . ,mn} generates

M , which contradicts the choice of X.

(iii)⇒(iv). Since for every submodule K/N of M/N, we have K/N =
ann(M/N/K/N)M/N = ann(M/K)M/N; then by Corollary 3.22,M/N is a mul-

tiplicationR-module. Now, it is easy to verify that rad(M/N)=M/N and hence,

by (iii), we must have M =K.

(iv)⇒(i). Let K be any maximal submodule of M , then K ⊆ NM = K. Conse-

quently, NM+M =M by maximality of K, otherwise M =K by (iv) a contradic-

tion. Therefore, N =NM ⊆K.
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